1
|
Sun JZ, Shu QC, Sun HW, Liu YC, Yang XY, Zhang YX, Wang G. High-Performance Macroporous Free-Standing Microbial Fuel Cell Anode Derived from Grape for Efficient Power Generation and Brewery Wastewater Treatment. Molecules 2024; 29:2936. [PMID: 38931000 PMCID: PMC11206865 DOI: 10.3390/molecules29122936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
Microbial fuel cells (MFCs) have the potential to directly convert the chemical energy in organic matter into electrical energy, making them a promising technology for achieving sustainable energy production alongside wastewater treatment. However, the low extracellular electron transfer (EET) rates and limited bacteria loading capacity of MFCs anode materials present challenges in achieving high power output. In this study, three-dimensionally heteroatom-doped carbonized grape (CG) monoliths with a macroporous structure were successfully fabricated using a facile and low-cost route and employed as independent anodes in MFCs for treating brewery wastewater. The CG obtained at 900 °C (CG-900) exhibited excellent biocompatibility. When integrated into MFCs, these units initiated electricity generation a mere 1.8 days after inoculation and swiftly reached a peak output voltage of 658 mV, demonstrating an exceptional areal power density of 3.71 W m-2. The porous structure of the CG-900 anode facilitated efficient ion transport and microbial community succession, ensuring sustained operational excellence. Remarkably, even when nutrition was interrupted for 30 days, the voltage swiftly returned to its original level. Moreover, the CG-900 anode exhibited a superior capacity for accommodating electricigens, boasting a notably higher abundance of Geobacter spp. (87.1%) compared to carbon cloth (CC, 63.0%). Most notably, when treating brewery wastewater, the CG-900 anode achieved a maximum power density of 3.52 W m-2, accompanied by remarkable treatment efficiency, with a COD removal rate of 85.5%. This study provides a facile and low-cost synthesis technique for fabricating high-performance MFC anodes for use in microbial energy harvesting.
Collapse
Affiliation(s)
- Jin-Zhi Sun
- Yantai Engineering & Technology College, Yantai 264006, China
| | - Quan-Cheng Shu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Hong-Wei Sun
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Yu-Can Liu
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Xiao-Yong Yang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Yan-Xiang Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Gang Wang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
2
|
He X, Lu H, Fu J, Zhou H, Qian X, Qiao Y. Promotion of direct electron transfer between Shewanella putrefaciens CN32 and carbon fiber electrodes via in situ growth of α-Fe 2O 3 nanoarray. Front Microbiol 2024; 15:1407800. [PMID: 38939188 PMCID: PMC11208625 DOI: 10.3389/fmicb.2024.1407800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/27/2024] [Indexed: 06/29/2024] Open
Abstract
The iron transport system plays a crucial role in the extracellular electron transfer process of Shewanella sp. In this study, we fabricated a vertically oriented α-Fe2O3 nanoarray on carbon cloth to enhance interfacial electron transfer in Shewanella putrefaciens CN32 microbial fuel cells. The incorporation of the α-Fe2O3 nanoarray not only resulted in a slight increase in flavin content but also significantly enhanced biofilm loading, leading to an eight-fold higher maximum power density compared to plain carbon cloth. Through expression level analyses of electron transfer-related genes in the outer membrane and core genes in the iron transport system, we propose that the α-Fe2O3 nanoarray can serve as an electron mediator, facilitating direct electron transfer between the bacteria and electrodes. This finding provides important insights into the potential application of iron-containing oxide electrodes in the design of microbial fuel cells and other bioelectrochemical systems, highlighting the role of α-Fe2O3 in promoting direct electron transfer.
