1
|
Li Y, Huang Y, Zhao P, Fei J, Xie Y. A review on Pd-M bimetallic electrochemical sensors: Techniques, performance, and applications. Talanta 2025; 282:126989. [PMID: 39383725 DOI: 10.1016/j.talanta.2024.126989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Environmental pollution, food safety, and medical diagnostics pose severe threats to human health, making the development of effective detection technologies crucial. Electrochemical sensors, as an efficient detection method, are extensively employed in detecting environmental pollutants, food additives, and biomolecules. Pd-M bimetallic materials, known for their excellent electrocatalytic performance, are extensively utilized as electrode modification materials. Although earlier reviews have covered the sensing applications of bimetallic materials, they have not targeted discussed Pd-based bimetallic materials. This paper systematically summarizes the preparation methods of Pd-M bimetallic materials, explores their structural and morphological regulation, and elaborates on their recent applications in pesticide detection, environmental pollutant detection, food additive detection, drug detection, and biosensing. It enumerates the detection performance of various Pd-M bimetallic material-modified electrochemical sensors for the aforementioned analytes in detail, including specific modification materials, linear range, detection limits, and sensitivity parameters.
Collapse
Affiliation(s)
- Yuhong Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yutian Huang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Pengcheng Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China; Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| | - Yixi Xie
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, People's Republic of China.
| |
Collapse
|
2
|
Chen J, Pang M, Yang M, Gao F, Zhang B, Zang L, Li Z, Guo P. Chiral Effect on the Electrochemistry of Magnetic Ferrite Colloidal Nanocrystal Assembly Modified by Amino Acids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15171-15177. [PMID: 38980828 DOI: 10.1021/acs.langmuir.4c01525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Chirality on the molecular or nanometer scale is particularly significant in chemistry, materials science, and biomedicine. Chiral electrochemical reactions on solid surfaces are currently a hot research topic. Herein, a chiral solid surface is constructed in aqueous solutions by mixing chiral molecules, d- and l-glutamic, with γ-Fe2O3 and Fe3O4 nanoparticles (NPs) and MnFe2O4 colloidal nanocrystal assembly (CNA). Cyclic voltammetry and differential pulse voltammetry measurements are conducted in a phosphate buffer solution (PBS) containing ascorbic acid (AA) or isoascorbic acid (IAA), and a chiral effect appears on the electroreduction of ferric ions of amino acid-modified magnetic samples. A negative or positive potential shift is observed, respectively, for magnetic structures modified by l- and d-glutamic acid in aqueous AA electrolyte, while the opposite is observed for these samples in IAA electrolyte. The reduction peak current increases by 0.8-1.2 times for the electrodes modified with l- and d-glutamate molecules, improving the electron transport efficiency. The chiral effect is absent when the electrolytes contain achiral uric acid or dopamine, or even chiral l-/d-/ld-tartaric acid. The chiral recognition between d-/l-glutamic acid and AA/IAA at the electrochemical interface is suggested to be related to their spinal configurations. These observations will be helpful for the rational design of inorganic functional chiral micro/nanostructures.
Collapse
Affiliation(s)
- Jianyu Chen
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Mingyuan Pang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Min Yang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Fahui Gao
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Ben Zhang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Lei Zang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Ze Li
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Peizhi Guo
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
3
|
Li H, Wang Z, Dang L, Yu K, Yang R, Fu A, Liu X, Guo YG, Li H. Precursor Induced Assembly of Si Nanoparticles Encapsulated in Graphene/Carbon Matrices and the Influence of Al 2O 3 Coating on their Properties as Anode for Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307722. [PMID: 38054783 DOI: 10.1002/smll.202307722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/14/2023] [Indexed: 12/07/2023]
Abstract
The theoretical capacity of pristine silicon as anodes for lithium-ion batteries (LIBs) can reach up to 4200 mAh g-1, however, the low electrical conductivity and the huge volume expansion limit their practical application. To address this challenge, a precursor strategy has been explored to induce the curling of graphene oxide (GO) flakes and the enclosing of Si nanoparticles by selecting protonated chitosan as both assembly inducer and carbon precursor. The Si nanoparticles are dispersed first in a slurry of GO by ball milling, then the resulting dispersion is dried by a spray drying process to achieve instantaneous solution evaporation and compact encapsulation of silicon particles with GO. An Al2O3 layer is constructed on the surface of Si@rGO@C-SD composites by the atomic layer deposition method to modify the solid electrolyte interface. This strategy enhances obviously the electrochemical performance of the Si as anode for LIBs, including excellent long-cycle stability of 930 mAh g-1 after 1000 cycles at 1000 mA g-1, satisfied initial Coulomb efficiency of 76.7%, and high rate ability of 806 mAh g-1 at 5000 mA g-1. This work shows a potential solution to the shortcomings of Si-based anodes and provides meaningful insights for constructing high-energy anodes for LIBs.
