1
|
Onuki S, Kawai Y, Masunaga H, Ohta N, Kikuchi R, Ashizawa M, Nabae Y, Matsumoto H. All-Perfluorosulfonated-Ionomer Composite Membranes Containing Blow-Spun Fibers: Effect of a Thin Fiber Framework on Proton Conductivity and Mechanical Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10682-10691. [PMID: 38381136 PMCID: PMC10910440 DOI: 10.1021/acsami.3c17643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
In this study, thin fiber composite polymer electrolyte membranes (PEMs) were prepared using short side-chain perfluorosulfonic acid (PFSA) ionomers, Aquivion, to create composite PEMs with improved proton conductivity and improved mechanical properties. PFSA thin fiber webs prepared by blow spinning and successive hot pressing were used as the porous substrate. Herein, PFSA ionomers were used for both the substrate and the matrix of the composite PEMs, and their structures, properties, and fuel cell performance were characterized. By adding the PFSA thin fiber webs to the matrix, the proton conductivity was enhanced and the mechanical properties were slightly improved. The prepared PFSA thin fiber composite PEM showed better FC performance than that of the pristine PFSA one for the high-temperature low-humidity condition in addition to the low-temperature high-humidity one. To the best of our knowledge, this is the first report on the all PFSA composite membranes containing a PFSA thin fiber framework.
Collapse
Affiliation(s)
- Shuta Onuki
- Department
of Materials Science and Engineering, Tokyo
Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Yoshiki Kawai
- Department
of Materials Science and Engineering, Tokyo
Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Hiroyasu Masunaga
- Japan
Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Noboru Ohta
- Japan
Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Ryohei Kikuchi
- Materials
Analysis Division, Open Facility Center, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Minoru Ashizawa
- Department
of Materials Science and Engineering, Tokyo
Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Yuta Nabae
- Department
of Materials Science and Engineering, Tokyo
Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Hidetoshi Matsumoto
- Department
of Materials Science and Engineering, Tokyo
Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
2
|
Simari C. NMR Investigation of Water Molecular Dynamics in Sulfonated Polysulfone/Layered Double Hydroxide Composite Membranes for Proton Exchange Membrane Fuel Cells. MEMBRANES 2023; 13:684. [PMID: 37505050 PMCID: PMC10384311 DOI: 10.3390/membranes13070684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
The development of nanocomposite membranes based on hydrocarbon polymers is emerging as one of the most promising strategies for overcoming the performance, cost, and safety limitations of Nafion, which is the current benchmark in proton exchange membranes for fuel cell applications. Among the various nanocomposite membranes, those based on sulfonated polysulfone (sPSU) and Layered Double Hydroxides (LDHs) hold promise regarding their successful utilization in practical applications due to their interesting electrochemical performance. This study aims to elucidate the effect of LDH introduction on the internal arrangement of water molecules in the hydrophilic clusters of sPSU and on its proton transport properties. Swelling tests, NMR characterization, and Electrochemical Impedance Spectroscopy (EIS) investigation allowed us to demonstrate that LDH platelets act as physical crosslinkers between -SO3H groups of adjacent polymer chains. This increases dimensional stability while simultaneously creating continuous paths for proton conduction. This feature, combined with its impressive water retention capability, allows sPSU to yield a proton conductivity of ca. 4 mS cm-1 at 90 °C and 20% RH.
Collapse
Affiliation(s)
- Cataldo Simari
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
- National Reference Centre for Electrochemical Energy Storage (GISEL)-INSTM, Via G. Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
3
|
Javed A, Palafox Gonzalez P, Thangadurai V. A Critical Review of Electrolytes for Advanced Low- and High-Temperature Polymer Electrolyte Membrane Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37326582 DOI: 10.1021/acsami.3c02635] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In the 21st century, proton exchange membrane fuel cells (PEMFCs) represent a promising source of power generation due to their high efficiency compared with coal combustion engines and eco-friendly design. Proton exchange membranes (PEMs), being the critical component of PEMFCs, determine their overall performance. Perfluorosulfonic acid (PFSA) based Nafion and nonfluorinated-based polybenzimidazole (PBI) membranes are commonly used for low- and high-temperature PEMFCs, respectively. However, these membranes have some drawbacks such as high cost, fuel crossover, and reduction in proton conductivity at high temperatures for commercialization. Here, we report the requirements of functional properties of PEMs for PEMFCs, the proton conduction mechanism, and the challenges which hinder their commercial adaptation. Recent research efforts have been focused on the modifications of PEMs by composite materials to overcome their drawbacks such as stability and proton conductivity. We discuss some current developments in membranes for PEMFCs with special emphasis on hybrid membranes based on Nafion, PBI, and other nonfluorinated proton conducting membranes prepared through the incorporation of different inorganic, organic, and hybrid fillers.