Collapse
Affiliation(s)
- Xiu He
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China
- School of Materials and Energy, Southwest University, Chongqing, China
| | - Hao Lu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
- Hubei Longzhong Laboratory, Xiangyang, China
| | - Jingjing Fu
- Department of Chemistry, School of Pharmacy and Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Huang Zhou
- Department of Chemistry, School of Pharmacy and Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Xingchan Qian
- Department of Chemistry, School of Pharmacy and Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Yan Qiao
- School of Materials and Energy, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Yalcinkaya F, Torres-Mendieta R, Hruza J, Vávrová A, Svobodová L, Pietrelli A, Ieropoulos I. Nanofiber applications in microbial fuel cells for enhanced energy generation: a mini review. RSC Adv 2024; 14:9122-9136. [PMID: 38500621 PMCID: PMC10945513 DOI: 10.1039/d4ra00674g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024] Open
Abstract
Microbial fuel cells (MFCs) represent simple devices that harness the metabolic activities of microorganisms to produce electrical energy from diverse sources such as organic waste and sustainable biomass. Because of their unique advantage to generate sustainable energy, through the employment of biodegradable and repurposed waste materials, the development of MFCs has garnered considerable interest. Critical elements are typically the electrodes and separator. This mini-review article presents a critical assessment of nanofiber technology used as electrodes and separators in MFCs to enhance energy generation. In particular, the review highlights the application of nanofiber webs in each part of MFCs including anodes, cathodes, and membranes and their influence on energy generation. The role of nanofiber technology in this regard is then analysed in detail, focusing on improved electron transfer rate, enhanced biofilm formation, and enhanced durability and stability. In addition, the challenges and opportunities associated with integrating nanofibers into MFCs are discussed, along with suggestions for future research in this field. Significant developments in MFCs over the past decade have led to a several-fold increase in achievable power density, yet further improvements in performance and the exploration of cost-effective materials remain promising areas for further advancement. This review demonstrates the great promise of nanofiber-based electrodes and separators in future applications of MFCs.
Collapse
Affiliation(s)
- Fatma Yalcinkaya
- Department of Environmental Technology, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec Studentská 1402/2 461 17 Liberec Czech Republic
| | - Rafael Torres-Mendieta
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec Studentská 1402/2 46117 Liberec Czech Republic
| | - Jakub Hruza
- Department of Environmental Technology, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec Studentská 1402/2 461 17 Liberec Czech Republic
| | - Andrea Vávrová
- Department of Nursing and Emergency Care, Faculty of Health Studies, Technical University of Liberec Studentská 1402/2 46117 Liberec Czech Republic
| | - Lucie Svobodová
- Department of Material Science, Faculty of Mechanical Engineering, Technical University of Liberec Studentská 1402/2 46117 Liberec Czech Republic
| | - Andrea Pietrelli
- Université de Lyon, INSA Lyon, Université Lyon 1, Ecole Centrale de Lyon, CNRS, Ampère, UMR5005 F-69621 Villeurbanne France
| | - Ioannis Ieropoulos
- Civil, Maritime and Environmental Engineering Department, University of Southampton Southampton SO16 7QF UK
| |
Collapse
|
4
|
Xiang X, Bai J, Gu W, Peng S, Shih K. Mechanism and application of modified bioelectrochemical system anodes made of carbon nanomaterial for the removal of heavy metals from soil. CHEMOSPHERE 2023; 345:140431. [PMID: 37852385 DOI: 10.1016/j.chemosphere.2023.140431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Bioelectrochemical techniques are quick, efficient, and sustainable alternatives for treating heavy metal soils. The use of carbon nanomaterials in combination with electroactive microorganisms can create a conductive network that mediates long-distance electron transfer in an electrode system, thereby resolving the issue of low electron transfer efficiency in soil remediation. As a multifunctional soil heavy metal remediation technology, its application in organic remediation has matured, and numerous studies have demonstrated its potential for soil heavy metal remediation. This is a ground-breaking method for remediating soils polluted with high concentrations of heavy metals using soil microbial electrochemistry. This review summarizes the use of bioelectrochemical systems with modified anode materials for the remediation of soils with high heavy metal concentrations by discussing the mass-transfer mechanism of electrochemically active microorganisms in bioelectrochemical systems, focusing on the suitability of carbon nanomaterials and acidophilic bacteria. Finally, we discuss the emerging limitations of bioelectrochemical systems, and future research efforts to improve their performance and facilitate practical applications. The mass-transfer mechanism of electrochemically active microorganisms in bioelectrochemical systems emphasizes the suitability of carbon nanomaterials and acidophilic bacteria for remediating soils polluted with high concentrations of heavy metals. We conclude by discussing present and future research initiatives for bioelectrochemical systems to enhance their performance and facilitate practical applications. As a result, this study can close any gaps in the development of bioelectrochemical systems and guide their practical application in remediating heavy-metal-contaminated soils.