Collapse
Affiliation(s)
- Haowei Li
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Zongyu Wang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Liyan Dang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Kailun Yu
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Rui Yang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Aiping Fu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Xuehua Liu
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Yu-Guo Guo
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
| | - Hongliang Li
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
4
|
Wu C, Zhou L, Zhang J, Wang B. Facile Synthesis of Multifunctional Ni(OH) 2 -Supported Core-Shell Ni@Pd Nanocomposites for the Electro-Oxidation of Small Organic Molecules. Chemistry 2023:e202303286. [PMID: 37830517 DOI: 10.1002/chem.202303286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/14/2023]
Abstract
In the domain of proton exchange membrane fuel cells (PEMFCs), the development of efficient and durable catalysts for the electro-oxidation of small organic molecules, especially of alcohols (methanol, ethanol, ethylene glycol, et al.) has always been a hot topic. A large number of related electrocatalysts with splendid performance have been designed and synthesized till now, while the preparation processes of most of them are demanding on experimental operations and conditions. Herein, we put forward a facile and handy method for the preparation of multifunctional Ni(OH)2 -supported core-shell Ni@Pd nanocomposites (Ni(OH)2 /Ni@Pd NCs) with the assistance of galvanic replacement reaction (GRR) at room temperature and ambient pressure. As expected, the Ni(OH)2 substrate can prevent the aggregation of core-shell (CS) Ni@Pd nanoparticles (NPs) and inhibit the formation of COads and further prevent Pd from being poisoned. The synergistic effect between CS Ni@Pd NPs and Ni(OH)2 substrate and the electronic effect between Pd shell and Ni core contribute to the outstanding electrocatalytic performance for methanol, ethanol, and ethylene glycol oxidation in alkaline condition. This study provides a succinct method for the design and preparation of efficient Pd-based electrocatalysts for alcohol electro-oxidation.
Collapse
Affiliation(s)
- Chenshuo Wu
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, China
| | - Lei Zhou
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, China
| | - Junxiang Zhang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, China
| | - Bin Wang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, China
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
5
|
Yang L, Li Z, Chen C, Wang J, Yin Q, Zhang Y, Guo P. Assembly of Alloyed PdM (Ag, Cu, and Sn) Nanosheets and Their Electrocatalytic Oxidation of Ethanol and Methanol. Inorg Chem 2023; 62:15320-15328. [PMID: 37669563 DOI: 10.1021/acs.inorgchem.3c02558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Direct alcohol fuel cells are popular due to their high energy density, abundant sources, and ease of transportation and storage. Palladium-based nanosheet self-assembled materials have emerged as an effective catalyst for alcohol oxidation reactions. In this work, nanosheets were synthesized with the same feeding ratio assembly of alloyed PdM (M = Ag, Cu, and Sn). The introduction of the second element was able to enhance the catalytic response of the catalysts to alcohol electrooxidation. Among them, the PdCu alloy exhibited the best performance in terms of catalytic activity, toxicity resistance, and stability to ethanol oxidation reaction (EOR) and methanol oxidation reaction (MOR). The catalytic current densities for EOR can reach 2226, 2518, and 1598 mA mg-1 for PdAg, PdCu, and PdSn nanosheet assemblies, respectively. These are mainly attributed to better electronic effects, altered atomic distances within the cell for the d-band centers of Pd, and a larger electrochemical active surface area (ECSA). The optimized d-band center is beneficial to promote the catalytic performance of EOR and MOR. Experimental data also demonstrated that higher electrocatalytic temperature, higher pH, and higher alcohol concentration can accelerate the rate of alcohol electrooxidation. These results have the potential to be extended to Pd-M (M = other metals) nanosheets and help for a wider range of catalytic applications.
