1
|
Zheng Y, Wu D, Wang T, Liu Q, Jia D. Advanced Eutectogel Electrolyte for High-Performance and Wide-Temperature Flexible Zinc-Air Batteries. Angew Chem Int Ed Engl 2025; 64:e202418223. [PMID: 39400426 DOI: 10.1002/anie.202418223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Abstract
Despite ongoing challenges, achieving further breakthroughs in the development of gel polymer electrolytes with a wide temperature range, excellent liquid retention capability and enhanced anode compatibility in flexible zinc-air batteries (FZABs) remains a significant objective. This study presents a significant advancement in the development of choline chloride/ethylene glycol-polyvinyl alcohol (ChCl/EG-PVA) eutectogel electrolyte, tailored for high-performance operation across a wide temperature range. Systematic in-situ and ex-situ characterizations and theoretical simulations confirm the formation of robust hydrogen bonding and denser polymer cross-linked networks within the prepared eutectogel, leading to enhanced liquid retention ability (93.7 % after 96 h exposure to air) and ion transport capacity (ionic conductivity of 171.3 mS cm-1). Additionally, the zincophilicity nature of the choline cation in eutectogel effectively suppresses dendrites growth. The assembled FZAB utilizing this eutectogel electrolyte achieves a peak power density of 109.3 mW cm-2 and a cycle life of 90 h. Notably, the power density of FZAB is maintained as high as 38.2 mW cm-2 at -40 °C and 63.2 mW cm-2 at 50 °C, demonstrating its prominent suitability for applications in extreme temperature conditions. The design of eutectogel provides a novel way to achieve the high-performance FZAB.
Collapse
Affiliation(s)
- Yafen Zheng
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Dongling Wu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Tao Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
- School of Materials Science and Engineering, Xinjiang Engineering Research Center of Environmental and Functional Materials, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Qian Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Dianzeng Jia
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| |
Collapse
|
2
|
Zhao X, Li W, Bai P, Dong Z, Yang Z, Dang Y, Gao T, Yuan X. Mo-O-Sn Bond Boosting Kinetics of MoO 2-xSnO 2/Sn Anode for High-Performance Li-ion Batteries. Chemistry 2025; 31:e202403813. [PMID: 39617717 DOI: 10.1002/chem.202403813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Indexed: 12/21/2024]
Abstract
Obtaining a robust electrode composed of Sn-based metal oxides and carbonaceous matrix through nanoscale structure engineering is essential for effectively improving Li-ion batteries' electrochemical performance and stability. Herein, we report a bimetallic MoO2-xSnO2/Sn nanoparticles uniformly anchored on N, S co-doped graphene nanosheets (MoO2-xSnO2/Sn@NSG) as an anode electrode for Li-ion battery via a one-step hydrothermal and thermal treatment approach. In the MoO2-xSnO2/Sn nanocomposite, the generated Sn-O-Mo bond can modulate the electronic and composition structures to improve the intrinsic conductivity of SnO2 and reinforce the structural stability during cycles. Moreover, featuring excellent electronic conductivity via coupling of MoO2-xSnO2/Sn and hierarchical NBG matrix, the MoO2-xSnO2/Sn@NSG electrode possesses ultrafast electrochemical kinetics and superior long-term cycling stability and rate capability. Additionally, the hierarchical MoO2-2SnO2/Sn@NSG can suppress the aggregation and accommodate the volume variations of active substances, thereby providing more lithium storage sites. Consequently, the optimized MoO2-2SnO2/Sn@NSG anode exhibits a high reversible capacity of 904 mA h g-1 at 0.2 A g-1 and excellent cycling performance with the reversible capacity of 456 mAh g-1 at 1 A g-1 over 600 cycles. The universal synthesis technology of bimetallic oxide anodes for advanced LIBs may provide vital guidance in designing high-performance energy-storage materials.
