1
|
Wang M, Guo X, Luo R, Jiang X, Tang Y, Wei T. The nucleation and growth mechanism of spherical Li for advanced Li metal anodes - a review. Chem Commun (Camb) 2025; 61:3777-3793. [PMID: 39927434 DOI: 10.1039/d4cc06729k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Metallic lithium (Li) is known as the "Holy Grail" of anode materials in the research area of Li-based batteries. However, Li metal anodes (LMAs) are plagued by infinite volume changes and dendrite formation during operation. Spherical Li exhibits rounded surfaces, which effectively mitigates the short circuit risks associated with dendritic Li, and has the smallest specific surface area compared to other deposit morphologies, thus enabling less electrolyte consumption and higher Coulombic efficiency (CE). What's more, three-dimensional (3D) conductive frameworks have good mechanical robustness and flexibility to withstand the volume changes that occur during cycling. This review systematically depicts the theoretical models for Li deposition, the mechanisms and formation conditions of spherical Li, and the benefits of the Li deposition model as well as the advantages of combining Li spheres with 3D conductive frameworks based on our previous works. We hope that this review can inspire researchers in this filed to pave the way for advanced LMAs.
Collapse
Affiliation(s)
- Mengting Wang
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Xingtong Guo
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Rui Luo
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Xiaonuo Jiang
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Yongfu Tang
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China.
| | - Tao Wei
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| |
Collapse
|
2
|
Wang D, Ma M, Xu W, Ma Y, Li L, Li X. The well-defined three-dimensional matrix of a micro-sized silicon/carbon composite promoting lithium-ion transportation. NANOSCALE HORIZONS 2024; 10:172-178. [PMID: 39530231 DOI: 10.1039/d4nh00349g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Micro-sized silicon is a promising anode material due to its high theoretical capacity and low cost. However, its bulk particle size poses a challenge during electrochemical cycling, and the long ion/electron transport paths within it limit the rate capability. Herein, we propose a structural engineering approach for establishing a well-defined three-dimensional (3D) micro-sized silicon/carbon matrix to achieve efficient omnidirectional ionic and electronic conductivity within micro-sized silicon and effectively mitigate the volume changes. The prepared materials, comprising ordered two-dimensional porous silicon nanosheets, offer direct two-dimensional electrolyte transport channels aligned parallel to the layer plane and porous channels oriented perpendicular to the layer plane. These well-defined omnidirectional pathways enable more efficient electrolyte mass transport than the disordered paths within the traditional 3D porous silicon anodes. A robust carbon shell, securely bonded to silicon through dual covalent bonding, effectively shields these pathways, buffering the volume changes and offering an electronically conductive 3D carbon network.
Collapse
Affiliation(s)
- Denghui Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghao Ma
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Wenqiang Xu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Yingjie Ma
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Lidong Li
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Xianglong Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Li Y, Gong X, Dutta Chowdhury A. Toward Developing Superior Cu-Based Metal-Organic Framework-Derived Materials for Electrocatalytic Oxidation of Ethanol. Inorg Chem 2024; 63:11258-11269. [PMID: 38830055 DOI: 10.1021/acs.inorgchem.4c01109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
This project addresses the urgent need for efficient and cost-effective development of electrocatalysts for the ethanol oxidation reaction (EOR). This reaction offers promising renewable energy solutions but faces challenges due to the slow EOR kinetics, typically requiring costly noble metal catalysts. To overcome these limitations, this study focuses on developing CuZn-based EOR catalysts derived from metal-organic frameworks (MOFs), focusing on understanding the structure-performance relationship between pristine MOF-based electrocatalysts and their pyrolyzed counterparts. Herein, bimetallic MOF materials with varying Cu/Zn ratios were synthesized, followed by pyrolysis to produce carbonized counterparts while preserving the fundamental structure but with altered physicochemical properties. Comparative EOR studies revealed the superior performance of pyrolyzed MOFs, demonstrating that optimized Zn-loading is crucial over Cu-based framework for catalyst performance and durability. Overall, this work highlights the potential of MOF-derived Cu-based catalysts for renewable energy applications and provides insights into optimizing their performance through controlled synthesis and post-treatment strategies.
