1
|
Hosseini MS, Padhye R, Wang X, Houshyar S. Advances in nanoparticle-enhanced paper sensor for detecting toxic metals in water. Talanta 2025; 293:128146. [PMID: 40249985 DOI: 10.1016/j.talanta.2025.128146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/03/2025] [Accepted: 04/13/2025] [Indexed: 04/20/2025]
Abstract
Toxic metals in water pose a serious threat to public health and the environment, especially in regions with limited access to advanced laboratory infrastructure. Traditional methods for detecting toxic metals, such as atomic absorption spectrometry (AAS) and inductively coupled plasma mass spectrometry (ICP-MS), are accurate but expensive, complex, and unsuitable for on-site use. In contrast, paper-based analytical devices (PADs) offer a low-cost, and user-friendly alternative, especially in resource-limited areas. Recent advancements have significantly improved PAD performance, especially through the integration of nanoparticles and the use of enhanced colorimetric and electrochemical detection methods. These improvements have enabled faster, more sensitive detection while maintaining simplicity and field readiness. This review explores key advancements in PAD technology from 2015 to 2025 including advances in sensitivity, nanoparticle functionalization, and smartphone-based readouts. Unlike previous reviews, this study presents a comparative analysis of PAD detection mechanisms, evaluates commercialization and regulatory challenges, and explores emerging trends such as smartphone integration and microextraction techniques. By addressing these aspects, this review highlights key advancements and optimization strategies to enhance the stability, selectivity, and practical implementation of PADs for water quality monitoring.
Collapse
Affiliation(s)
| | - Rajiv Padhye
- School of Fashion and Textiles, RMIT University, Brunswick, VIC, 3056, Australia
| | - Xin Wang
- School of Fashion and Textiles, RMIT University, Brunswick, VIC, 3056, Australia.
| | - Shadi Houshyar
- School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
2
|
Putnam ST, Santiago-Carboney A, Qian P, Rodríguez-López J. Scanning Electrochemical Microscopy: An Evolving Toolbox for Revealing the Chemistry within Electrochemical Processes. Anal Chem 2025; 97:8147-8181. [PMID: 40193215 DOI: 10.1021/acs.analchem.4c06996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Affiliation(s)
- Seth T Putnam
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| | - Armando Santiago-Carboney
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| | - Peisen Qian
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| | - Joaquín Rodríguez-López
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Sheet PS, Park S, Nguyen AT, George S, Maier C, Koley D. Triple-function carbon-based Ca 2+ ion-selective pH ring microelectrode to study real-time bacteria-mediated hydroxyapatite corrosion. Anal Chim Acta 2024; 1321:343042. [PMID: 39155097 PMCID: PMC11540006 DOI: 10.1016/j.aca.2024.343042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/03/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND The local pH change mediated by the pathogenic bacterial species Streptococcus mutans plays a significant role in the corrosion of hydroxyapatite (HA) present in the tooth in the dynamic oral cavity. The acid produced by the bacteria decreases the local pH and releases Ca2+ ions from the HA. We studied the bacteria-mediated demineralization of HA by scanning electrochemical microscopy (SECM) after growing S. mutans biofilm on HA for 7 days. RESULTS We notably developed a triple-function SECM-compatible tip that could be positioned above the biofilm. It can also measure the pH and [Ca2+] change simultaneously above the biofilm-HA substrate. The triple-function SECM tip is a combination of a potentiometric pH sensor deposited with iridium oxide and a dual-function carbon-based Ca2+ ion-selective membrane electrode with a slope of 67 mV/pH and 34.3 mV/log [Ca2+], respectively. The distance-controlled triple-function SECM tip monitored real-time pH and [Ca2+] changes 30 μm above the S. mutans biofilm. The high temporal resolution pH data demonstrated that after approximately 20 min of sucrose addition, S. mutans started to produce acid to titrate the solution buffer, causing a pH change from 7.2 to 6.5 for HA and from 7.2 to 5 for the glass substrate. We observed that, after 30 min of acid production, ∼300 μM of Ca2+ ions were increased at pH 6.5 above the biofilm surface as a result of the pH change in the local microenvironment. After the release of Ca2+ from HA, the pH environment again shifted toward the neutral side, from 6.5 to 7.2. Therefore, precipitation of Ca2+ happens at the top of the biofilm, thus corroding the HA from underneath. For a glass substrate, in contrast, no Ca2+ ions were released, and the pH did not change back to 7.2. We were able to observe the dynamics of the HA demineralization-remineralization process simultaneously with our newly developed triple-function SECM tip or microprobe. SIGNIFICANCE This technique could notably advance the study of similar complex processes, such as bacteria-mediated corrosion in biomedical and environmental contexts.