Collapse
Affiliation(s)
- Xue Xiang
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Jianfeng Bai
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China.
| | - Weihua Gu
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China.
| | - Shengjuan Peng
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Kaimin Shih
- Department of Civil Engineering University of Hongkong, Pokfulam Road, Hongkong, China
| |
Collapse
|
5
|
Ahmadpanah H, Motamedian E, Mardanpour MM. Metabolic regulation boosts bioelectricity generation in Zymomonas mobilis microbial fuel cell, surpassing ethanol production. Sci Rep 2023; 13:20673. [PMID: 38001147 PMCID: PMC10673858 DOI: 10.1038/s41598-023-47846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023] Open
Abstract
Zymomonas mobilis (Z. mobilis), a bacterium known for its ethanol production capabilities, can also generate electricity by transitioning from ethanol production to electron generation. The purpose of this study is to investigate the ability of Z. mobilis to produce bioelectricity when utilized as a biocatalyst in a single-chamber microbial fuel cell (MFC). Given the bacterium's strong inclination towards ethanol production, a metabolic engineering strategy was devised to identify key reactions responsible for redirecting electrons from ethanol towards electricity generation. To evaluate the electroactivity of cultured Z. mobilis and its ethanol production in the presence of regulators, the reduction of soluble Fe(III) was utilized. Among the regulators tested, CuCl2 demonstrated superior effectiveness. Consequently, the MFC was employed to analyze the electrochemical properties of Z. mobilis using both a minimal and modified medium. By modifying the bacterial medium, the maximum current and power density of the MFC fed with Z. mobilis increased by more than 5.8- and sixfold, respectively, compared to the minimal medium. These findings highlight the significant impact of metabolic redirection in enhancing the performance of MFCs. Furthermore, they establish Z. mobilis as an active electrogenesis microorganism capable of power generation in MFCs.
Collapse
Affiliation(s)
- Hananeh Ahmadpanah
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115‑143, Tehran, Iran
| | - Ehsan Motamedian
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115‑143, Tehran, Iran.
| | | |
Collapse
|
6
|
Li B, Li Q, Wang X. Iron/iron carbide coupled with S, N co-doped porous carbon as effective oxygen reduction reaction catalyst for microbial fuel cells. ENVIRONMENTAL RESEARCH 2023; 228:115808. [PMID: 37011794 DOI: 10.1016/j.envres.2023.115808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 05/16/2023]
Abstract
As a novel energy device, microbial fuel cells (MFCs) have attracted much attention for their dual functions of electricity generation and sewage treatment. However, the sluggish oxygen reduction reaction (ORR) kinetic on the cathode have hindered the practical application of MFCs. In this work, metallic organic framework derived carbon framework co-doped by Fe, S, N tri-elements was used as alternative electrocatalyst to the conventional Pt/C cathode catalyst in pH-universal electrolytes. The amount of thiosemicarbazide from 0.3 to 3 g determined the surface chemical property, and therefore the ORR activity of FeSNC catalysts. The sulfur/nitrogen doping and Fe/Fe3C embedded in carbon shell was characterized by X-ray photoelectron spectroscopy and transmission electron microscopy. The synergy of iron salt and thiosemicarbazide contributed to the improvement of nitrogen and sulfur doping. Sulfur atoms were successfully doped into the carbon matrix and formed a certain amount of thiophene- and oxidized-sulfur. The optimal FeSNC-3 catalyst synthesized with 1.5 g of thiosemicarbazide exhibited the highest ORR activity with a positive half wave potential of 0.866 V in alkaline and 0.691 V (vs. Reversible Hydrogen Electrode) in neutral electrolyte, which both outperformed the commercial Pt/C catalyst. However, as the amount of thiosemicarbazide surpassed 1.5 g, the catalytic performance of FeSNC-4 was lowered, and this could be assigned to the decreased defects and low specific surface area. The excellent ORR performance in neutral medium urged FeSNC-3 as good cathode catalyst in single chambered MFC (SCMFC). It showed the highest maximum power density of 2126 ± 100 mW m-2, excellent output stability of 8.14% decline in 550 h, chemical oxygen demand removal of 90.7 ± 1.6% and coulombic efficiency of 12.5 ± 1.1%, all superior to those of benchmark SCMFC-Pt/C (1637 ± 35 mW m-2, 15.4%, 88.9 ± 0.9%, and 10.2 ± 1.1%). These outstanding results were associated to the large specific surface area and synergistic interaction of multiple active sites, like Fe/Fe3C, Fe-N4, pyridinic N, graphite N and thiophene-S.