Collapse
Affiliation(s)
- Yining Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xuan Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | | |
Collapse
|
4
|
Sun PP, Deng SP, Li JQ, Xiao-Wu, Zhang YF, Liu HY, Shi FN. A MOF-derived flower-shaped CeCo-oxide as a multifunctional material for high-performance lithium-ion batteries and supercapacitors. J Colloid Interface Sci 2024; 661:564-573. [PMID: 38308895 DOI: 10.1016/j.jcis.2024.01.196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 01/19/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Precursor method is a well-known technology for preparing certain functional materials. In this work, a novel 3d-4f bimetallic organic framework, denoted as 45MCeCo (45 M representing 4,5-imidazole dicarboxylic acid), was successfully synthesized via a hydrothermal technique. The compound thus obtained has the molecular formula of C10H11CeCoN4O12. By meticulously controlling the amounts of the experimental materials, it was feasible to prepare flower-like crystals possessing identical single crystal structures and significantly larger specific surface areas. As a precursor for electrode materials, this structure underwent calcination at different temperatures to prepare Co3O4/CeO2 composites with in situ composite heterostructures. Post-electrochemical tests revealed that CeO2 remains unreactive across all potentials, thereby contributing to the stabilization of the electrode material structure. In contrast, Co3O4 participated in redox reactions to provide a specific capacity to the sample. In addition, when comparing the performance of the electrode material under different calcination conditions, it became evident that the material exhibited optimal electrochemical performance when subjected to a temperature of 700 °C for 2 h.
Collapse
Affiliation(s)
- Ping-Ping Sun
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Department of Chemical and Environmental Engineering, Yingkou Institute of Technology, Yingkou 115014, China; Liaoning Provincial Key Laboratory of Energy Storage and Utilization, Yingkou Institute of Technology, Yingkou 115014, China; Key Laboratory of Polymer and Catalyst Synthesis Technology of Liaoning Province, School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Shu-Ping Deng
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Department of Chemical and Environmental Engineering, Yingkou Institute of Technology, Yingkou 115014, China
| | - Jia-Qi Li
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Department of Chemical and Environmental Engineering, Yingkou Institute of Technology, Yingkou 115014, China
| | - Xiao-Wu
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Department of Chemical and Environmental Engineering, Yingkou Institute of Technology, Yingkou 115014, China
| | - Yan-Feng Zhang
- Yingkou Heyuan Fire Prevention Technology Products Co., LTD, Yingkou 115014, China
| | - Hai-Yan Liu
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Department of Chemical and Environmental Engineering, Yingkou Institute of Technology, Yingkou 115014, China; Liaoning Provincial Key Laboratory of Energy Storage and Utilization, Yingkou Institute of Technology, Yingkou 115014, China.
| | - Fa-Nian Shi
- Key Laboratory of Polymer and Catalyst Synthesis Technology of Liaoning Province, School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China.
| |
Collapse
|
5
|
Kotp AA, Abdelwahab A, Farghali AA, Rouby WMAE, Enaiet Allah A. Evaluating the electrocatalytic activity of flower-like Co-MOF/CNT nanocomposites for methanol oxidation in basic electrolytes. RSC Adv 2023; 13:27934-27945. [PMID: 37736558 PMCID: PMC10509782 DOI: 10.1039/d3ra05105f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023] Open
Abstract
Efficient electrocatalysts, with high tolerance to methanol oxidation, good stability, and acceptable cost are the main requisites for promising direct methanol fuel cell (DMFC) electrode materials. This target can be achieved by the integration of different active materials with unique structures. In this work, a cobalt metal-organic framework (Co-MOF) flower structure was prepared by a hydrothermal method, and then a simple ultrasonication method was employed to anchor carbon nanotubes (CNTs) in between the MOF flower petals and fabricate a Co-MOF/CNT hybrid composite. Different ratios of CNTs were used in the composite preparations, namely 25, 50, and 75 wt% of the composite. The nanocomposites were entirely investigated using different characterization techniques, such as XRD, FTIR, SEM, TEM, and XPS. Comparative electrochemical measurements confirmed that due to the integration of highly conductive CNTs with the porous active fascinating structure of Co-MOF, Co-MOF/50% CNTs exhibited improved electrocatalytic activity with a current density of 35 mA cm-2 at a potential of 0.335 V and a scan rate of 50 mV s-1. The excellent electrochemical activity and stability could be due to the synergy between Co-MOF and the CNTs that conferred adequate active sites for methanol electro-oxidation and a lower equivalent series resistance, as revealed from the electrochemical impedance spectroscopy study. This study opens a new avenue to decrease the utilization of platinum and increase the methanol oxidation activity using low-cost catalysts.