Collapse
Affiliation(s)
- Partha S Sheet
- Department of Chemistry, Oregon State University, Corvallis, USA, 97331
| | - Suji Park
- Department of Chemistry, Oregon State University, Corvallis, USA, 97331
| | - Anh Tuan Nguyen
- Department of Chemistry, Oregon State University, Corvallis, USA, 97331
| | - Sneha George
- Department of Chemistry, Oregon State University, Corvallis, USA, 97331
| | - Claudia Maier
- Department of Chemistry, Oregon State University, Corvallis, USA, 97331
| | - Dipankar Koley
- Department of Chemistry, Oregon State University, Corvallis, USA, 97331.
| |
Collapse
|
4
|
Reyes-Loaiza V, De La Roche J, Hernandez-Renjifo E, Idárraga O, Da Silva M, Valencia DP, Ghneim-Herrera T, Jaramillo-Botero A. Laser-induced graphene electrochemical sensor for quantitative detection of phytotoxic aluminum ions (Al 3+) in soils extracts. Sci Rep 2024; 14:5772. [PMID: 38459204 PMCID: PMC10923804 DOI: 10.1038/s41598-024-56212-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/04/2024] [Indexed: 03/10/2024] Open
Abstract
Aluminum in its Al3+ form is a metal that inhibits plant growth, especially in acidic soils (pH < 5.5). Rapid and accurate quantitative detection of Al3+ in agricultural soils is critical for the timely implementation of remediation strategies. However, detecting metal ions requires time-consuming preparation of samples, using expensive instrumentation and non-portable spectroscopic techniques. As an alternative, electrochemical sensors offer a cost-effective and minimally invasive approach for in situ quantification of metal ions. Here, we developed and validated an electrochemical sensor based on bismuth-modified laser-induced graphene (LIG) electrodes for Al3+ quantitative detection in a range relevant to agriculture (1-300 ppm). Our results show a linear Al3+ detection range of 1.07-300 ppm with a variation coefficient of 5.3%, even in the presence of other metal ions (Pb2+, Cd2+, and Cu2+). The sensor offers a limit of detection (LOD) of 0.34 ppm and a limit of quantification (LOQ) of 1.07 ppm. We compared its accuracy for soil samples with pH < 4.8 to within 89-98% of spectroscopic methods (ICP-OES) and potentiometric titration. This technology's portability, easy to use, and cost-effectiveness make it a promising candidate for in situ quantification and remediation of Al3+ in agricultural soils and other complex matrices.
Collapse
Affiliation(s)
- Vanessa Reyes-Loaiza
- iOmicas Research Institute, Pontificia Universidad Javeriana, Cali, Valle del Cauca, 760031, Colombia
| | - Jhonattan De La Roche
- iOmicas Research Institute, Pontificia Universidad Javeriana, Cali, Valle del Cauca, 760031, Colombia
| | - Erick Hernandez-Renjifo
- iOmicas Research Institute, Pontificia Universidad Javeriana, Cali, Valle del Cauca, 760031, Colombia
| | - Orlando Idárraga
- iOmicas Research Institute, Pontificia Universidad Javeriana, Cali, Valle del Cauca, 760031, Colombia
- Department of Natural and Exact Sciences, Universidad del Valle, Cali, Valle del Cauca, 760031, Colombia
| | - Mayesse Da Silva
- Multifunctional Landscapes, Alliance Bioversity-CIAT, Cali-Palmira, Valle del Cauca, 763537, Colombia
| | - Drochss P Valencia
- iOmicas Research Institute, Pontificia Universidad Javeriana, Cali, Valle del Cauca, 760031, Colombia
| | - Thaura Ghneim-Herrera
- iOmicas Research Institute, Pontificia Universidad Javeriana, Cali, Valle del Cauca, 760031, Colombia
- Department of Biological Sciences, Universidad ICESI, Cali, Valle del Cauca, 760031, Colombia
| | - Andres Jaramillo-Botero
- iOmicas Research Institute, Pontificia Universidad Javeriana, Cali, Valle del Cauca, 760031, Colombia.
