1
|
Zhao T, Gong K, Li P, Yang Y, Mei S, Wang S, Zheng Y, Ma S, Chen C. Ultrafine FeCo 2O 4/Fe 2O 3 nanoparticles anchored on carbon nanotubes as high-performance anode materials for lithium-ion batteries. Chem Commun (Camb) 2025. [PMID: 40375811 DOI: 10.1039/d5cc02396c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
A novel FeCo2O4/Fe2O3@CNT anode material was engineered through a facile solvothermal assembly of ultrafine FeCo2O4/Fe2O3 nanoparticles onto a three-dimensional (3D) conductive carbon nanotube (CNT) network. Ultrafine FeCo2O4/Fe2O3 nanoparticles offer abundant electrolyte-accessible active sites for efficient Li+ ion transportation. Additionally, the unique 3D network constructed by CNTs helps accelerate electronic transmission and mitigate the volume expansion of metal oxide particles. As a result, superior electrochemical performance is achieved. Namely, at a current density of 500 mA g-1, the FeCo2O4/Fe2O3@CNT exhibited an initial discharge specific capacity of 1469.8 mA h g-1, maintaining 609.8 mA h g-1 following 100 cycles, offering valuable insights for the future development of anode materials for Li-ion batteries.
Collapse
Affiliation(s)
- Taolin Zhao
- School of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
| | - Kunkun Gong
- School of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
| | - Peifeng Li
- School of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
| | - Yubo Yang
- School of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
| | - Shuxing Mei
- State Key Laboratory of Heavy Oil Processing at Karamay, China University of Petroleum-Beijing at Karamay, Karamay 834000, China.
| | - Shasha Wang
- Institute of Energy Resources, Hebei Academy of Sciences, China.
| | - Yong Zheng
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Non-metallic Crystalline and Energy Conversion Materials, Hubei Three Gorges Laboratory, China Three Gorges University, Yichang 443002, Hubei, China.
| | - Shengxiu Ma
- Karamay Zhiyuan Bochuang Environmental Protection Technology Co., Ltd, China
| | - Chen Chen
- Karamay Zhiyuan Bochuang Environmental Protection Technology Co., Ltd, China
| |
Collapse
|
2
|
Malavekar D, Pujari S, Jang S, Bachankar S, Kim JH. Recent Development on Transition Metal Oxides-Based Core-Shell Structures for Boosted Energy Density Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312179. [PMID: 38593336 DOI: 10.1002/smll.202312179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/22/2024] [Indexed: 04/11/2024]
Abstract
In recent years, nanomaterials exploration and synthesis have played a crucial role in advancing energy storage research, particularly in supercapacitor development. Researchers have diversified materials, including metal oxides, chalcogenides, and composites, as well as carbon materials, to enhance energy and power density. Balancing energy density with electrochemical stability remains challenging, driving intensified efforts in advancing electrode materials. This review focuses on recent progress in designing and synthesizing core-shell materials tailored for supercapacitors. The core-shell architecture offers advantages such as increased surface area, redox active sites, electrical conductivity, ion diffusion kinetics, specific capacitance, and cyclability. The review explores the impact of core and shell materials, specifically transition metal oxides (TMOs), on supercapacitor electrochemical behavior. Metal oxide choices, such as cobalt oxide as a preferred core and manganese oxide as a shell, are discussed. The review also highlights characterization techniques for assessing structural, morphological, and electrochemical properties of core-shell materials. Overall, it provides a comprehensive overview of ongoing TMOs-based core-shell material research for supercapacitors, showcasing their potential to enhance energy storage for applications ranging from gadgets to electric vehicles. The review outlines existing challenges and future opportunities in evolving TMOs-based core-shell materials for supercapacitor advancements, holding promise for high-efficiency energy storage devices.
Collapse
Affiliation(s)
- Dhanaji Malavekar
- Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, 300, Yongbong-Dong, Buk-Gu, Gwangju, 61186, South Korea
| | - Sachin Pujari
- Department of Physics, Yashwantrao Chavan Warana Mahavidyalaya, Warananagar, Kolhapur, 416113, India
| | - Suyoung Jang
- Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, 300, Yongbong-Dong, Buk-Gu, Gwangju, 61186, South Korea
| | - Shital Bachankar
- Department of Physics, Yashwantrao Chavan Warana Mahavidyalaya, Warananagar, Kolhapur, 416113, India
| | - Jin Hyeok Kim
- Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, 300, Yongbong-Dong, Buk-Gu, Gwangju, 61186, South Korea
| |
Collapse
|
3
|
Rashidi M, Ghasemi F. Thermally oxidized MoS2-based hybrids as superior electrodes for supercapacitor and photoelectrochemical applications. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Wang C, Wu W, Zhao C, Liu T, Wang L, Zhu J. Rational design of three-dimensional interlaced frameworks with 2D MXene-Ti3C2Tx and 2D ZnCo bimetallic hydroxide for enhanced sodium-ion capacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Wan L, Wang Y, Du C, Chen J, Xie M, Wu Y, Zhang Y. NiAlP@Cobalt substituted nickel carbonate hydroxide heterostructure engineered for enhanced supercapacitor performance. J Colloid Interface Sci 2021; 609:1-11. [PMID: 34890947 DOI: 10.1016/j.jcis.2021.11.191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022]
Abstract
Transitional metal phosphides with high electrical conductivity and superb physicochemical features have been recognized as ideal battery-type electrode materials for outstanding performance supercapacitors. However, their specific capacities and structural stability are needed to be enhanced for large-scale practical applications. To overcome these shortcomings, we fabricated heterostructured NiAlP@cobalt substituted nickel carbonate hydroxide (Co-NiCH) nanosheet arrays by sequential a hydrothermal reaction, a phosphorization treatment, and a second hydrothermal reaction. Profiting from its core-shell porous nanostructure and synergistic effect of NiAlP with high electrical conductivity and Co-NiCH with high redox reactivity, the resultant NiAlP@Co-NiCH electrode delivers a large specific capacity of 825.7C g-1 at 1 A g-1, excellent rate capability with 78.9% capacity retention and long lifespan, superior to those of pure NiAlP and Co-NiCH electrodes. Additionally, an aqueous asymmetric supercapacitor device is constructed by NiAlP@Co-NiCH and lotus pollen-derived hierarchical porous carbon, which demonstrates a large energy density of 82.3 Wh kg-1 at a power density of 739.8 W kg-1, and wonderful cycle stability with 88.2% capacity retention after 10,000 cycles. This work proposes a feasible strategy on construction of transitional metal phosphide-based heterojunctions for advanced asymmetric supercapacitor devices.
