1
|
Rollier FA, Muravev V, Kosinov N, Wissink T, Anastasiadou D, Ligt B, Barthe L, Costa Figueiredo M, Hensen EJM. Cu-Ag interactions in bimetallic Cu-Ag catalysts enhance C 2+ product formation during electrochemical CO reduction. JOURNAL OF MATERIALS CHEMISTRY. A 2025; 13:2285-2300. [PMID: 39679096 PMCID: PMC11639664 DOI: 10.1039/d4ta04263h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
The electroreduction of CO (CORR) is a promising alternative to the direct CO2 electroreduction reaction (CO2RR) to produce C2+ products. Cu-based electrocatalysts enable the formation of C-C bonds, leading to various C2+ hydrocarbon and oxygenate products. Herein, we investigated how the composition of bimetallic Cu-Ag catalysts impacted the nature of the Cu-Ag interactions and the product distribution of the CORR, aiming to improve the selectivity to C2+ products. Cu-Ag catalysts containing 1-50 mol% Ag were prepared by sol-gel synthesis. A Ag content of 10 mol% of Ag (Cu0.9Ag0.1) was optimum with respect to increasing the C2+ product selectivity and suppressing H2 evolution. Operando X-ray absorption spectroscopy and quasi-in situ X-ray photoelectron spectroscopy demonstrated the complete reduction of CuO to Cu during CORR. Electron microscopy (EM) and in situ wide-angle X-ray scattering (WAXS) revealed substantial restructuring during reduction. EM imaging showed the formation of Ag-Cu core-shell structures in Cu0.9Ag0.1, while separate Cu and Ag particles were predominant at higher Ag content. In situ WAXS revealed the formation of a Cu-Ag nanoalloy phase in the bimetallic Cu-Ag samples. The optimum Cu0.9Ag0.1 sample contained more Cu-Ag nanoalloys than samples with a higher Ag content. The Cu-Ag interfaces between the Ag-core and the Cu-shell in the bimetallic particles are thought to host the nanoalloys. The optimum CORR performance for Cu0.9Ag0.1 is likely due to the enhanced Cu-Ag interactions, as confirmed by a sample prepared with the same surface composition by galvanic exchange.
Collapse
Affiliation(s)
- Floriane A Rollier
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Valery Muravev
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Nikolay Kosinov
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Tim Wissink
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Dimitra Anastasiadou
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Bianca Ligt
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Laurent Barthe
- Synchrotron SOLEIL L'Orme des Merisiers, Départementale 128 91190 Saint-Aubin France
| | - Marta Costa Figueiredo
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Emiel J M Hensen
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|
2
|
Yari F, Aljabour A, Awada H, Michalke J, Kumari N, Coskun-Aljabour H, Roy S, Krisch D, Schöfberger W. Synergistic Interactions in a Heterobimetallic Ce(III)-Ni(II) Diimine Complex: Enhancing the Electrocatalytic Efficiency for CO 2 Reduction. ACS APPLIED ENERGY MATERIALS 2024; 7:10052-10060. [PMID: 39544915 PMCID: PMC11558560 DOI: 10.1021/acsaem.4c02132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
In this study, we propose a practical approach for producing a heterobimetallic Ni(II)-Ce(III) diimine complex from an extended salen-type ligand (H2L) to serve as an electrocatalyst for CO2 reduction and demonstrate an outstanding overall efficiency of 99.6% of the cerium-nickel complex and integrate it into applicable cell assemblies. We optimize not only the catalyst, but the operational conditions enabling successful CO2 electrolysis over extended periods at different current densities. A comparison of electrochemical behavior in H-cell and zero-gap cell electrolyzers suggests potential applications for industrial scale-up. In the H-cell electrolyzer configuration, the most elevated efficiency in CO production was achieved with a selectivity of 56.96% at -1.01 V vs RHE, while HCOO- formation exhibited a selectivity of 32.24% at -1.11 V vs RHE. The highest TON was determined to be 14657.0 for CO formation, followed by HCOO- with a TON of 927.8 at -1.11 V vs RHE. In the zero-gap electrolyzer configuration, the most efficient setup toward CO production was identified at a current density (CD) of 75 mA cm-2, a flow rate of 10 mL min-1, operating at 60 °C and utilizing a low KOH concentration of 0.1 M to yield a maximum faradaic efficiency (FECO) of 82.1% during 24 h of stable electrocatalysis.