- Chemistry and Chemical Engineering Division, California Institute of Technology, 1200 E California Blvd, Mail Code 139-74, Pasadena, CA, 91125, USA.
| |
Collapse
|
5
|
Wang P, Liu H, Zhou S, Chen L, Yu S, Wei J. A Review of the Carbon-Based Solid Transducing Layer for Ion-Selective Electrodes. Molecules 2023; 28:5503. [PMID: 37513374 PMCID: PMC10384130 DOI: 10.3390/molecules28145503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
As one of the key components of solid-contact ion-selective electrodes (SC-ISEs), the SC layer plays a crucial role in electrode performance. Carbon materials, known for their efficient ion-electron signal conversion, chemical stability, and low cost, are considered ideal materials for solid-state transducing layers. In this review, the application of different types of carbon materials in SC-ISEs (from 2007 to 2023) has been comprehensively summarized and discussed. Representative carbon-based materials for the fabrication of SC-ISEs have been systematically outlined, and the influence of the structural characteristics of carbon materials on achieving excellent performance has been emphasized. Finally, the persistent challenges and potential opportunities are also highlighted and discussed, aiming to inspire the design and fabrication of next-generation SC-ISEs with multifunctional composite carbon materials in the future.
Collapse
Affiliation(s)
- Peike Wang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Haipeng Liu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Shiqiang Zhou
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Lina Chen
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Suzhu Yu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jun Wei
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
6
|
Sciurti E, Blasi L, Prontera CT, Barca A, Giampetruzzi L, Verri T, Siciliano PA, Francioso L. TEER and Ion Selective Transwell-Integrated Sensors System for Caco-2 Cell Model. MICROMACHINES 2023; 14:496. [PMID: 36984903 PMCID: PMC10054836 DOI: 10.3390/mi14030496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Monitoring of ions in real-time directly in cell culture systems and in organ-on-a-chip platforms represents a significant investigation tool to understand ion regulation and distribution in the body and ions' involvement in biological mechanisms and specific pathologies. Innovative flexible sensors coupling electrochemical stripping analysis (square wave anodic stripping voltammetry, SWASV) with an ion selective membrane (ISM) were developed and integrated in Transwell™ cell culture systems to investigate the transport of zinc and copper ions across a human intestinal Caco-2 cell monolayer. The fabricated ion-selective sensors demonstrated good sensitivity (1 × 10-11 M ion concentration) and low detection limits, consistent with pathophysiological cellular concentration ranges. A non-invasive electrochemical impedance spectroscopy (EIS) analysis, in situ, across a selected spectrum of frequencies (10-105 Hz), and an equivalent circuit fitting were employed to obtain useful electrical parameters for cellular barrier integrity monitoring. Transepithelial electrical resistance (TEER) data and immunofluorescent images were used to validate the intestinal epithelial integrity and the permeability enhancer effect of ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) treatment. The proposed devices represent a real prospective tool for monitoring cellular and molecular events and for studies on gut metabolism/permeability. They will enable a rapid integration of these sensors into gut-on-chip systems.