Collapse
Affiliation(s)
- Xiaojun Zhao
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, P. R. China
| | - Wangzi Li
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, P. R. China
| | - Panqing Bai
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, P. R. China
| | - Zhenyu Dong
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, P. R. China
| | - Zhen Yang
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, P. R. China
| | - Yubo Dang
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, P. R. China
| | - Tianqi Gao
- Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Xing Yuan
- Xi'an University, Xi'an, 710065, P. R. China
| |
Collapse
|
3
|
Zhang T, Lu Z, Pan H, Tian L, Dou J, Wang T, Wu D, Yu J, Wang L, Chen X. Coal-based carbon nanosheets contained carbon microfibers modified with grown carbon nanotubes as efficient air electrode material for rechargeable zinc-air batteries. J Colloid Interface Sci 2024; 671:589-600. [PMID: 38820843 DOI: 10.1016/j.jcis.2024.05.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Coal-based oxygen electrocatalysts hold immense promise for cost-effective applications in rechargeable Zn-air batteries (ZABs) and the value-added, clean utilization of traditional coal resources. Herein, an electrospun membrane electrode comprising coal-derived carbon nanosheets and directly grown carbon nanotubes (CNS/CMF@CNT) was successfully synthesized. The hierarchical porous structure of the electrode, composed of multiple components, significantly facilitates mass and ion transportation, resulting in exceptional electrochemical performance. Employing Fe as the catalyst for CNT growth, the CNS/CMF@CNT electrode exhibits a remarkable onset potential of 0.96 V and a half-wave potential of 0.87 V in the oxygen reduction reaction (ORR). In-situ surface-enhanced Raman spectroscopy reveals that hydroxyl radical desorption on the surface of CNS/CMF@CNT(Fe) is the rate-determining step of the ORR. Notably, the aqueous ZAB featuring the CNS/CMF@CNT(Fe) electrode achieved a peak power density of 216.0 mW cm-2 at a current density of 414 mA cm-2 and maintained a voltage efficiency of 65.1 % after 2000 charge/discharge cycles at 5 mA cm-2. Furthermore, the all-solid-state ZAB incorporating this electrode displayed an open-circuit voltage of 1.43 V, a peak power density of 70.1 mW cm-2 at a current density of 110 mA cm-2, and a voltage efficiency of 66.5 % after 150 charge/discharge cycles. The utilization of abundant coal as the raw material for electrode fabrication not only brings conceivable economic benefits in ZAB construction, but also commendably advances the effective application of traditional coal resources in a more sustainable manner.
Collapse
Affiliation(s)
- Teng Zhang
- Research Group of Functional Materials for Electrochemical Energy Conversion, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, Liaoning, China; Research Institute of Clean Energy and Fuel Chemistry, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, China; Key Laboratory for Advanced Coal and Coking Technology of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, China
| | - Zhenjie Lu
- Research Group of Functional Materials for Electrochemical Energy Conversion, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, Liaoning, China
| | - Haoran Pan
- Research Group of Functional Materials for Electrochemical Energy Conversion, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, Liaoning, China; Research Institute of Clean Energy and Fuel Chemistry, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, China; Key Laboratory for Advanced Coal and Coking Technology of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, China
| | - Lu Tian
- Research Institute of Clean Energy and Fuel Chemistry, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, China; Key Laboratory for Advanced Coal and Coking Technology of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, China
| | - Jinxiao Dou
- Research Institute of Clean Energy and Fuel Chemistry, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, China; Key Laboratory for Advanced Coal and Coking Technology of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, China.
| | - Tao Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, China
| | - Dongling Wu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, China
| | - Jianglong Yu
- Research Institute of Clean Energy and Fuel Chemistry, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, China; Suzhou Industrial Park Monash Research Institute of Science and Technology, Suzhou, China; Key Laboratory for Advanced Coal and Coking Technology of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, China
| | - Luxiang Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, China.
| | - Xingxing Chen
- Research Group of Functional Materials for Electrochemical Energy Conversion, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, Liaoning, China; Research Institute of Clean Energy and Fuel Chemistry, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, China; Key Laboratory for Advanced Coal and Coking Technology of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, China.