Collapse
Affiliation(s)
- Likang Yang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Ze Li
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Chen Chen
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Jiasheng Wang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Qizhi Yin
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Yuxiang Zhang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Peizhi Guo
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
6
|
Yu S, Zhang C, Yang H. Two-Dimensional Metal Nanostructures: From Theoretical Understanding to Experiment. Chem Rev 2023; 123:3443-3492. [PMID: 36802540 DOI: 10.1021/acs.chemrev.2c00469] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
This paper reviews recent studies on the preparation of two-dimensional (2D) metal nanostructures, particularly nanosheets. As metal often exists in the high-symmetry crystal phase, such as face centered cubic structures, reducing the symmetry is often needed for the formation of low-dimensional nanostructures. Recent advances in characterization and theory allow for a deeper understanding of the formation of 2D nanostructures. This Review firstly describes the relevant theoretical framework to help the experimentalists understand chemical driving forces for the synthesis of 2D metal nanostructures, followed by examples on the shape control of different metals. Recent applications of 2D metal nanostructures, including catalysis, bioimaging, plasmonics, and sensing, are discussed. We end the Review with a summary and outlook of the challenges and opportunities in the design, synthesis, and application of 2D metal nanostructures.
Collapse
Affiliation(s)
- Siying Yu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 206 Roger Adams Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Cheng Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 206 Roger Adams Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hong Yang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 206 Roger Adams Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
One-Pot Au@Pd Dendritic Nanoparticles as Electrocatalysts with Ethanol Oxidation Reaction. Catalysts 2022. [DOI: 10.3390/catal13010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The one-pot synthesis strategy of Au@Pd dendrites nanoparticles (Au@Pd DNPs) was simply synthesized in a high-temperature aqueous solution condition where cetyltrimethylammonium chloride (CTAC) acted as a reducing and capping agent at a high temperature. The Au@Pd DNPs with highly monodisperse were shown in high yields by the Au:Pd rate. The nanostructure and optical and crystalline properties of the Au@Pd DNPs were characterized by UV–vis spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction. The Au@Pd DNPs showed an efficient electrochemical catalytic performance rate toward the ethanol oxidation reaction (EOR) due to their nanostructures and Au:Pd rate.
Collapse
|
8
|
Wang Q, Li T, Yan S, Zhang W, Lv G, Xu H, Li H, Wang Y, Liu J. Boosting Hydrogen Production by Selective Anodic Electrooxidation of Ethanol over Trimetallic PdSbBi Nanoparticles: Composition Matters. Inorg Chem 2022; 61:16211-16219. [PMID: 36150124 DOI: 10.1021/acs.inorgchem.2c02888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The conventional hydrogen evolution from water electrolysis is severely impeded by the sluggish kinetics of oxygen evolution reaction (OER). In this work, an integrated electrolysis system of replacing the anodic OER with a thermodynamically favorable ethanol oxidation reaction (EOR) has been developed by using PdSbBi/C as an electrocatalyst. To maximize the EOR performance, the composition of PdSbBi nanoparticles is tuned by varying the ratio of Sb and Bi precursors. Ternary PdSbBi-based electrocatalysts exhibit enhanced activity and stability toward EOR compared to commercial Pd/C and binary catalysts. In particular, the Pd76Sb17Bi7/C catalyst delivers a very high specific activity up to 52.4 mA cm-2 and mass activity of 2.66 A mg-1Pd. Besides, this EOR process is demonstrated to have high selectivity with acetic acid as the oxidation product in the electrolyte. When coupled with a cathodic platinum mash, the two-electrode electrolyzer cell requires a voltage input of merely 0.61 V to afford a current density of 10 mA cm-2. Density functional theory calculations reveal that the presence of Sb and Bi can promote the adsorption of hydroxide ions and facilitate the removal of reaction intermediates in the EOR pathway. This work provides a novel catalyst for the energy-efficient coproduction of acetic acid and hydrogen fuel.