Collapse
Affiliation(s)
- Baitao Li
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Qun Li
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xiujun Wang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
7
|
Ren T, Liu Y, Shi C, Li C. Bimetal-organic framework-derived porous CoFe 2O 4 nanoparticles as biocompatible anode electrocatalysts for improving the power generation of microbial fuel cells. J Colloid Interface Sci 2023; 643:428-436. [PMID: 37086532 DOI: 10.1016/j.jcis.2023.04.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/24/2023]
Abstract
HYPOTHESIS The relatively lower power density of Microbial fuel cells (MFCs), primarily resulting from weak biofilm habitation and sluggish extracellular electron transfer (EET) at the anode interface, limits their practical implementation on a large scale. To address this challenge, porous CoFe2O4 nanoparticles could be used as anode electrocatalysts based on the following considerations: (i) the introduction of CoFe2O4 nanoparticles endows the anode with a rough surface that facilitates biofilm formation; (ii) the positively charged Co and Fe ions improve the interfacial affinity of anodes, enabling rapid immobilization and colonization of negatively bacteria; (iii) the multi-valent metal states of Co and Fe can function as electron shuttles, mediating EET process between biofilm and anode. EXPERIMENTS CoFe2O4 nanoparticles prepared with a bimetal-organic framework (B-MOF) as precursor, were modified to the surface of carbon cloth as the anode of MFCs. FINDINGS MFCs equipped with CoFe2O4 anode achieved a maximum power density of 1026.68 mW m-2, which was approximately 3.4 times higher than that of the pristine carbon cloth. Additionally, the biofilm density and viability on the anode were enhanced after CoFe2O4 modification. Considering the facile fabrication process and superior electrocatalytic performance, the CoFe2O4 nanoparticles are promising electrocatalysts for high performance and cost-effective MFCs.
Collapse
Affiliation(s)
- Tingli Ren
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Yuanfeng Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Chunhong Shi
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China.
| | - Congju Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China.
| |
Collapse
|
8
|
Nosek D, Mikołajczyk T, Cydzik-Kwiatkowska A. Anode Modification with Fe 2O 3 Affects the Anode Microbiome and Improves Energy Generation in Microbial Fuel Cells Powered by Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2580. [PMID: 36767954 PMCID: PMC9916399 DOI: 10.3390/ijerph20032580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
This study investigated how anode electrode modification with iron affects the microbiome and electricity generation of microbial fuel cells (MFCs) fed with municipal wastewater. Doses of 0.0 (control), 0.05, 0.1, 0.2, and 0.4 g Fe2O3 per the total anode electrode area were tested. Fe2O3 doses from 0.05 to 0.2 g improved electricity generation; with a dose of 0.10 g Fe2O3, the cell power was highest (1.39 mW/m2), and the internal resistance was lowest (184.9 Ω). Although acetate was the main source of organics in the municipal wastewater, propionic and valeric acids predominated in the outflows from all MFCs. In addition, Fe-modification stimulated the growth of the extracellular polymer producers Zoogloea sp. and Acidovorax sp., which favored biofilm formation. Electrogenic Geobacter sp. had the highest percent abundance in the anode of the control MFC, which generated the least electricity. However, with 0.05 and 0.10 g Fe2O3 doses, Pseudomonas sp., Oscillochloris sp., and Rhizobium sp. predominated in the anode microbiomes, and with 0.2 and 0.4 g doses, the electrogens Dechloromonas sp. and Desulfobacter sp. predominated. This is the first study to holistically examine how different amounts of Fe on the anode affect electricity generation, the microbiome, and metabolic products in the outflow of MFCs fed with synthetic municipal wastewater.