Collapse
Affiliation(s)
- Elisa Sciurti
- National Research Council of Italy, Institute for Microelectronics and Microsystems, 73100 Lecce, Italy
| | - Laura Blasi
- National Research Council of Italy, Institute for Microelectronics and Microsystems, 73100 Lecce, Italy
| | - Carmela Tania Prontera
- National Research Council of Italy, Institute for Microelectronics and Microsystems, 73100 Lecce, Italy
| | - Amilcare Barca
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy
| | - Lucia Giampetruzzi
- National Research Council of Italy, Institute for Microelectronics and Microsystems, 73100 Lecce, Italy
| | - Tiziano Verri
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy
| | - Pietro Aleardo Siciliano
- National Research Council of Italy, Institute for Microelectronics and Microsystems, 73100 Lecce, Italy
| | - Luca Francioso
- National Research Council of Italy, Institute for Microelectronics and Microsystems, 73100 Lecce, Italy
| |
Collapse
|
7
|
Zhang T, Ratajczak AM, Chen H, Terrell JA, Chen C. A Step Forward for Smart Clothes─Fabric-Based Microfluidic Sensors for Wearable Health Monitoring. ACS Sens 2022; 7:3857-3866. [PMID: 36455259 DOI: 10.1021/acssensors.2c01827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
We report the first demonstration of fabric-based microfluidics for wearable sensing. A new technology to develop microfluidics on fabrics, as a part of an undergarment, is described here. Compared to conventional microfluidics from polydimethylsiloxane, fabric-based microfluidics are simple to make, robust, and suitable for efficient sweat delivery. Specifically, acrylonitrile butadiene styrene (ABS) films with precut microfluidic patterns were infused through fabrics to form hydrophobic areas in a specially controlled sandwich structure. Experimental tests and simulations confirmed the sweat delivery efficiency of the microfluidics. Electrodes were screen-printed onto the fabric-based microfluidic. A novel wearable potentiometer based on Arduino was also developed as the transducer and signal readouts, which was low-cost, standardized, open-source, and capable of wireless data transfer. We applied the sensor system as a standalone or as a module of a T-shirt to quantify [Ca2+] in a wearer's sweat, with physiological and accurate results generated. Overall, this work represents a critical step in turning regular undergarments into biochemically smart platforms for health monitoring, which will broadly benefit human healthcare.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland, 21250, United States
| | - Adam Michael Ratajczak
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland, 21250, United States
| | - Hui Chen
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, 21250, United States
| | - John A Terrell
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland, 21250, United States
| | - Chengpeng Chen
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland, 21250, United States
| |
Collapse
|
8
|
Raeisi‐Kheirabadi N, Nezamzadeh‐Ejhieh A. The Experimental Design Approach in Square‐Wave Voltammetric Determination of Tamoxifen by NiO‐CPE**. ChemistrySelect 2022. [DOI: 10.1002/slct.202203788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Neda Raeisi‐Kheirabadi
- Department of Chemistry Shahreza Branch Islamic Azad University, P.O. Box 311- 86145 Shahreza Isfahan Iran
| | - Alireza Nezamzadeh‐Ejhieh
- Department of Chemistry Shahreza Branch Islamic Azad University, P.O. Box 311- 86145 Shahreza Isfahan Iran
| |
Collapse
|
9
|
Shao Z, Chang Y, Venton BJ. Carbon microelectrodes with customized shapes for neurotransmitter detection: A review. Anal Chim Acta 2022; 1223:340165. [PMID: 35998998 PMCID: PMC9867599 DOI: 10.1016/j.aca.2022.340165] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 01/26/2023]
Abstract
Carbon is a popular electrode material for neurotransmitter detection due to its good electrochemical properties, high biocompatibility, and inert chemistry. Traditional carbon electrodes, such as carbon fibers, have smooth surfaces and fixed shapes. However, newer studies customize the shape and nanostructure the surface to enhance electrochemistry for different applications. In this review, we show how changing the structure of carbon electrodes with methods such as chemical vapor deposition (CVD), wet-etching, direct laser writing (DLW), and 3D printing leads to different electrochemical properties. The customized shapes include nanotips, complex 3D structures, porous structures, arrays, and flexible sensors with patterns. Nanostructuring enhances sensitivity and selectivity, depending on the carbon nanomaterial used. Carbon nanoparticle modifications enhance electron transfer kinetics and prevent fouling for neurochemicals that are easily polymerized. Porous electrodes trap analyte momentarily on the scale of an electrochemistry experiment, leading to thin layer electrochemical behavior that enhances secondary peaks from chemical reactions. Similar thin layer cell behavior is observed at cavity carbon nanopipette electrodes. Nanotip electrodes facilitate implantation closer to the synapse with reduced tissue damage. Carbon electrode arrays are used to measure from multiple neurotransmitter release sites simultaneously. Custom-shaped carbon electrodes are enabling new applications in neuroscience, such as distinguishing different catecholamines by secondary peaks, detection of vesicular release in single cells, and multi-region measurements in vivo.