Collapse
Affiliation(s)
- Qiuxia Wang
- Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tong Li
- Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Suxia Yan
- Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wenjie Zhang
- Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Guoai Lv
- Yangzhou China-Power Hydrogen Equipment Co., Ltd., Yangzhou, Jiangsu 225000, China
| | - Hui Xu
- Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Huaming Li
- Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yong Wang
- Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Junfeng Liu
- Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
9
|
Sun T, Chen J, Lao X, Zhang X, Fu A, Wang W, Guo P. Unveiling the Synergistic Effects of Monodisperse Sea Urchin-like PdPb Alloy Nanodendrites as Stable Electrocatalysts for Ethylene Glycol and Glycerol Oxidation Reactions. Inorg Chem 2022; 61:10220-10227. [PMID: 35729745 DOI: 10.1021/acs.inorgchem.2c01566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In recent times, the fabrication of noble metal-based catalysts with controllable morphologies has become a research hotspot. Electrocatalytic devices with excellent catalytic performance and enhanced durability for the ethylene glycol oxidation reaction (EGOR) and the glycerol oxidation reaction (GOR) are significant for commercial direct fuel cells. Herein, a series of PdPb sea urchin-like nanodendrite (ND) structures with controllable molar ratios were synthesized as EGOR and GOR electrocatalysts of high efficiency. The optimized structurally regular Pd3Pb NDs exhibit the best electrocatalytic activity and outstanding stability compared to other samples and commercial Pt/C. In addition, the integrated Pb on Pd3Pb NDs can mitigate the bond energy the intermediates generate and further boost the electrooxidation of the intermediates by supplying enough active sites without considering its intrinsic structure, which is beneficial to the enhanced EGOR and GOR activity and stability. With the assistance of electrochemical measurement, the mechanism of the enhanced alloy was further investigated. This paper presents a promising strategy to fabricate catalysts with stable structures, which will elucidate a very promising approach for developing Pd-based catalysts for further applications in fuel cells.
Collapse
Affiliation(s)
- Tong Sun
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Jianyu Chen
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Xianzhuo Lao
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Xingxue Zhang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Aiping Fu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Wei Wang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Peizhi Guo
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
10
|
Qin Y, Huang H, Yu W, Zhang H, Li Z, Wang Z, Lai J, Wang L, Feng S. Porous PdWM (M = Nb, Mo and Ta) Trimetallene for High C1 Selectivity in Alkaline Ethanol Oxidation Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103722. [PMID: 34951154 PMCID: PMC8844492 DOI: 10.1002/advs.202103722] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/28/2021] [Indexed: 05/20/2023]
Abstract
Direct ethanol fuel cells are among the most efficient and environmentally friendly energy-conversion devices and have been widely focused. The ethanol oxidation reaction (EOR) is a multielectron process with slow kinetics. The large amount of by-product generated by incomplete oxidation greatly reduces the efficiency of energy conversion through the EOR. In this study, a novel type of trimetallene called porous PdWM (M = Nb, Mo and Ta) is synthesized by a facile method. The mass activity (15.6 A mgPd -1 ) and C1 selectivity (55.5%) of Pd50 W27 Nb23 /C trimetallene, obtained after optimizing the compositions and proportions of porous PdWM, outperform those of commercial Pt/C (1.3 A mgPt -1 , 5.9%), Pd/C (5.0 A mgPd -1 , 7.2%), and Pd97 W3 /C bimetallene (9.5 A mgPd -1 , 14.1%). The mechanism by which Pd50 W27 Nb23 /C enhances the EOR performance is evaluated by in situ Fourier transform infrared spectroscopy and density functional theory calculations. It is found that W and Nb enhance the adsorption of CH3 CH2 OH and oxophilic high-valence Nb accelerates the subsequent oxidation of CO and CHx species. Moreover, Nb promotes the cleavage of CC bonds and increases the C1 selectivity. Pd60 W28 Mo12 /C and Pd64 W27 Ta9 /C trimetallene synthesized by the same method also exhibit excellent EOR performance.
