1
|
Zhang Q, Ma S, Xie Y, Pan S, Miao Z, Wang J, Yang Z. Cobalt Incorporation Promotes CO 2 Desorption from Nickel Active Sites Encapsulated by Nitrogen-Doped Carbon Nanotubes in Urea-Assisted Water Electrolysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26212-26220. [PMID: 39572867 DOI: 10.1021/acs.langmuir.4c03711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The potential application prospects of urea-assisted water electrolysis toward hydrogen production in renewable energy infrastructure can effectively alleviate energy shortages and environmental pollution caused by rich urea wastewater. It is of prominent significance that adjusting the CO2 desorption of nickel-based electrocatalysts can overcome the slow reaction kinetics for urea oxidation reaction (UOR) to achieve exceptional catalytic activity. In this work, cobalt (Co) metal doping is employed to boost the UOR performance of nitrogen-doped carbon nanotubes encapsulating nickel nanoparticle electrocatalysts (Ni@N-CNT). The influence of diverse Co doping concentrations on the performance of UOR and hydrogen evolution reaction (HER) catalytic activities associated with stability are systematically investigated. The Co dopant can effectively promote the dynamical conversion of Ni to Ni3+ species; as a result, the UOR catalytic activity is improved by 1.8-fold at 1.6 V vs RHE. The DFT calculation results show that the CoNi bimetallic structure possesses a comparably lower binding energy for CO2 adsorption accelerating the rate-limiting step. Meanwhile, the Co dopant also boosts the HER performance, achieving a 57 mV reduction in overpotential at 100 mA cm-2 due to the creation of more active sites. In addition, the assembled urea-assisted water electrolysis attains 10 mA cm-2 at merely 1.51 V as well as excellent stability.
Collapse
Affiliation(s)
- Quan Zhang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China
| | - Shuangxiu Ma
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China
| | - Yuhua Xie
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China
| | - Shuyuan Pan
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China
| | - Zhengpei Miao
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Jiatang Wang
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China
| | - Zehui Yang
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China
| |
Collapse
|
2
|
Duan Y, Guo Z, Wang T, Zhang J. Uniform anchoring of MoS 2 nanosheets on MOFs-derived CoFe 2O 4 porous nanolayers to construct heterogeneous structural configurations for efficient and stable overall water splitting. J Colloid Interface Sci 2024; 680:541-551. [PMID: 39579421 DOI: 10.1016/j.jcis.2024.11.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Rational interfacial engineering and morphology modulation are recognized as effective strategies to modulate the electronic structure and improving the activity of spinel materials. In this paper, we report a strategy of Fe-induced creation of porous nanolayers of CoFe2O4 with unique morphology derived from MOFs by introducing ferrocene, and then constructed CoFe2O4/MoS2 heterostructures were fabricated by homogeneously anchoring MoS2 nanosheets onto the surface of CoFe2O4. The triple synergistic effect of heterogeneous interfaces, highly active Mo(IV) sites, and unsaturated S effectively accelerates the cycling process between Fe(III)/Fe(II) and Co(III)/Co(II), which in turn enhances the adsorption of reactive intermediates on the active sites, as further corroborates by density functional theory (DFT) calculations. As a result, the CoFe2O4/MoS2 heterostructured catalysts prepared without noble metals exhibit high catalytic performance, necessitating only 270 mV and 229 mV to achieve the current density of 100 mA·cm-2 for OER and HER respectively, which is superior to most of the reported catalysts of interest. In addition, when used in an alkaline electrolyzer, it provides a current density of 10 mA·cm-2 at 1.54 V cell voltage. This work provides a new way for the rational construction of bifunctional water electrolytic catalysts.
Collapse
Affiliation(s)
- Yulin Duan
- School of Materials Science and Engineering & Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin 300384, China
| | - Zhengang Guo
- School of Materials Science and Engineering & Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin 300384, China; School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Tingting Wang
- School of Materials Science and Engineering & Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin 300384, China
| | - Jifan Zhang
- School of Materials Science and Engineering & Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin 300384, China
| |
Collapse
|
3
|
Xie X, Xu L, Zeng Q, Zhang Z, Xu Z, Yin C, Wang X. A NiMOF integrated with conductive materials for efficient bifunctional electrocatalysis of urea oxidation and oxygen evolution reactions. Dalton Trans 2024; 53:2565-2574. [PMID: 38221875 DOI: 10.1039/d3dt03456a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The development of urea oxidation reaction (UOR) and oxygen evolution reaction (OER) bifunctional electrocatalysts has dual significance in promoting hydrogen energy production and urea-rich wastewater treatment. Herein, a carboxylated multi-walled carbon nanotube (MWCNT-COOH)-ferrocene carboxylic acid (Fc-COOH) modulated NiMOF hybrid material (MWCNT-NiMOF(Fc)) has been synthesized for dual electrocatalysis of the UOR and OER. The material characterization results indicated that MWCNT-COOH and Fc-COOH were integrated into the framework structure of the NiMOF. The direct interaction between the NiMOF and MWCNT/Fc facilitated electron transfer in the hybrid material and led to lattice strain, which improved the charge transfer kinetics, promoted the exposure of more unsaturated Ni sites, and increased the electrochemically active surface area. These factors together enhanced the electrocatalytic activity of MWCNT-NiMOF(Fc) towards the UOR and OER. Using a glassy carbon electrode as the substrate, MWCNT-NiMOF(Fc) exhibited low potential requirements, low Tafel slopes, and high stability. In overall urea and water splitting electrolysis cells, the excellent UOR and OER dual functional catalytic ability and enormous practical application potential of the MWCNT-NiMOF(Fc) modified foam nickel electrode were further demonstrated. On the basis of the above research, the influence of a KOH environment on urea electrolysis was further studied, and the urea electrolysis products were analyzed, promoting a more comprehensive understanding of the catalytic performance of MWCNT-NiMOF(Fc) for urea oxidation. This study provides a new approach for developing high-performance NiMOF-based electrocatalysts for challenging bifunctional UOR/OER applications, and has potential application value in hydrogen production from urea-containing wastewater electrolysis.