Collapse
Affiliation(s)
- Zijun Shao
- Dept. of Chemistry, University of Virginia, Charlottesville, VA, 22904-4319, USA
| | - Yuanyu Chang
- Dept. of Chemistry, University of Virginia, Charlottesville, VA, 22904-4319, USA
| | - B Jill Venton
- Dept. of Chemistry, University of Virginia, Charlottesville, VA, 22904-4319, USA.
| |
Collapse
|
10
|
Zhai J, Luo B, Li A, Dong H, Jin X, Wang X. Unlocking All-Solid Ion Selective Electrodes: Prospects in Crop Detection. SENSORS (BASEL, SWITZERLAND) 2022; 22:5541. [PMID: 35898054 PMCID: PMC9331676 DOI: 10.3390/s22155541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
This paper reviews the development of all-solid-state ion-selective electrodes (ASSISEs) for agricultural crop detection. Both nutrient ions and heavy metal ions inside and outside the plant have a significant influence on crop growth. This review begins with the detection principle of ASSISEs. The second section introduces the key characteristics of ASSISE and demonstrates its feasibility in crop detection based on previous research. The third section considers the development of ASSISEs in the detection of corps internally and externally (e.g., crop nutrition, heavy metal pollution, soil salinization, N enrichment, and sensor miniaturization, etc.) and discusses the interference of the test environment. The suggestions and conclusions discussed in this paper may provide the foundation for additional research into ion detection for crops.
Collapse
Affiliation(s)
- Jiawei Zhai
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| | - Bin Luo
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| | - Aixue Li
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| | - Hongtu Dong
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| | - Xiaotong Jin
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| | - Xiaodong Wang
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| |
Collapse
|
11
|
Bahro C, Goswami S, Gernhart S, Koley D. Calibration-free Solid-State Ion-Selective Electrode Based on a Polarized PEDOT/PEDOT-S-Doped Copolymer as Back Contact. Anal Chem 2022; 94:8302-8308. [DOI: 10.1021/acs.analchem.2c00748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christopher Bahro
- Department of Chemistry, Oregon State University, Corvallis 97330, Oregon, United States
| | - Subir Goswami
- Department of Chemistry, Oregon State University, Corvallis 97330, Oregon, United States
| | - Sarah Gernhart
- Department of Chemistry, Oregon State University, Corvallis 97330, Oregon, United States
| | - Dipankar Koley
- Department of Chemistry, Oregon State University, Corvallis 97330, Oregon, United States
| |
Collapse
|
12
|
Nguyen AT, Goswami S, Ferracane J, Koley D. Real-time monitoring of the pH microenvironment at the interface of multispecies biofilm and dental composites. Anal Chim Acta 2022; 1201:339589. [PMID: 35300800 PMCID: PMC9167049 DOI: 10.1016/j.aca.2022.339589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 12/19/2022]
Abstract
Bacterial-mediated local pH change plays an important role in altering the integrity of resin dental composite materials in a dynamic environment such as the oral cavity. To address this, we developed a 300-μm-diameter, flexible, solid-state potentiometric pH microsensor capable of detecting and quantifying the local pH microenvironment at the interface of multispecies biofilm and dental resin in real time over 10 days. We used fluorinated poly(3,4-ethylenedioxythiophene) as the back contact in our newly developed pH sensor, along with a PVC-based ion-selective membrane and PTFE-AF coating. The high temporal resolution pH data demonstrated pH changes from 7 to 6 and 7 to 5.8 for the first 2 days and then fluctuated between 6.5 to 6 and 6 to 5.5 for the remaining 8 days with the resin composite or glass slide substrate respectively. We could observe the fluctuations in pH mediated by lactic acid production within the biofilm and the re-establishment of pH back to 7. However, acid production started to overwhelm buffering capacity with the continuous feed of sucrose cycles and reduced the local pH nearer to 5.5. No such changes or fluctuations were observed above the biofilm, as the pH remained at 7.0 ± 0.2 for 10 days. The localized real-time monitoring of the pH within the biofilm showed that the pH shift underneath the biofilm could lead to damage to the underlying material and their interface but cannot be sensed external to the biofilm.