Collapse
Affiliation(s)
- Aroosa Javed
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | |
Collapse
|
4
|
Waste additives as biopolymers for the modification of bitumen: Mechanical performance and structural analysis characterization. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Rehman MHU, Lufrano E, Simari C. Nanocomposite Membranes for PEM-FCs: Effect of LDH Introduction on the Physic-Chemical Performance of Various Polymer Matrices. Polymers (Basel) 2023; 15:502. [PMID: 36771803 PMCID: PMC9921102 DOI: 10.3390/polym15030502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
This is a comparative study to clarify the effect of the introduction of layered double hydroxide (LDH) into various polymer matrices. One perfluorosulfonic acid polymer, i.e., Nafion, and two polyaromatic polymers such as sulfonated polyether ether ketone (sPEEK) and sulfonated polysulfone (sPSU), were used for the preparation of nanocomposite membranes at 3 wt.% of LDH loading. Thereafter, the PEMs were characterized by X-ray diffraction (XRD) and dynamic mechanical analysis (DMA) for their microstructural and thermomechanical features, whereas water dynamics and proton conductivity were investigated by nuclear magnetic resonance (PFG and T1) and EIS spectroscopies, respectively. Depending on the hosting matrix, the LDHs can simply provide additional hydrophilic sites or act as physical crosslinkers. In the latter case, an impressive enhancement of both dimensional stability and electrochemical performance was observed. While pristine sPSU exhibited the lowest proton conductivity, the sPSU/LDH nanocomposite was able to compete with Nafion, yielding a conductivity of 122 mS cm-1 at 120 °C and 90% RH with an activation energy of only 8.7 kJ mol-1. The outcome must be ascribed to the mutual and beneficial interaction of the LDH nanoplatelets with the functional groups of sPSU, therefore the choice of the appropriate filler is pivotal for the preparation of highly-performing composites.
Collapse
Affiliation(s)
| | - Ernestino Lufrano
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
| | - Cataldo Simari
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
- National Reference Centre for Electrochemical Energy Storage (GISEL)—INSTM, Via G. Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
6
|
V PN. Influence of sulfonated SBA - 15 on fuel cell performance of sulfonated polysulfone electrolyte membranes. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083221144257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The prepared mesoporous SBA-15 (Santa Barbara Amorphous-15) was sulfonated and used as filler for the preparation of sulfonated polysulfone based composite electrolyte membranes. The SBA-15 and polysulfone were sulfonated using 3-mercaptopropyl trimethoxysilane and trimethylsilyl chlorosulfonate, respectively. The different weight percentages (1, 3, and 5 wt%) of sulfonated SBA-15 (SSBA-15) were used to prepare composite electrolyte membranes. Water uptake, ion exchange capacity, swelling ratio and proton conductivity of the composite membranes were studied for assessing the suitability of the electrolyte membranes for use in fuel cells. Characterization techniques such as FT-IR, XRD, SEM, TEM and Brunauer–Emmett– Teller were used to study the physico-chemical properties of the electrolyte membranes. TEM and BET analysis showed that SBA -15 retained its mesoporous structure even after sulfonation process. The prepared membranes were then tested in an in-house built single-cell fuel cell using hydrogen as fuel and oxygen as the oxidant. The fuel cell study showed that the presence of Sulfonated SBA-15 in the polymer matrix provided additional ion exchange sites and retained water for proton transfer which resulted in higher power density of 815 mW/cm2 with SPSU + 3% SSBA-15 membrane as compared with Nafion 117®.
Collapse
Affiliation(s)
- Prabhu N V
- Department of Chemistry, Easwari Engineering College, Chennai, India
| |
Collapse
|
7
|
Wang G, Yang S, Kang NY, Lu M, Hua B, Wei H, Kang J, Tang W, Lee YM. Sulfonated graphene oxide doped sulfonated polybenzothiazoles for proton exchange membrane fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Deng W, Qu K, Yang M, Li G, Ren Y, Cui W. Impregnation assisted graphene oxide/polyimide nanofiber composites with improved thermal conductivity and breakdown strength. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03071-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Sulfonated Polyether Ether Ketone and Organosilica Layered Nanofiller for Sustainable Proton Exchange Membranes Fuel Cells (PEMFCs). APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12030963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ease and low environmental impact of its preparation, the reduced fuel crossover, and the low cost, make sulfonated polyether ether ketone (sPEEK) a potential candidate to replace the Nafion ionomer in proton exchange membrane fuel cells (PEMFCs). In this study, sPEEK was used as a polymer matrix for the preparation of nanocomposite electrolyte membranes by dispersing an organo-silica layered material properly functionalized by anchoring high phosphonated (PO3H) ionic groups (nominated PSLM). sPEEK-PSLM membranes were prepared by the solution intercalation method and the proton transport properties were investigated by NMR (diffusometry-PFG and relaxometry-T1) and EIS spectroscopies, whereas the mechanical properties of the membranes were studied by dynamic mechanical analysis (DMA). The presence of the organosilica nanoplatelets remarkably improved the mechanical strength, the water retention capacity at high temperatures, and the proton transport, in particular under harsh operative conditions (above 100 °C and 20–30% RH), usually required in PEMFCs applications.
Collapse
|
10
|
Wang Y, Liu L, Liu Y, Li N, Hu Z, Chen S. Double-filler composite sulfonated poly(aryl ether ketone) membranes with graphite carbon nitride and graphene oxide as polyelectrolyte for fuel cells. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|