Collapse
Affiliation(s)
- Dawid Nosek
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Słoneczna 45 G, 10-709 Olsztyn, Poland
| | - Tomasz Mikołajczyk
- Department of Chemistry, University of Warmia and Mazury in Olsztyn, plac Łódzki 4, 10-721 Olsztyn, Poland
| | - Agnieszka Cydzik-Kwiatkowska
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Słoneczna 45 G, 10-709 Olsztyn, Poland
| |
Collapse
|
9
|
Jiang YJ, Hui S, Jiang LP, Zhu JJ. Functional Nanomaterial-Modified Anodes in Microbial Fuel Cells: Advances and Perspectives. Chemistry 2023; 29:e202202002. [PMID: 36161734 DOI: 10.1002/chem.202202002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 01/05/2023]
Abstract
Microbial fuel cell (MFC) is a promising approach that could utilize microorganisms to oxidize biodegradable pollutants in wastewater and generate electrical power simultaneously. Introducing advanced anode nanomaterials is generally considered as an effective way to enhance MFC performance by increasing bacterial adhesion and facilitating extracellular electron transfer (EET). This review focuses on the key advances of recent anode modification materials, as well as the current understanding of the microbial EET process occurring at the bacteria-electrode interface. Based on the difference in combination mode of the exoelectrogens and nanomaterials, anode surface modification, hybrid biofilm construction and single-bacterial surface modification strategies are elucidated exhaustively. The inherent mechanisms may help to break through the performance output bottleneck of MFCs by rational design of EET-related nanomaterials, and lead to the widespread application of microbial electrochemical systems.
Collapse
Affiliation(s)
- Yu-Jing Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Su Hui
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Li-Ping Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
10
|
Liu Y, Sun Y, Zhang M, Guo S, Su Z, Ren T, Li C. Carbon nanotubes encapsulating FeS 2 micropolyhedrons as an anode electrocatalyst for improving the power generation of microbial fuel cells. J Colloid Interface Sci 2023; 629:970-979. [PMID: 36208609 DOI: 10.1016/j.jcis.2022.09.130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 11/26/2022]
Abstract
The low power density originating from poor electroactive bacteria (EAB) adhesion and sluggish extracellular electron transfer (EET) at the anode interface, is a major impediment preventing the practical implementation of microbial fuel cells (MFCs). Tailoring the surface properties of anodes is an effective and powerful strategy for addressing this issue. In this study, we successfully fabricated an efficient anode electrocatalyst, consisting of carbon nanotubes encapsulating iron disulfide (FeS2@CNT) micropolyhedrons, using simple hydrothermal and freeze-drying methods, which not only strengthened the anode interaction with EAB but also promoted the EET process at the anode interface. As expected, the MFCs with a FeS2@CNT anode yielded an outstanding power density of 1914 mWm-2 at a current density of 4350 mA m-2, which significantly exceeded those of pure CNT (1096.2mW m-2, 2703.3 mA m-2) and carbon cloth (426.8mWm-2, 965.6 mA m-2) anodes. The high-power output can be attributed to the synergistic effect between FeS2 and CNTs, endowing the anode with biocompatibility for biofilm adhesion and colonization, nutrient diffusion, and the presence of abundant Fe and S active sites for EET mediation. Owing to the low cost, facile fabrication process, and excellent electrocatalytic performance toward the redox reactions in biofilms, the synthesized FeS2@CNT electrocatalyst is a promising material for high-performance and cost-effective MFCs with commercial applications.
Collapse
Affiliation(s)
- Yuanfeng Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Yaxin Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Min Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Shiquan Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Zijing Su
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Tingli Ren
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Congju Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China.
| |
Collapse
|
11
|
Wang Y, Cheng X, Liu K, Dai X, Qi J, Ma Z, Qiu Y, Liu S. 3D Hierarchical Co 8FeS 8-FeCo 2O 4/N-CNTs@CF with an Enhanced Microorganisms-Anode Interface for Improving Microbial Fuel Cell Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35809-35821. [PMID: 35912639 DOI: 10.1021/acsami.2c09622] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microbial fuel cells (MFCs) are promising ecofriendly techniques for harvesting bioenergy from organic and inorganic matter. Currently, it is challenging to design MFC anodes with favorable microorganism attachment and fast extracellular electron transfer (EET) rate for high MFC performance. Here we prepared N-doped carbon nanotubes (NCNTs) on carbon felt (CF) and used it as a support for growing hierarchical Co8FeS8-FeCo2O4/NCNTs core-shell nanostructures (FeCo/NCNTs@CF). We observed improved wettability, specific areal capacitance, and diffusion coefficient, as well as small charge transfer resistance compared with bare CF. MFCs equipped with FeCo/NCNTs@CF displayed a power density of 3.04 W/m2 and COD removal amount of 221.0 mg/L/d, about 47.6 and 290.1% improvements compared with that of CF. Biofilm morphology and 16s rRNA gene sequence analysis proved that our anode facilitated the enrichment growth of exoelectrogens. Flavin secretion was also promoted on our hierarchical elelctrode, effectively driving the EET process. This work disclosed that hierarchical nanomaterials modified electrode with tailored physicochemical properties is a promising platform to simultaneously enhance exoelectrogen attachment and EET efficiency for MFCs.