Collapse
Affiliation(s)
- Farzaneh Yari
- Institute
of Organic Chemistry, Laboratory for Sustainable Chemistry and Catalysis
(LSusCat), Johannes Kepler University (JKU), Altenberger Straße 69, 4040 Linz, Austria
| | - Abdalaziz Aljabour
- Institute
of Organic Chemistry, Laboratory for Sustainable Chemistry and Catalysis
(LSusCat), Johannes Kepler University (JKU), Altenberger Straße 69, 4040 Linz, Austria
| | - Houssein Awada
- Institute
of Organic Chemistry, Laboratory for Sustainable Chemistry and Catalysis
(LSusCat), Johannes Kepler University (JKU), Altenberger Straße 69, 4040 Linz, Austria
| | - Jessica Michalke
- Chair
of Physical Chemistry, Montanuniversität
Leoben, 8700 Leoben, Austria
- Institute
for Catalysis (INCA), Johannes Kepler University, 4040 Linz, Austria
| | - Nidhi Kumari
- Eco-Friendly
Applied Materials Laboratory, Department of Chemical Sciences, Materials
Science Centre, Indian Institute of Science
Education and Research, Kolkata 741246, West Bengal, India
| | - Halime Coskun-Aljabour
- Institute
of Organic Chemistry, Laboratory for Sustainable Chemistry and Catalysis
(LSusCat), Johannes Kepler University (JKU), Altenberger Straße 69, 4040 Linz, Austria
| | - Soumyajit Roy
- Eco-Friendly
Applied Materials Laboratory, Department of Chemical Sciences, Materials
Science Centre, Indian Institute of Science
Education and Research, Kolkata 741246, West Bengal, India
| | - Dominik Krisch
- Institute
of Organic Chemistry, Laboratory for Sustainable Chemistry and Catalysis
(LSusCat), Johannes Kepler University (JKU), Altenberger Straße 69, 4040 Linz, Austria
| | - Wolfgang Schöfberger
- Institute
of Organic Chemistry, Laboratory for Sustainable Chemistry and Catalysis
(LSusCat), Johannes Kepler University (JKU), Altenberger Straße 69, 4040 Linz, Austria
| |
Collapse
|
3
|
Chen S, Zhu H, Li T, Liu P, Wu C, Jia S, Li Y, Suo B. Applications of metal nanoclusters supported on the two-dimensional material graphene in electrocatalytic carbon dioxide reduction. Phys Chem Chem Phys 2024; 26:26647-26676. [PMID: 39415712 DOI: 10.1039/d4cp03161j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Metal nanoclusters (MNCs) have been demonstrated to exhibit superior catalytic performance compared to single nanoparticles. This is attributed to their quantized electronic structure, unique geometrical stacking and abundant active sites. While the exposed metal atoms can markedly enhance the efficiency of catalysis, unfortunately, MNCs are susceptible to agglomeration, which impairs their catalytic activity and stability. Graphene is a two-dimensional material consisting of a single atomic layer formed by the hybridization of the s and p orbitals of carbon atoms. It exhibits stable physical and chemical properties and has an easily controllable structure, making it an ideal carrier for MNCs. When metal nanoclusters (MNCs) are loaded on a graphene substrate, the MNCs can form a stable binding site on the graphene substrate. Furthermore, the construction of a defective structure on the graphene substrate enables the formation of robust interactions between the metal atoms of the MNCs and the substrate, facilitating the rapid establishment of electron conduction pathways and markedly enhancing the electrocatalytic performance. This paper presents a review of the applications of metal nanoclusters supported on graphene skeletons in the field of the electrocatalytic CO2 reduction reaction (CO2RR). Firstly, we briefly introduce the reaction mechanism of the CO2RR, then we systematically discuss the synthesis strategies, properties and applications of metal nanoclusters in electrocatalytic carbon dioxide reduction from both experimental and theoretical perspectives, and lastly, we discuss the opportunities and challenges of metal nanocluster catalysts supported on carbon materials.