Collapse
|
13
|
Raj N, Crooks RM. Detection Efficiency of Ag Nanoparticle Labels for a Heart Failure Marker Using Linear and Square-Wave Anodic Stripping Voltammetry. BIOSENSORS 2022; 12:203. [PMID: 35448263 PMCID: PMC9029172 DOI: 10.3390/bios12040203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 12/11/2022]
Abstract
In this article, we compare linear sweep anodic stripping voltammetry (LASV) and square-wave anodic stripping voltammetry (SWASV) for detection of a nano metalloimmunoassay. Two separate immunoassays were examined: a model assay, based on interactions between antibodies, and a sandwich assay for the heart failure marker NT-proBNP. In both cases, one antibody is linked to a magnetic microbead, and one is linked to a spherical Ag nanoparticle label. Electrochemical detection is carried out on a paper device. The three analytical figures of merit studied were the precision of the measurements, the calibration sensitivity, and the limit of detection (LOD). For the NT-proBNP assay, the results show that after optimization of the pulse amplitude and frequency of the potential input for SWASV, the detection efficiency is substantially higher compared to LASV. Specifically, the calibration sensitivity increased by up to ~40 fold, the average coefficient of variation decreased by ~40%, and the (LOD) decreased to 300.0 pM. Finally, for a model immunoassay, a ~10-fold decrease in the LOD was observed for SWASV compared to LASV.
Collapse
Affiliation(s)
| | - Richard M. Crooks
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, TX 78712-1224, USA;
| |
Collapse
|
14
|
Abou El‐Alamin MM, Mohamed DA, Toubar SS. Electrochemical Determination of Mirabegron at Silica Modified Carbon Paste in Micellar Medium: Sensitive Application with Drug Product and Spiked Plasma. ChemistrySelect 2022. [DOI: 10.1002/slct.202103852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Dina A. Mohamed
- Pharmaceutical Analytical Chemistry Faculty of Pharmacy Helwan University
| | - Safaa S. Toubar
- Pharmaceutical Analytical Chemistry Faculty of Pharmacy Helwan University
| |
Collapse
|
15
|
Sheet PS, Park S, Sengupta P, Koley D. Multifunctional dendritic molecular probe for selective detection of Cu 2+ ions using potentiometric and fluorometric techniques. Analyst 2021; 146:7109-7117. [PMID: 34591042 PMCID: PMC8612447 DOI: 10.1039/d1an01417j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have designed and synthesized a multifunctional dendritic molecular probe that selectively detects Cu2+ ions via potentiometric and fluorometric techniques with low detection limits (3.5 μM in potentiometry, 15 nM in fluorometry). The selective and reversible binding of the molecule with the Cu2+ ion was used to make a solid-state microsensor (diameter of 25 μm) by incorporating the molecular probe into the carbon-based membrane as an ionophore for Cu(II). The Cu(II) microelectrode has a broad linear range of 10 μM to 1 mM with a near Nernstian slope of 30 mV/log [aCu2+] and detection limit of 3.5 μM. The Cu(II) microsensor has a fast response time (1.5 s), and it has a broad working pH range from 3.5 to 6.0. The incorporation of the hydrophobic dendritic moiety makes the ionophore less prone to leaching in an aqueous matrix for potentiometric measurement. The cinnamaldehyde component of the molecule helps detection of Cu2+ ions fluorometrically, as indicated by a change in fluorescence upon selective and reversible binding of the molecular probe to the Cu2+ ions. The strategic design of the molecular probe allows us to detect Cu2+ ions in drinking water by using this novel dendritic fluoroionophore and solid-state Cu2+ - ion-selective microelectrode.
Collapse
Affiliation(s)
| | - Suji Park
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA.
| | - Pavel Sengupta
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA.
| | - Dipankar Koley
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|