Collapse
Affiliation(s)
- Yanping Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin 150001, People's Republic of China
| | - Xusen Cheng
- College of Chemistry, Northeast Forestry University, Harbin 150040, PR China
| | - Ke Liu
- School of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, People's Republic of China
| | - Xiaofan Dai
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin 150001, People's Republic of China
| | - Jinteng Qi
- College of Chemistry, Northeast Forestry University, Harbin 150040, PR China
| | - Zhuo Ma
- School of Life Science and Technology, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin 150001, People's Republic of China
| | - Yunfeng Qiu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
- Key Laboratory of Microsystems and Microstructures Manufacturing, School of Medicine and Health, Harbin Institute of Technology, No. 2 Yikuang Street, Nan Gang District, Harbin 150080, People's Republic of China
| | - Shaoqin Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
- Key Laboratory of Microsystems and Microstructures Manufacturing, School of Medicine and Health, Harbin Institute of Technology, No. 2 Yikuang Street, Nan Gang District, Harbin 150080, People's Republic of China
| |
Collapse
|
12
|
Sallam ER, Fetouh HA. Comparative Study for the Production of Sustainable Electricity from Marine Sediment Using Recyclable Low‐Cost Solid Wastes Aluminum Foil and Graphite Anodes. ChemistrySelect 2022. [DOI: 10.1002/slct.202103972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Eman R. Sallam
- Marine Chemistry Department National Institute of Oceanography and Fisheries (NIOF) El Anfoushy, P.O. Box 21556 Alexandria 21321 EGYPT
| | - Howida A. Fetouh
- Chemistry Department Faculty of Science Alexandria University 21568 EGYPT
| |
Collapse
|
13
|
Zheng X, Hou S, Amanze C, Zeng Z, Zeng W. Enhancing microbial fuel cell performance using anode modified with Fe 3O 4 nanoparticles. Bioprocess Biosyst Eng 2022; 45:877-890. [PMID: 35166901 DOI: 10.1007/s00449-022-02705-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/03/2022] [Indexed: 11/25/2022]
Abstract
Low electricity generation efficiency is one of the key issues that must be addressed for the practical application of microbial fuel cells (MFCs). Modification of microbial electrode materials is an effective method to enhance electron transfer. In this study, magnetite (Fe3O4) nanoparticles synthesized by co-precipitation were added to anode chambers in different doses to explore its effect on the performance of MFCs. The maximum power density of the MFCs doped with 4.5 g/L Fe3O4 (391.11 ± 9.4 mW/m2) was significantly increased compared to that of the undoped MFCs (255.15 ± 24.8 mW/m2). The COD removal efficiency of the MFCs increased from 85.8 ± 2.8% to 95.0 ± 2.1%. Electrochemical impedance spectroscopy and cyclic voltammetry tests revealed that the addition of Fe3O4 nanoparticles enhanced the biocatalytic activity of the anode. High-throughput sequencing results indicated that 4.5 g/L Fe3O4 modified anodes enriched the exoelectrogen Geobacter (31.5%), while control MFCs had less Geobacter (17.4%). Magnetite is widely distributed worldwide, which provides an inexpensive means to improve the electrochemical performance of MFCs.
Collapse
Affiliation(s)
- Xiaoya Zheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, Hunan, China
| | - Shanshan Hou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, Hunan, China
| | - Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, Hunan, China
| | - Zichao Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China.
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, Hunan, China.
| |
Collapse
|