Collapse
Affiliation(s)
- Xiaopei Xie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Liqiang Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
- Shandong Tianyi Chemical Co., Ltd, Weifang 262737, China
| | - Qingsheng Zeng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Zhaona Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Zhiqi Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Chuanxia Yin
- Marine Development and Fisheries Bureau of Kenli Distinct, Dongying 257500, China
| | - Xinxing Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
- Xinjiang Blue Ridge Tunhe Degradable Materials Co., Ltd, Changji 831100, China
| |
Collapse
|
4
|
Liu M, Zhao B, Pei K, Qian Y, Yang C, Liu Y, Cao H, Zhang J, Che R. An Ion-Engineering Strategy to Design Hollow FeCo/CoFe 2 O 4 Microspheres for High-Performance Microwave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300363. [PMID: 36929568 DOI: 10.1002/smll.202300363] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Although assembled hollow architectures have received considerable attention as lightweight functional materials, their uncontrollable self-aggregation and tedious synthetic methods hinder precise construction and modulation. Therefore, this study proposes a bi-ion synergistic regulation strategy to design assembled hollow-shaped cobalt spinel oxide microspheres. Dominated by the coordination-etching effects of F- and the hydrolysis-complex contributions of NH4 + , the unique construction is formed attributed to the dynamic cycles between metal complexes and precipitates. Meanwhile, their basic structures are perfectly retained after reduction treatment, enabling FeCo/CoFe2 O4 bimagnetic system to be obtained. Subsequently, in-depth analyses are conducted. Investigations reveal that multiscale magnetic coupling networks and enriched air-material heterointerfaces contribute to the remarkable magnetic-dielectric behavior, supported by the advanced off-axis electron holography technique. Consequently, the obtained FeCo/CoFe2 O4 composites exhibit excellent microwave absorption performances with minimal reflection losses (RLmin ) as high as -51.6 dB, an effective absorption bandwidth (EAB) of 4.7 GHz, and a matched thickness of 1.4 mm. Thus, this work provides an informative guide for rationally assembling building blocks into hollow architectures as advanced microwave absorbers through bi-ion and even multi-ion synergistic engineering mechanisms.
Collapse
Affiliation(s)
- Min Liu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Biao Zhao
- School of Microelectronics, Fudan University, Shanghai, 200433, P. R. China
| | - Ke Pei
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Yuetong Qian
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Chendi Yang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Yihao Liu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Hui Cao
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
| | | | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
- Zhejiang Laboratory, Hangzhou, 311100, P. R. China
| |
Collapse
|
5
|
Li K, Xie B, Feng D, Tong Y. Ni 2 Se 3 -CuSe x Heterostructure as a Highly Efficient Bifunctional Electrocatalyst for Urea-Assisted Hydrogen Generation. CHEMSUSCHEM 2022; 15:e202201656. [PMID: 36110055 DOI: 10.1002/cssc.202201656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Coupling urea oxidation reaction (UOR) with hydrogen evolution reaction (HER) is an attractive alternative anode reaction for electrochemical hydrogen generation with low energy consumption. However, the development of highly efficient bifunctional electrocatalysts is still a challenge. In this work, Ni2 Se3 -CuSex heterostructure was synthesized on copper foam (Ni3 Se2 @CuSex /CF) by electrodeposition accompanied by a selenization process. Benefiting from the abundant active sites, faster reaction kinetics, and modulated electronic structure, the self-supporting Ni3 Se2 @CuSex /CF electrode exhibited superior catalytic performance. Extremely low overpotentials of 120 and 140 mV were achieved at the current density of 100 mA cm-2 for HER/UOR, respectively. Respectively, in HER||UOR coupled electrolyzer for H2 generation, the Ni3 Se2 @CuSex /CF||Ni3 Se2 @CuSex /CF delivered a low cell voltage of 1.49 V to reach a high current density of 100 mA cm-2 along with good stability, outperforming most of the other well-developed materials to date. The rational design of coupled heterostructure as bifunctional electrodes is a promising approach for energy-saving H2 production.
Collapse
Affiliation(s)
- Kaixun Li
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Binbin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, 311231, Zhejiang, P. R. China
| | - Dongmei Feng
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Yun Tong
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| |
Collapse
|
6
|
Alhakemy AZ, Elseman AM, Fayed MG, Ahmed Amine Nassr AB, El-Hady Kashyout A, Wen Z. Hybrid electrocatalyst of CoFe2O4 decorating carbon spheres for alkaline oxygen evolution reaction. CERAMICS INTERNATIONAL 2022; 48:5442-5449. [DOI: 10.1016/j.ceramint.2021.11.088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
7
|
Hu Z, Zhang D, Sun C, Song C, Wang D. One-step ionothermal accompanied thermolysis strategy for N-doped carbon quantum dots hybridized NiFe LDH ultrathin nanosheets for electrocatalytic water oxidation. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|