1
|
Guo D, Pan Q, Gao Y. Platinum compounds constructing interface structure strategies for electrolysis hydrogen production. Chem Commun (Camb) 2025. [PMID: 40337830 DOI: 10.1039/d5cc01094b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
With the continuous growth of global energy demand, designing efficient hydrogen evolution reaction (HER) catalysts has become increasingly important. However, current interface structure synthesis strategies for platinum-based compounds are not yet adequate, limiting their application efficiency in hydrogen production. Therefore, this paper reviews a series of interface construction strategies, including the solvothermal method, gas-phase chemical method, heat treatment method, reduction method, electromagnetic synthesis method, electrochemical method, constructing heterojunctions method and constructing substrates method. These methods significantly enhance the overall performance of platinum-based catalysts by optimizing the interactions between the catalyst and support materials, improving electron transfer efficiency, and increasing the exposed area of active sites. Additionally, this paper introduces various interface structure strategies that can increase HER active sites, such as single-atom catalysts, diatomic catalysts, nanoparticles, nanowires, nanotubes, and porous structures. These nanostructures further enhance catalytic activity and stability by increasing the specific surface area and providing abundant reaction sites. Furthermore, this paper thoroughly elucidates the mechanisms of the HER in acidic and alkaline media, exploring the key factors for optimizing catalyst performance under different pH conditions. By understanding the HER mechanisms and combining advanced interface construction strategies with diverse nanostructure designs, researchers can better construct interfaces and design nanostructures, thereby developing platinum-based catalysts that are efficient, stable, and economical. This review provides a systematic guide for constructing interface structures of platinum compounds, aiming to promote the sustainable development of hydrogen energy technologies, facilitate their widespread application in the global energy transition, and contribute to achieving carbon neutrality goals and addressing increasingly severe environmental challenges.
Collapse
Affiliation(s)
- Dezheng Guo
- Automotive Institute, Tongji University, Shanghai 200000, China.
| | - Qiwen Pan
- Automotive Institute, Tongji University, Shanghai 200000, China.
| | - Yuan Gao
- Automotive Institute, Tongji University, Shanghai 200000, China.
| |
Collapse
|
2
|
Xiao Y, Mao Y, Li T, Hao X, Wang W. Facile Synthesis of a SiO x-Graphite Composite toward Practically Accessible High-Energy-Density Lithium-Ion Battery Anodes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45938-45948. [PMID: 37729638 DOI: 10.1021/acsami.3c11311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
SiOx-based material is a promising candidate for lithium-ion batteries (LIBs) owing to its high theoretical capacity. The inherent disadvantages of poor electronic conductivity and large volume variation can be solved by constructing the outermost carbon layer and reserving internal voids. However, the practical application of SiOx/C composites remains a great challenge due to the unsatisfactory energy density. Herein, we propose a facile synthetic approach for fabricating SNG/H-SiOx@C composites, which are constructed by amorphous carbon, hollow SiOx (H-SiOx), and spherical natural graphite (SNG). H-SiOx alleviates volume expansion, while amorphous carbon promotes Li+ migration and stable solid electrolyte interphase (SEI) formation. The as-prepared SNG/H-SiOx@C demonstrates a high reversible capacity (465 mAh g-1), excellent durability (93% capacity retention at 0.5C after 500 cycles), lower average delithiation potential than SNG (0.143 V after 500 cycles), and a 14% gravimetric energy density improvement at a loading level of 4.5 mg cm-2. Even at a compacted density of 1.5 g cm-3, the SNG/H-SiOx@C anode presents a modest volume deformation of 14.3% after 100 cycles at 0.1C.