Collapse
Affiliation(s)
- Shanlin Chen
- Institute of Yulin Carbon Neutral College, Northwest University, Xi'an, Yulin 719000, China
| | - Haiyan Zhu
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
- Institute of Yulin Carbon Neutral College, Northwest University, Xi'an, Yulin 719000, China
| | - Tingting Li
- Institute of Yulin Carbon Neutral College, Northwest University, Xi'an, Yulin 719000, China
| | - Ping Liu
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| | - Chou Wu
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| | - Shaobo Jia
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127 Xi'an, P. R. China
| | - Yawei Li
- School of Energy, Power and Mechanical Engineering, Institute of Energy and Power Innovation, North China Electric Power University, Beijing 102206, China.
| | - Bingbing Suo
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| |
Collapse
|
4
|
Ko YJ, Lim C, Jin J, Kim MG, Lee JY, Seong TY, Lee KY, Min BK, Choi JY, Noh T, Hwang GW, Lee WH, Oh HS. Extrinsic hydrophobicity-controlled silver nanoparticles as efficient and stable catalysts for CO 2 electrolysis. Nat Commun 2024; 15:3356. [PMID: 38637502 PMCID: PMC11026478 DOI: 10.1038/s41467-024-47490-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/27/2024] [Indexed: 04/20/2024] Open
Abstract
To realize economically feasible electrochemical CO2 conversion, achieving a high partial current density for value-added products is particularly vital. However, acceleration of the hydrogen evolution reaction due to cathode flooding in a high-current-density region makes this challenging. Herein, we find that partially ligand-derived Ag nanoparticles (Ag-NPs) could prevent electrolyte flooding while maintaining catalytic activity for CO2 electroreduction. This results in a high Faradaic efficiency for CO (>90%) and high partial current density (298.39 mA cm‒2), even under harsh stability test conditions (3.4 V). The suppressed splitting/detachment of Ag particles, due to the lipid ligand, enhance the uniform hydrophobicity retention of the Ag-NP electrode at high cathodic overpotentials and prevent flooding and current fluctuations. The mass transfer of gaseous CO2 is maintained in the catalytic region of several hundred nanometers, with the smooth formation of a triple phase boundary, which facilitate the occurrence of CO2RR instead of HER. We analyze catalyst degradation and cathode flooding during CO2 electrolysis through identical-location transmission electron microscopy and operando synchrotron-based X-ray computed tomography. This study develops an efficient strategy for designing active and durable electrocatalysts for CO2 electrolysis.
Collapse
Affiliation(s)
- Young-Jin Ko
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Chulwan Lim
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Junyoung Jin
- Center for Neuromorphic Engineering, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Min Gyu Kim
- Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang, 37673, Republic of Korea
| | - Ji Yeong Lee
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Tae-Yeon Seong
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kwan-Young Lee
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Byoung Koun Min
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jae-Young Choi
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Taegeun Noh
- Platform Technology Research Center, LG Chem Ltd., 30, Magokjungang 10-ro, Gangseo-gu, Seoul, 07796, Republic of Korea
| | - Gyu Weon Hwang
- Center for Neuromorphic Engineering, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| | - Woong Hee Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| | - Hyung-Suk Oh
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea.