Collapse
Affiliation(s)
- Yingnan Qin
- Key Laboratory of Eco‐chemical EngineeringKey Laboratory of Optic‐electric Sensing and Analytical Chemistry of Life ScienceTaishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and TechnologyLaboratory of Inorganic Synthesis and Applied ChemistryCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdao266042P. R. China
| | - Hao Huang
- School of Sustainable Energy Materials and ScienceJinhua Advanced Research InstituteJinhua321000P. R. China
| | - Wenhao Yu
- Key Laboratory of Eco‐chemical EngineeringKey Laboratory of Optic‐electric Sensing and Analytical Chemistry of Life ScienceTaishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and TechnologyLaboratory of Inorganic Synthesis and Applied ChemistryCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdao266042P. R. China
| | - Haonan Zhang
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety ProtectionCollege of Environment and Safety EngineeringQingdao University of Science and TechnologyQingdao266042P. R. China
| | - Zhenjiang Li
- College of Materials Science and EngineeringQingdao University of Science and TechnologyQingdao266042China
| | - Zuochao Wang
- Key Laboratory of Eco‐chemical EngineeringKey Laboratory of Optic‐electric Sensing and Analytical Chemistry of Life ScienceTaishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and TechnologyLaboratory of Inorganic Synthesis and Applied ChemistryCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdao266042P. R. China
| | - Jianping Lai
- Key Laboratory of Eco‐chemical EngineeringKey Laboratory of Optic‐electric Sensing and Analytical Chemistry of Life ScienceTaishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and TechnologyLaboratory of Inorganic Synthesis and Applied ChemistryCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdao266042P. R. China
| | - Lei Wang
- Key Laboratory of Eco‐chemical EngineeringKey Laboratory of Optic‐electric Sensing and Analytical Chemistry of Life ScienceTaishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and TechnologyLaboratory of Inorganic Synthesis and Applied ChemistryCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdao266042P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety ProtectionCollege of Environment and Safety EngineeringQingdao University of Science and TechnologyQingdao266042P. R. China
| | - Shouhua Feng
- Key Laboratory of Eco‐chemical EngineeringKey Laboratory of Optic‐electric Sensing and Analytical Chemistry of Life ScienceTaishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and TechnologyLaboratory of Inorganic Synthesis and Applied ChemistryCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdao266042P. R. China
| |
Collapse
|
11
|
Sun J, Lao X, Yang M, Fu A, Chen J, Pang M, Gao F, Guo P. Alloyed Palladium-Lead Nanosheet Assemblies for Electrocatalytic Ethanol Oxidation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14930-14940. [PMID: 34910478 DOI: 10.1021/acs.langmuir.1c02816] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Synthesizing alloyed bimetallic electrocatalysts with a three-dimensional (3D) structure assembly have arouse great interests in electrocatalysis. We synthesized a class of alloyed Pd3Pb/Pd nanosheet assemblies (NSAs) composed of a two-dimensional (2D) sheet structure with adjustable compositions via an oil bath approach at a low temperature. Both the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images reveal the successful formation of the nanosheet structure, where the morphology of Pd3Pb/Pd NSAs can be regulated by adjusting the atomic mole ratio of Pb and Pb metal precursors. The power X-ray diffraction (XRD) pattern shows that Pd3Pb/Pd NSA catalysts are homogeneously alloyed. Electrochemical analysis and the density functional theory (DFT) method demonstrate that the electrocatalytic activity of the alloyed Pd3Pb/Pd NSAs can be improved by the doping of the Pb element. As a result of the addition of element Pb and change of the electron structure, the electrocatalytic activity toward ethanol oxidation of alloyed Pd3Pb/Pd-15 NSA can reach up to 2886 mA mg-1, which is approximately 2.8 times that of the pure Pd NSA counterpart (1020 mA mg-1). The Pd3Pb/Pd NSAs are favorable in a high catalytic temperature, high KOH concentration, and high ethanol concentration.