Collapse
Affiliation(s)
- Yupeng Xiao
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Yangyang Mao
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Tianle Li
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Xiaoqian Hao
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Wenju Wang
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| |
Collapse
|
3
|
Manikandan R, Sadhasivam S, Lee S, Cheol Chang S, Ashok Kumar K, Bathula C, Gopalan Sree V, Young Kim D, Sekar S. Deep Eutectic Solvents Assisted Synthesis of AC-decorated NiO Nanocomposites for Hydrogen Evolution Reaction. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
4
|
Zhang H, Guo X, Liu W, Wu D, Cao D, Cheng D. Regulating surface composition of platinum-copper nanotubes for enhanced hydrogen evolution reaction in all pH values. J Colloid Interface Sci 2023; 629:53-62. [DOI: 10.1016/j.jcis.2022.08.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
|
5
|
Guo R, Shi J, Hong L, Ma K, Zhu W, Yang H, Wang J, Wang H, Sheng M. CoP 2/Co 2P Encapsulated in Carbon Nanotube Arrays to Construct Self-Supported Electrodes for Overall Electrochemical Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56847-56855. [PMID: 36524830 DOI: 10.1021/acsami.2c17742] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Electrocatalytic water splitting is a desirable and sustainable strategy for hydrogen production yet still faces challenges due to the sluggish kinetics and rapid deactivation of catalysts in the oxygen evolution process. Herein, we utilized the metal-catalyzed growth technology and phosphating process to fabricate self-supported electrodes (CoxPy@CNT-CC) composed of carbon nanotube (CNT) arrays grown on carbon cloth (CC); thereinto, cobalt-based phosphide nanoparticles (CoxPy) are uniformly encapsulated in the cavity of the CNTs. After further optimization, when the nanoparticles are in the composite phase (CoP2/Co2P), CoP2/Co2P@CNT-CC served as catalytic electrodes with the highest activity and stability for electrocatalytic water splitting in an alkaline medium (1.0 M KOH). The as-prepared CoP2/Co2P@CNT-CC integrates the advantages of the abundant active sites and confinement effect of CNTs, imparting promising electrocatalytic activities and stability in catalyzing both hydrogen evolution reaction and oxygen evolution reaction. Remarkably, electrocatalytic water splitting cells assembled using CoP2/Co2P@CNT-CC electrodes as the cathode and anode, respectively, require a cell voltage of 1.55 V at 10 mA cm-2, which is lower than that of the commercially noble Pt/C/CC and RuO2/CC catalyst couple (1.68 V). Besides, a CoP2/Co2P@CNT-CC||CoP2/Co2P@CNT-CC system shows outstanding durability for a period of 100 h at 10 mA cm-2. This work may provide new ideas for designing bifunctional electrocatalysts for applications in electrocatalytic water splitting.
Collapse
Affiliation(s)
- Ruiqi Guo
- School of Iron and Steel, Soochow University, 215137Suzhou, China
| | - Jialun Shi
- School of Iron and Steel, Soochow University, 215137Suzhou, China
| | - Lan Hong
- School of Iron and Steel, Soochow University, 215137Suzhou, China
| | - Kaiwen Ma
- School of Iron and Steel, Soochow University, 215137Suzhou, China
| | - Wenxiang Zhu
- Institue of Functional Nano & Soft Materials (FUNSOM), Soochow University, 215123Suzhou, China
| | - Haiwei Yang
- Institue of Functional Nano & Soft Materials (FUNSOM), Soochow University, 215123Suzhou, China
| | - Jiajie Wang
- School of Iron and Steel, Soochow University, 215137Suzhou, China
| | - Huihua Wang
- School of Iron and Steel, Soochow University, 215137Suzhou, China
| | - Minqi Sheng
- School of Iron and Steel, Soochow University, 215137Suzhou, China
| |
Collapse
|
6
|
Greener Approach for Pd–NPs Synthesis Using Mangifera Indica Leaf Extract: Heterogeneous Nano Catalyst for Direct C–H Arylation of (Poly)Fluorobenzene, Hiyama Coupling Reaction and Hydrogen Evolution Reaction Study. Catal Letters 2022. [DOI: 10.1007/s10562-022-04138-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Guo F, Liu Z, Zhang Y, Xiao J, Zeng X, Zhang C, Dong P, Liu T, Zhang Y, Li M. Tiny Ni Nanoparticles Embedded in Boron- and Nitrogen-Codoped Porous Carbon Nanowires for High-Efficiency Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24447-24461. [PMID: 35604016 DOI: 10.1021/acsami.2c04956] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The integration of nickel (Ni) nanoparticle (NP)-embedded carbon layers (Ni@C) into the three-dimensional (3D) hierarchically porous carbon architectures, where ultrahigh boron (B) and nitrogen (N) doping is a potential methodology for boosting Ni catalysts' water splitting performances, was achieved. In this