- School of Advanced Materials Science & Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| |
Collapse
|
5
|
Xu X, Xiao D, Gao Y, Li W, Gao M, Zhao S, Wang Z, Zheng Z, Wang P, Cheng H, Liu Y, Dai Y, Huang B. Pd-Decorated Cu 2O-Ag Catalyst Promoting CO 2 Electroreduction to C 2H 4 by Optimizing CO Intermediate Adsorption and Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16243-16252. [PMID: 38527494 DOI: 10.1021/acsami.4c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Electrocatalytic CO2 reduction reaction (CO2RR) to high value-added products, such as ethylene (C2H4), offers a promising approach to achieve carbon neutrality. Although recent studies have reported that a tandem catalyst (for example, Cu-Ag systems) exhibits advantage in C2H4 production, its practical application is largely inhibited by the following: (1) a traditional tandem catalyst cannot effectively stabilize the *CO intermediate, resulting in sluggish C-C coupling, and (2) inadequate H2O activation ability hinders the hydrogenation of intermediates. To break through the above bottleneck, herein, palladium (Pd) was introduced into Cu2O-Ag, a typical conventional tandem catalyst, to construct a Cu2O-Pd-Ag ternary catalyst. Extensive experiment and density functional theory calculation prove that Pd can efficiently stabilize the *CO intermediate and promote the H2O activation, which contributes to the C-C coupling and intermediate hydrogenation, the key steps in the conversion of CO2 to C2H4. Beneficial to the efficient synergy of Cu2O, Pd, and Ag, the optimal Cu2O-Pd-Ag ternary catalyst achieves CO2RR toward C2H4 with a faradaic efficiency of 63.2% at -1.2 VRHE, which is higher than that achieved by Cu2O-Ag and most of other reported catalysts. This work is a fruitful exploration of a rare ternary catalyst, providing a new route for constructing an efficient CO2RR electrocatalyst.
Collapse
Affiliation(s)
- Xianbin Xu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Difei Xiao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yugang Gao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Wenbo Li
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Miaomiao Gao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Shuang Zhao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Ying Dai
- School of Physics, Shandong University, Jinan 250100, China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
6
|
Deng Z, Gong Z, Gong M, Wang X. Multiscale Regulation of Ordered PtCu Intermetallic Electrocatalyst for Highly Durable Oxygen Reduction Reaction. NANO LETTERS 2024; 24:3994-4001. [PMID: 38518181 DOI: 10.1021/acs.nanolett.4c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Transforming the Pt-M alloy into an ordered intermetallic is an effective strategy to improve the electrocatalytic activity and stability toward the oxygen reduction reaction (ORR). However, the synthesis of nanosized intermetallics remains challenging. Herein, we report an efficient ORR electrocatalyst, consisting of a monodisperse nanosized PtCu intermetallic on hollow mesoporous carbon spheres (HMCS). As predicted by theoretical calculations, PtCu intermetallics exhibit beneficial electronic structure, with a low theoretical overpotential of 0.33 V and enhanced Cu stability. Resulting from the multiscale modulation of catalyst structure, the O-PtCu/HMCS catalyst delivers a high mass activity of 2.73 A cm-2Pt at 0.9 V and remarkable stability. Identical location transmission electron microscopy (IL-TEM) investigations demonstrate that the rate of carbon corrosion is alleviated on HMCS, which contributes to the long-term durability. This work provides a promising design strategy for an ORR electrocatalyst, and the IL-TEM investigations offer new perspectives for the performance enhancement mechanism.
Collapse
Affiliation(s)
- Zhiping Deng
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW., Edmonton, Alberta T6G 1H9, Canada
| | - Zhe Gong
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, School of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, Hubei 430078, P. R. China
| | - Mingxing Gong
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, School of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, Hubei 430078, P. R. China
| | - Xiaolei Wang
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW., Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
7
|
Wang G, Ma Y, Wang J, Lu P, Wang Y, Fan Z. Metal functionalization of two-dimensional nanomaterials for electrochemical carbon dioxide reduction. NANOSCALE 2023; 15:6456-6475. [PMID: 36951476 DOI: 10.1039/d3nr00484h] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
With the mechanical exfoliation of graphene in 2004, researchers around the world have devoted significant efforts to the study of two-dimensional (2D) nanomaterials. Nowadays, 2D nanomaterials are being developed into a large family with varieties of structures and derivatives. Due to their fascinating electronic, chemical, and physical properties, 2D nanomaterials are becoming an important type of catalyst for the electrochemical carbon dioxide reduction reaction (CO2RR). Here, we review the recent progress in electrochemical CO2RR using 2D nanomaterial-based catalysts. First, we briefly describe the reaction mechanism of electrochemical CO2 reduction to single-carbon (C1) and multi-carbon (C2+) products. Then, we discuss the strategies and principles for applying metal materials to functionalize 2D nanomaterials, such as graphene-based materials, metal-organic frameworks (MOFs), and transition metal dichalcogenides (TMDs), as well as applications of resultant materials in the electrocatalytic CO2RR. Finally, we summarize the present research advances and highlight the current challenges and future opportunities of using metal-functionalized 2D nanomaterials in the electrochemical CO2RR.