Collapse
Affiliation(s)
- Jing Sun
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Xianzhuo Lao
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Min Yang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Aiping Fu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Jianyu Chen
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Mingyuan Pang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Fahui Gao
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Peizhi Guo
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| |
Collapse
|
12
|
Zhang B, Zhang X, Yan J, Cao Z, Pang M, Chen J, Zang L, Guo P. Synthesis of Free‐Standing Alloyed PdSn Nanoparticles with Enhanced Catalytic Performance for Ethanol Electrooxidation. ChemElectroChem 2021. [DOI: 10.1002/celc.202101242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ben Zhang
- Institute of Materials for Energy and Environment College of Materials Science and Engineering Qingdao University Qingdao 266071 PR China
| | - Xingxue Zhang
- Institute of Materials for Energy and Environment College of Materials Science and Engineering Qingdao University Qingdao 266071 PR China
| | - Jie Yan
- Institute of Materials for Energy and Environment College of Materials Science and Engineering Qingdao University Qingdao 266071 PR China
| | - Zhengshuai Cao
- Institute of Materials for Energy and Environment College of Materials Science and Engineering Qingdao University Qingdao 266071 PR China
| | - Mingyuan Pang
- Institute of Materials for Energy and Environment College of Materials Science and Engineering Qingdao University Qingdao 266071 PR China
| | - Jianyu Chen
- Institute of Materials for Energy and Environment College of Materials Science and Engineering Qingdao University Qingdao 266071 PR China
| | - Lei Zang
- Institute of Materials for Energy and Environment College of Materials Science and Engineering Qingdao University Qingdao 266071 PR China
| | - Peizhi Guo
- Institute of Materials for Energy and Environment College of Materials Science and Engineering Qingdao University Qingdao 266071 PR China
| |
Collapse
|
13
|
Mxene coupled over nitrogen-doped graphene anchoring palladium nanocrystals as an advanced electrocatalyst for the ethanol electrooxidation. J Colloid Interface Sci 2021; 610:944-952. [PMID: 34863544 DOI: 10.1016/j.jcis.2021.11.142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022]
Abstract
Development of good support materials is widely adopted as a valid strategy to fabricate high performance electrocatalysts for the ethanol oxidation reaction (EOR). In this study, the small diameter Ti3C2Tx MXene thin nanosheets inserted into three-dimensional nitrogen-doped grapheme (NG) was constructed via a facile hydrothermal method and employed as support materials for anchoring Pd nanocrystals (Pd/Ti3C2Tx@NG). The obtained-Pd/Ti3C2Tx@NG as EOR electrocatalyst in alkaline media outperforms the commercial Pd/C with better electrocatalytic activity, enhanced long-term stability and high CO tolerance. The Ti3C2Tx inserted into NG probably plays a key role for enhancing the properties of the synthesized-catalyst. Inserting Ti3C2Tx into NG allows the electrocatalysts to have high porosity, surface hydrophilicity, sufficient number of anchor sites for Pd nanocrystals and modifies its electronic properties, which can promote the electrocatalytic activity and durability. The enhanced EOR performance endows Pd/Ti3C2Tx@NG with great application potential in fuel cells as an anode catalyst. Furthermore, the prepared Ti3C2Tx@NG is also suitable in various desired applications, especially other oxidation reactions.
Collapse
|
14
|
Zang L, Yan J, Pang M, Zhang B, Chen J, Guo P. Enhanced Electrocatalytic Activity of Alloyed Palladium-Lead Nanoparticles toward Electrooxidation of Ethanol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13132-13140. [PMID: 34714658 DOI: 10.1021/acs.langmuir.1c02324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although many researchers have made great efforts to pursue promising high-efficiency electrocatalysts, a formidable challenge remains for designing excellent palladium-based electrocatalysts for commercializing direct liquid fuel cells. This study reports the synthesis of bimetallic PdPb nanoparticles (NPs) via a mixed solution containing cetyl trimethyl ammonium bromide as the capping agent. Alloyed PdPb NPs are formed, where the size of the NPs increases as Pb atoms are introduced gradually. However, Pd3Pb NPs are obtained with the same molar ratio of Pd and Pb in the raw systems. Among all of the as-made NPs, Pd9Pb1 NPs exhibit superior catalytic activity (2620 mA mg-1) toward ethanol electrooxidation, 4.3 times higher than commercial Pd/C catalysts (613 mA mg-1). The overall rate of the EOR for PdPb NPs is determined, demonstrating that the electrocatalytic activity of the PdPb NPs increases at high catalytic temperatures, in high pH environments, and/or at high ethanol concentrations.
Collapse
Affiliation(s)
- Lei Zang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Jie Yan
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Mingyuan Pang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Ben Zhang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Jianyu Chen
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Peizhi Guo
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
15
|
Chen J, Yang M, Pang M, Gao F, Guo P. Bimetallic PdAg nanoparticles for enhanced electrocatalysis of ethanol oxidation reaction. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Cao Z, Liu X, Meng X, Cai L, Chen J, Guo P. Synthesis of bimetallic PdSn nanoparticle assembly as highly efficient electrocatalyst for ethanol oxidation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|