study, the novel 3D ultrafine Ni NP-embedded and B- and N-codoped hierarchically porous carbon nanowires (denoted as Ni@BNPCFs) were successfully synthesized via pyrolysis of the corresponding 3D nickel acetate [Ni(AC)2·4H2O]-hydroxybenzeneboronic acid-polyvinylpyrrolidone precursor networks woven by electrospinning. After optimizing the pyrolysis temperatures, various structural and morphological characterization analyses indicate that the optimal Ni@BNPCFs-900 networks own a large surface area, abundant micro/mesopores, and vast carbon edges/defects, which boost doping a large amount of B (5.81 atom %) and N (5.84 atom %) dopants into carbon frameworks with 6.36 atom % of BC3, pyridinic-N (pyridinic-N-Ni), and graphitic-N active sites. Electrochemical measurements demonstrate that Ni@BNPCFs-900 reveals the best hydrogen evolution reaction (HER) and oxygen reduction reaction catalytic activities in an alkaline solution. The HER potential at 10 mA cm-2 [E10 = -164.2 mV vs reversible hydrogen electrode (RHE)] of the optimal Ni@BNPCFs-900 is just 96.2 mV more negative than that of the state-of-the-art 20 wt % Pt/C (E10 = -68 mV vs RHE). In particular, the OER E10 and Tafel slope of the optimal Ni@BNPCFs-900 (1.517 V vs RHE and 19.31 mV dec-1) are much smaller than those of RuO2 (1.557 V vs RHE and 64.03 mV dec-1). For full water splitting, the catalytic current density achieves 10 mA cm-2 at a low cell voltage of 1.584 V for the (-) Ni@BNPCFs-900||Ni@BNPCFs-900 (+) electrolysis cell, which is 10 mV smaller than that of the (-) 20 wt % Pt/C||RuO2 (+) benchmark (1.594 V) under the same conditions. The synergistic effects of 3D hierarchically porous structures, advanced charge transport ability, and abundant active centers [such as Ni@BNC, BC3, pyridinic-N (pyridinic-N-Ni), and graphitic-N] are responsible for the excellent water-splitting catalytic activity of the Ni@BNPCFs-900 networks. Especially, because of the remarkable structural and chemical stabilities of 3D hierarchically porous Ni@BNPCFs-900 networks, the (-) Ni@BNPCFs-900||Ni@BNPCFs-900 (+) water electrolysis cell displays an excellent stability.
Collapse
Affiliation(s)
- Fei Guo
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Zhuo Liu
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Yiyong Zhang
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Jie Xiao
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Xiaoyuan Zeng
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Chengxu Zhang
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Peng Dong
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Tingting Liu
- School of Materials and Energy, Yunnan Key Laboratory for Micro/Nano Materials and Technology, Yunnan University, No. 2, Green Lake North Road, Kunming 650091, PR China
| | - Yingjie Zhang
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Mian Li
- National and Local Joint Engineering Laboratory for Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| |
Collapse
|
8
|
Li J, Yue MF, Wei YM, Li JF. Synthetic strategies of single-atoms catalysts and applications in electrocatalysis. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Liu M, Liu H, Chen K, Sun J, Wang H, Liu J, Ouyang L. An Al–Li alloy/water system for superior and low-temperature hydrogen production. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00487e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A superior and low-temperature hydrogen supply technology based on the hydrolysis of an Al–Li alloy was developed.
Collapse
Affiliation(s)
- Mili Liu
- School of Materials Science and Engineering
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials
- South China University of Technology
- Guangzhou
- PR China
| | - Hui Liu
- School of Chemistry and Material Science
- Hunan Agricultural University
- Changsha
- PR China
| | - Kang Chen
- School of Materials Science and Engineering
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials
- South China University of Technology
- Guangzhou
- PR China
| | - Jiangyong Sun
- Institute of Materials and Processing
- Guangdong Academy of Sciences
- Guangzhou 510651
- PR China
| | - Hui Wang
- School of Materials Science and Engineering
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials
- South China University of Technology
- Guangzhou
- PR China
| | - Jiangwen Liu
- School of Materials Science and Engineering
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials
- South China University of Technology
- Guangzhou
- PR China
| | - Liuzhang Ouyang
- School of Materials Science and Engineering
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials
- South China University of Technology
- Guangzhou
- PR China
| |
Collapse
|