Collapse
Affiliation(s)
- Liu Wan
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China.
| | - Yameng Wang
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China; College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, China
| | - Cheng Du
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Jian Chen
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Mingjiang Xie
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Yapan Wu
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, China
| | - Yan Zhang
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China.
| |
Collapse
|
6
|
Wang Y, Zhang Y, Du C, Chen J, Tian Z, Xie M, Wan L. Rational synthesis of CoFeP@nickel-manganese sulfide core-shell nanoarrays for hybrid supercapacitors. Dalton Trans 2021; 50:17181-17193. [PMID: 34782904 DOI: 10.1039/d1dt03196a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transition metal phosphide electrodes, particularly those with unique morphologies and micro-/nanostructures, have demonstrated desirable capabilities for hybrid supercapacitor applications by virtue of their superior electrical conductivity and high electrochemical activity. Here, three-dimensional hierarchical CoFeP@nickel-manganese sulfide nanoarrays were in situ constructed on a flexible carbon cloth via a hydrothermal method, a phosphorization process, followed by an electrodeposition approach. In this smart nanoarchitecture, CoFeP nanorods grown on carbon cloth act as the conductive core for rapid electron transfer, while the nickel-manganese sulfide nanosheets decorated on the surface of CoFeP serve as the shell for efficient ion diffusion, forming a stable core-shell heterostructure with enhanced electrical conductivity. Benefiting from the synergy of the two components and the generation of a heterointerface with a modified electronic structure, The CoFeP@nickel-manganese sulfide electrodes deliver a high capacity of 260.7 mA h g-1 at 1 A g-1, excellent rate capability, and good cycling stability. More importantly, an aqueous hybrid supercapacitor based on CoFeP@nickel-manganese sulfide as a positive electrode and a lotus pollen-derived hierarchical porous carbon as a negative electrode is constructed to display a maximum energy density of 60.1 W h kg-1 at 371.8 W kg-1 and a good cycling stability of 85.7% capacitance retention after 10 000 cycles.
Collapse
Affiliation(s)
- Yameng Wang
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, China. .,Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Yan Zhang
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Cheng Du
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Jian Chen
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Zhengfang Tian
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, China. .,Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Mingjiang Xie
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, China. .,Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Liu Wan
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, China. .,Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| |
Collapse
|
7
|
Shetgaonkar SS, Salkar AV, Morajkar PP. Advances in Electrochemical and Catalytic Performance of Nanostructured FeCo 2 O 4 and Its Composites. Chem Asian J 2021; 16:2871-2895. [PMID: 34375014 DOI: 10.1002/asia.202100654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/08/2021] [Indexed: 11/06/2022]
Abstract
It is well established that the excessive and uncontrolled use of fossil fuels and organic chemicals have put a risk to the earth's environment and the life that sustains within it. Carbon-free, sustainable, alternative energy technologies have therefore become the prime focus of current research. Smart inorganic materials have emerged as the potential solution to suffice energy needs and remediate the organic pollutants discharged to the environment. One such promising, versatile material is FeCo2 O4 which has gained immense research interest in the present decade due to its high efficiency and performance in energy and environmental applications. Innovative material design strategies involving the interplay of nanostructured morphology, chemical composition, redox surface states, and defect engineering have significantly enhanced both electrochemical and catalytic properties of FeCo2 O4 . Therefore, this review article aims to provide the first-ever comprehensive account of the latest research and developments in design-synthesis strategies, characterization techniques, and applications of nanostructured FeCo2 O4 and its composites in various electrochemical as well as catalytic applications. A detailed account of the nanostructured FeCo2 O4 and its composites in various energy storage and conversion devices such as supercapacitors (SCs), batteries, and fuel cells has been presented. Furthermore, a special section has been devoted to highlight the role of FeCo2 O4 in enhancing the sluggish reaction kinetics of oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in water splitting application. This review also highlights the role of nanostructured FeCo2 O4 in photocatalytic waste water treatment, gas sensing, and dual-phase membrane technologies wherein FeCo2 O4 has demonstrated promising performance.
Collapse
Affiliation(s)
| | - Akshay V Salkar
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa, India
| | - Pranay P Morajkar
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa, India
| |
Collapse
|