Collapse
Affiliation(s)
- Guozhi Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Yangbo Ma
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
| | - Juan Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
| | - Pengyi Lu
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
8
|
Kwag J, Kim S, Kang S, Park J. Multiple‐length scale investigation of Pt/C degradation by identical‐location transmission electron microscopy. B KOREAN CHEM SOC 2023. [DOI: 10.1002/bkcs.12690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Jimin Kwag
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| | - Sungin Kim
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| | - Sungsu Kang
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| | - Jungwon Park
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
- Institute of Engineering Research, College of Engineering Seoul National University Seoul Republic of Korea
- Advanced Institutes of Convergence Technology Seoul National University Gyeonggi‐do Republic of Korea
| |
Collapse
|
9
|
Green Synthesis and Antimicrobial Study on Functionalized Chestnut-Shell-Extract Ag Nanoparticles. Antibiotics (Basel) 2023; 12:antibiotics12020201. [PMID: 36830111 PMCID: PMC9952261 DOI: 10.3390/antibiotics12020201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/22/2022] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
The chestnut shell is usually discarded as agricultural waste and the random deposition of it can cause environmental problems. In this study, monodisperse crystalline Ag nanoparticles (AgNPs) were synthesized by a hydrothermal approach, in which the chestnut shell extract served as both reducing agent and stabilizer. The synthesized Ag nanoparticles were characterized by ultraviolet-visible (UV) spectrophotometry, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) measurements. The TEM, XRD and XPS results revealed that the synthesized product was spherical Ag nanoparticles with a face-centered cubic crystal structure. The antimicrobial activity test indicated that the Ag nanoparticles modified by the chestnut shell extract had an obvious inhibitory effect on Escherichia coli, Staphylococcus aureus and Candida albicans. The measured MIC and MBC of functionalized chestnut-shell-extract AgNPs against E. coli, S. aureus and C. albicans is relatively low, which indicated that the present functionalized chestnut-shell-extract AgNPs are an efficient antimicrobial agent.
Collapse
|
10
|
Qiu Y, Xie Z, Gao S, Cao H, Zhang S, Liu Q, Liu X, Luo J. Nitrogen Defects in Porous Carbons with Adjacent Silver Nanoclusters for Efficient CO
2
Reduction. ChemElectroChem 2022. [DOI: 10.1002/celc.202200987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yuan Qiu
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education) Tianjin Key Laboratory for Photoelectric Materials and Devices National Demonstration Center for Experimental Function Materials Education School of Materials Science and Engineering Tianjin University of Technology Tianjin 300384 China
| | - Zhongyuan Xie
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials Institute for New Energy Materials and Low-Carbon Technologies School of Materials Science and Engineering Tianjin University of Technology Tianjin 300384 China
| | - Sanshuang Gao
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials Institute for New Energy Materials and Low-Carbon Technologies School of Materials Science and Engineering Tianjin University of Technology Tianjin 300384 China
| | - Huanqi Cao
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education) Tianjin Key Laboratory for Photoelectric Materials and Devices National Demonstration Center for Experimental Function Materials Education School of Materials Science and Engineering Tianjin University of Technology Tianjin 300384 China
| | - Shusheng Zhang
- College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | - Qian Liu
- Institute for Advanced Study Chengdu University Chengdu 610106 Sichuan China
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials School of Resource Environments and Materials Guangxi University Nanning 530004 China
| | - Jun Luo
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials Institute for New Energy Materials and Low-Carbon Technologies School of Materials Science and Engineering Tianjin University of Technology Tianjin 300384 China