| |
Collapse
|
4
|
Bhatti AK, Jabeen N, Bashir A, Khan LU, Bokhari SW, Akhter Z. Insight into a pure spinel Co 3O 4 and boron, nitrogen, sulphur (BNS) tri-doped Co 3O 4-rGO nanocomposite for the electrocatalytic oxygen reduction reaction. RSC Adv 2023; 13:28602-28612. [PMID: 37795048 PMCID: PMC10546277 DOI: 10.1039/d3ra04600a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023] Open
Abstract
The intricate problems concerning energy require innovative solutions. Herein, we propose a smart composite nano system that can be used in a sustainable and dichotomous manner to resolve energy crises. The current study describes a new way to synthesize a pure spinel cobalt oxide (Co3O4) and boron (B), nitrogen (N), and sulfur (S) tri-doped Co3O4-reduced graphite oxide (rGO) nanocomposite (CBNS). A hydrothermal method has been used for the synthesis of these nanomaterials. The synthesized nanocomposite was characterized by UV-visible spectroscopy, X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), X-ray absorption spectroscopy (XAS), and transmission electron microscopy (TEM). The XRD results showed the formation of Co3O4 and B, N, S doped nanocomposite with high purity and crystallinity. XAS analysis elucidates the formation of spinel Co3O4 with tetrahedral and octahedral arrangement of cobalt ions. The peaks at 2.50 Å and 3.07 Å are due to the Co-Co bonding. The electrocatalytic oxygen reduction (ORR) was successfully implemented using these nanocomposites. The electrochemical study exhibits the better activity of the B, N, and S tri-doped Co3O4-rGO nanocomposite due to the mutual effect of B, N and S. The synthesized catalyst has maximum current density of 9.97 mA cm-2 with onset potential (Eonset) of 0.98 V in alkaline medium.
Collapse
Affiliation(s)
- Afia Kanwal Bhatti
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Naila Jabeen
- Nanoscience's and Technology Division, National Center for Physics, Quaid-i-Azam University Campus Shahdra Valley Road, P.O. Box 2141 Islamabad 44000 Pakistan
| | - Amna Bashir
- Department of Chemistry, Fatima Jinnah Women University The Mall Rawalpindi Pakistan
| | - Latif U Khan
- Synchrotron-Light for Experimental Science and Applications in the Middle East (SESAME) P.O. Box 7 Allan 19252 Jordan
| | - Syeda Wishal Bokhari
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 Zhejiang People's Republic of China
| | - Zareen Akhter
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| |
Collapse
|
5
|
Lu Z, Liu X, Wang T, Huang X, Dou J, Wu D, Yu J, Wu S, Chen X. S/N-codoped carbon nanotubes and reduced graphene oxide aerogel based supercapacitors working in a wide temperature range. J Colloid Interface Sci 2023; 638:709-718. [PMID: 36780851 DOI: 10.1016/j.jcis.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/06/2023]
Abstract
Among many supercapacitor electrode materials, carbon materials are widely used due to their large specific surface area, good electrical conductivity and high economic efficiency. However, carbon-based supercapacitors face the challenges of low energy density and limited operating environment. This work reports a facile self-assembled method to prepare three-dimensional carbon nanotubes/reduced graphene oxide (CNTs/rGO) aerogel material, which was applied as both positive and negative electrodes in a symmetric superacapacitor. The fabricated supercapacitor exhibited prominent capacitive performance not only at room temperature, but also at extreme temperatures (-20 ∼ 80 °C). The specific capacitances of the symmetric supercapacitors based on CNTs/rGO at a weight ratio of 2:5 respectively reached 107.8 and 128.2 F g-1 at 25 °C and 80 °C with KOH as the electrolyte, and 80.0 and 144.6 F g-1 at -20 °C and 60 °C with deep eutectic solvent as the electrolyte. Notably, the capacitance retention and coulombic efficiency of the assembled supercapacitors remained almost unchanged after 20,000 cycles of charge/discharge test over a wide temperature range. The work uncovered a possibility for the development of high-performance supercapacitors flexibly operated at extreme temperatures.