Collapse
Affiliation(s)
- Amna A Kotp
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University Beni-Suef 62511 Egypt
| | - Abdalla Abdelwahab
- Faculty of Science, Galala University Sokhna Suez 43511 Egypt
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University Beni-Suef 62511 Egypt
| | - Ahmed A Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University Beni-Suef 62511 Egypt
| | - Waleed M A El Rouby
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University Beni-Suef 62511 Egypt
| | - Abeer Enaiet Allah
- Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef 62511 Egypt
| |
Collapse
|
6
|
Mubarak S, Dhamodharan D, Ghoderao PN, Byun HS. A systematic review on recent advances of metal–organic frameworks-based nanomaterials for electrochemical energy storage and conversion. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Strategies for Controlling or Releasing the Influence Due to the Volume Expansion of Silicon inside Si-C Composite Anode for High-Performance Lithium-Ion Batteries. MATERIALS 2022; 15:ma15124264. [PMID: 35744323 PMCID: PMC9228666 DOI: 10.3390/ma15124264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023]
Abstract
Currently, silicon is considered among the foremost promising anode materials, due to its high capacity, abundant reserves, environmental friendliness, and low working potential. However, the huge volume changes in silicon anode materials can pulverize the material particles and result in the shedding of active materials and the continual rupturing of the solid electrolyte interface film, leading to a short cycle life and rapid capacity decay. Therefore, the practical application of silicon anode materials is hindered. However, carbon recombination may remedy this defect. In silicon/carbon composite anode materials, silicon provides ultra-high capacity, and carbon is used as a buffer, to relieve the volume expansion of silicon; thus, increasing the use of silicon-based anode materials. To ensure the future utilization of silicon as an anode material in lithium-ion batteries, this review considers the dampening effect on the volume expansion of silicon particles by the formation of carbon layers, cavities, and chemical bonds. Silicon-carbon composites are classified herein as coated core-shell structure, hollow core-shell structure, porous structure, and embedded structure. The above structures can adequately accommodate the Si volume expansion, buffer the mechanical stress, and ameliorate the interface/surface stability, with the potential for performance enhancement. Finally, a perspective on future studies on Si-C anodes is suggested. In the future, the rational design of high-capacity Si-C anodes for better lithium-ion batteries will narrow the gap between theoretical research and practical applications.
Collapse
|
8
|
Du A, Li H, Chen X, Han Y, Zhu Z, Chu C. Recent Research Progress of Silicon‐Based Anode Materials for Lithium‐Ion Batteries. ChemistrySelect 2022. [DOI: 10.1002/slct.202201269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Aimin Du
- School of Automotive Studies Tongji University Shanghai 201804 P.R.China
| | - Hang Li
- School of Automotive Studies Tongji University Shanghai 201804 P.R.China
| | - Xinwen Chen
- School of Automotive Studies Tongji University Shanghai 201804 P.R.China
| | - Yeyang Han
- School of Automotive Studies Tongji University Shanghai 201804 P.R.China
| | - Zhongpan Zhu
- School of Automotive Studies Tongji University Shanghai 201804 P.R.China
- School of Electronic and Information Engineering Tongji University Shanghai 201804 P.R.China
| | - Chuanchuan Chu
- School of Automotive Studies Tongji University Shanghai 201804 P.R.China
| |
Collapse
|
9
|
|
10
|
Mehek R, Iqbal N, Noor T, Amjad MZB, Ali G, Vignarooban K, Khan MA. Metal-organic framework based electrode materials for lithium-ion batteries: a review. RSC Adv 2021; 11:29247-29266. [PMID: 35479575 PMCID: PMC9040901 DOI: 10.1039/d1ra05073g] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/20/2021] [Indexed: 12/25/2022] Open
Abstract
Metal-organic frameworks (MOFs) with efficient surface and structural properties have risen as a distinctive class of porous materials through the last few decades, which has enabled MOFs to gain attention in a wide range of applications like drug delivery, gas separation and storage, catalysis and sensors. Likewise, they have also emerged as efficient active materials in energy storage devices owing to their remarkable conducting properties. Metal-organic frameworks (MOFs) have garnered great interest in high-energy-density rechargeable batteries and super-capacitors. Herein the study presents their expanding diversity, structures and chemical compositions which can be tuned at the molecular level. It also aims to evaluate their inherently porous framework and how it facilitates electronic and ionic transportation through the charging and discharging cycles of lithium-ion batteries. In this review we have summarized the various synthesis paths to achieve a particular metal-organic framework. This study focuses mainly on the implementation of metal-organic frameworks as efficient anode and cathode materials for lithium-ion batteries (LIBs) with an evaluation of their influence on cyclic stability and discharge capacity. For this purpose, a brief assessment is made of recent developments in metal-organic frameworks as anode or cathode materials for lithium-ion batteries which would provide enlightenment in optimizing the reaction conditions for designing a MOF structure for the battery community and electrochemical energy storage applications.
Collapse
Affiliation(s)
- Rimsha Mehek
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) H-12 Campus Islamabad 44000 Pakistan +92 51 9085 5281
| | - Naseem Iqbal
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) H-12 Campus Islamabad 44000 Pakistan +92 51 9085 5281
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - M Zain Bin Amjad
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) H-12 Campus Islamabad 44000 Pakistan +92 51 9085 5281
| | - Ghulam Ali
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) H-12 Campus Islamabad 44000 Pakistan +92 51 9085 5281
| | - K Vignarooban
- Department of Physics, Faculty of Science, University of Jaffna Jaffna 40000 Sri Lanka
| | - M Abdullah Khan
- Renewable Energy Advancement Laboratory (REAL), Department of Environmental Sciences, Quaid-i-Azam University Islamabad 45320 Pakistan
| |
Collapse
|