| |
Collapse
|
11
|
Hu H, Liu M, Kong Y, Montiel IZ, Hou Y, Rudnev AV, Broekmann P. Size‐dependent Structural Alterations in Ag Nanoparticles During CO2 Electrolysis in a Gas‐fed Zero‐gap Electrolyzer. ChemElectroChem 2022. [DOI: 10.1002/celc.202200615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Huifang Hu
- University of Bern: Universitat Bern Chemistry, Biochemistry and Pharmaceutical Sciences SWITZERLAND
| | - Menglong Liu
- University of Bern: Universitat Bern Chemistry, Biochemistry and Pharmaceutical Sciences SWITZERLAND
| | - Ying Kong
- University of Bern: Universitat Bern Chemistry, Biochemistry and Pharmaceutical Sciences SWITZERLAND
| | | | - Yuhui Hou
- University of Bern: Universitat Bern Chemistry, Biochemistry and Pharmaceutical Sciences SWITZERLAND
| | - Alexander V. Rudnev
- University of Bern: Universitat Bern Chemistry, Biochemistry and Pharmaceutical Sciences Freiestrasse 3 3012 Bern SWITZERLAND
| | - Peter Broekmann
- University of Bern: Universitat Bern Chemistry, Biochemistry and Pharmaceutical Sciences SWITZERLAND
| |
Collapse
|
12
|
Jeong J, Choi J, Jang S, Shin H, Kim S, Jang J, Park HS, Choi M, Sung YE. In situ fabrication of highly porous foam-like Zn nanostructures on gas diffusion layer for selective electrocatalytic reduction of carbon dioxide to carbon monoxide. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Wang W, He X, Zhang K, Yao Y. Surfactant-modified Zn nanosheets on carbon paper for electrochemical CO 2 reduction to CO. Chem Commun (Camb) 2022; 58:5096-5099. [PMID: 35380564 DOI: 10.1039/d2cc01154a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We report a strategy that tunes the CO2 and proton concentrations near the electrode-electrolyte interface using surfactant modification with various amounts (0.05, 0.8, 1.6, and 3.2 mg) of hexadecyl trimethyl ammonium bromide (CTAB). The positively charged group of CTAB favors CO2 surface diffusion and inhibits excessive proton accumulation on Zn nanosheets on carbon paper. A CO faradaic efficiency of 95.6% and a total ampere density of -13.1 mA cm-2 were obtained over the optimal CTAB-modified Zn electrode at -1.1 V with stability over 12 hours.
Collapse
Affiliation(s)
- Wenyuan Wang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | - Xuhua He
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | - Kai Zhang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | - Yagang Yao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
14
|
|
15
|
Choi W, Park JW, Park W, Jung Y, Song H. Surface overgrowth on gold nanoparticles modulating high-energy facets for efficient electrochemical CO 2 reduction. NANOSCALE 2021; 13:14346-14353. [PMID: 34477717 DOI: 10.1039/d1nr03928h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrochemical CO2 reduction reaction (eCO2RR) has been considered one of the potential technologies to store electricity from renewable energy sources into chemical energy. For this aim, designing catalysts with high surface activities is critical for effective eCO2RR. In this study, we introduced a surface overgrowth method on stable Au icosahedrons to generate Au nanostars with large bumps. As a catalyst for eCO2RR, the Au nanostars exhibited a maximum faradaic efficiency (FE) of 98% and a mass activity of 138.9 A g-1 for CO production, where the latter was one of the highest activities among Au catalysts. Despite the deducted electrochemically active surface area per mass, the high-energy surfaces from overgrowth provided a 3.8-fold larger specific activity than the original Au icosahedral seeds, resulting in superior eCO2RR performances that outweigh the trade-off of size and shape in nanoparticles. The Au nanostars also represented prolonged stability due to the durability of high-energy facets. The characterization of surface morphology and density functional theory calculations revealed that predominant Au(321) facets on the Au nanostars effectively stabilized *COOH adsorbates, thus lowering the overpotential and improving the FE for CO production. This overgrowth method is simple and universal for various materials, which would be able to extend into a wide range of electrochemical catalysts.
Collapse
Affiliation(s)
- Woong Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | | | | | | | | |
Collapse
|