Collapse
Affiliation(s)
- Zhenjie Lu
- Research Group of Functional Materials for Electrochemical Energy Conversion, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, 114051 Anshan, Liaoning, China; Key Laboratory for Advanced Coal and Coking Technology of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, 114051 Anshan, China
| | - Xuanli Liu
- Research Group of Functional Materials for Electrochemical Energy Conversion, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, 114051 Anshan, Liaoning, China; Key Laboratory for Advanced Coal and Coking Technology of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, 114051 Anshan, China
| | - Tao Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, 830046 Urumqi, Xinjiang, China
| | - Xinning Huang
- Research Group of Functional Materials for Electrochemical Energy Conversion, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, 114051 Anshan, Liaoning, China
| | - Jinxiao Dou
- Key Laboratory for Advanced Coal and Coking Technology of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, 114051 Anshan, China.
| | - Dongling Wu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, 830046 Urumqi, Xinjiang, China.
| | - Jianglong Yu
- Key Laboratory for Advanced Coal and Coking Technology of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, 114051 Anshan, China
| | - Shiyong Wu
- Department of Chemical Engineering for Energy Resources, East China University of Science and Technology, 200237 Shanghai, China
| | - Xingxing Chen
- Research Group of Functional Materials for Electrochemical Energy Conversion, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, 114051 Anshan, Liaoning, China; Key Laboratory for Advanced Coal and Coking Technology of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, 114051 Anshan, China.
| |
Collapse
|
6
|
Santana Santos C, Jaato BN, Sanjuán I, Schuhmann W, Andronescu C. Operando Scanning Electrochemical Probe Microscopy during Electrocatalysis. Chem Rev 2023; 123:4972-5019. [PMID: 36972701 PMCID: PMC10168669 DOI: 10.1021/acs.chemrev.2c00766] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Scanning electrochemical probe microscopy (SEPM) techniques can disclose the local electrochemical reactivity of interfaces in single-entity and sub-entity studies. Operando SEPM measurements consist of using a SEPM tip to investigate the performance of electrocatalysts, while the reactivity of the interface is simultaneously modulated. This powerful combination can correlate electrochemical activity with changes in surface properties, e.g., topography and structure, as well as provide insight into reaction mechanisms. The focus of this review is to reveal the recent progress in local SEPM measurements of the catalytic activity of a surface toward the reduction and evolution of O2 and H2 and electrochemical conversion of CO2. The capabilities of SEPMs are showcased, and the possibility of coupling other techniques to SEPMs is presented. Emphasis is given to scanning electrochemical microscopy (SECM), scanning ion conductance microscopy (SICM), electrochemical scanning tunneling microscopy (EC-STM), and scanning electrochemical cell microscopy (SECCM).
Collapse
Affiliation(s)
- Carla Santana Santos
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Bright Nsolebna Jaato
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Ignacio Sanjuán
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Corina Andronescu
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| |
Collapse
|
7
|
Boateng E, Thiruppathi AR, Hung CK, Chow D, Sridhar D, Chen A. Functionalization of Graphene-based Nanomaterials for Energy and Hydrogen Storage. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
8
|
Liu X, Lu Z, Pan H, Cheng J, Dou J, Huang X, Chen X. Investigation of functionalization effect of carbon nanotubes as supercapacitor electrode material on hydrogen evolution side-reaction by scanning electrochemical microscopy. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Qu Y, Zhang W, Li D, Yang H, Xiao Y, Liu Y. In situ synthesis of Fe‐N co‐doped porous carbon nanospheres by extended Stӧber method for oxygen reduction in both alkaline and acidic media. ChemElectroChem 2021. [DOI: 10.1002/celc.202101464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yongfang Qu
- Henan University College of Chemistry and Chemical Engineering CHINA
| | - Wei Zhang
- Henan University College of Chemistry and Chemical Engineering CHINA
| | - Dahuan Li
- Henan University College of Chemistry and Chemical Engineering CHINA
| | - Hao Yang
- Henan University College of Chemistry and Chemical Engineering CHINA
| | - Yahui Xiao
- Henan University College of Chemistry and Chemical Engineering CHINA
| | - Yong Liu
- Henan University College of Chemistry and Chemical Engineering Jinming Street 475004 Kaifeng CHINA
| |
Collapse
|