1
|
Wang M, Li L, Liu Z, Wu F, Jin H, Wang Y, Cai S. Multicomponent Co 2O 3@CoMo 2S 4 Core-Shell Structures as a Binder-Free Electrode for Cycling Stability Supercapacitors. ACS OMEGA 2025; 10:8901-8910. [PMID: 40092828 PMCID: PMC11904649 DOI: 10.1021/acsomega.4c05172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025]
Abstract
Transitional bimetallic sulfides have garnered significant interest due to their versatile redox reactions, strong electrochemical activity, and cost-effectiveness. However, their low energy density and poor rate performance have hindered their use in energy storage systems. To overcome these challenges, we have developed a Co2O3@CoMo2S4 core-shell structure using a strategic design approach, serving as a conductive framework for supercapacitors. The innovative Co2O3@CoMo2S4 core-shell structure exhibits exceptional performance, achieving a specific capacitance of 4951.8 F g-1 at 1 A g-1 and retaining 90.85% cyclic stability after 5500 cycles, outperforming most reported transitional bimetallic sulfides. The Co2O3@CoMo2S4//AC supercapacitor achieves an energy density of 41.66 Wh kg-1 and a power density of 0.35 kW kg-1. Our research paves the way for the development of transitional bimetallic sulfides with core-shell structures that offer superior performance in supercapacitor applications, providing valuable insights for future advancements in the field.
Collapse
Affiliation(s)
- Meilong Wang
- College
of Material and Metallurgy, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Linsong Li
- College
of Material and Metallurgy, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Zhentao Liu
- College
of Material and Metallurgy, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Fuzhong Wu
- College
of Material and Metallurgy, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Huixin Jin
- College
of Material and Metallurgy, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Yi Wang
- College
of Chemistry and Material Engineering, Guiyang
University, Guiyang, Guizhou 550005, PR China
| | - Siyu Cai
- College
of Chemistry and Material Engineering, Guiyang
University, Guiyang, Guizhou 550005, PR China
| |
Collapse
|
2
|
Belal MA, Yousry R, Taulo G, AbdelHamid AA, Rashed AE, El-Moneim AA. Layer-by-Layer Inkjet-Printed Manganese Oxide Nanosheets on Graphene for High-Performance Flexible Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53632-53643. [PMID: 37957019 DOI: 10.1021/acsami.3c07339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The widespread adoption of wearable, movable, and implantable smart devices has sparked the evolution of flexible, miniaturized power supplies. High-resolution inkjet printing of flexible microsupercapacitor (μSC) electrodes is a fast, inexpensive, and waste-free alternative manufacturing technology. In this work, a 2D birnessite-type manganese dioxide (δ-MnO2) water-based ink is used to print 10-25 layers of δ-MnO2 symmetrically on a preprinted interdigitated cell consisting of 10 layers of electrochemically exfoliated graphene (EEG). The cell with 10 printed layers of δ-MnO2 achieved the highest specific capacitance, energy density, and power density of 0.44 mF cm-2, 0.045 μW h cm-2, and 0.0012 mW cm-2, respectively. Since inkjet-printing technology supports μSC manufacturing with parallel/series connectivity, four cells were used to study and improve the potential window and capacitance that can be used to construct μSC arrays as power banks. This work provides the first approach for designing an inkjet-printed interdigitated hybrid cell based on δ-MnO2@EEG that could be a versatile candidate for the large-scale production of flexible and printable electronic devices for energy storage.
Collapse
Affiliation(s)
- Mohamed Ahmed Belal
- Graphene Center of Excellence, Energy and Electronics Applications, Egypt-Japan University of Science and Technology, New Borg El-Arab 21934, Egypt
| | - Reham Yousry
- Graphene Center of Excellence, Energy and Electronics Applications, Egypt-Japan University of Science and Technology, New Borg El-Arab 21934, Egypt
| | - Gracian Taulo
- Graphene Center of Excellence, Energy and Electronics Applications, Egypt-Japan University of Science and Technology, New Borg El-Arab 21934, Egypt
| | - Ayman A AbdelHamid
- Graphene Center of Excellence, Energy and Electronics Applications, Egypt-Japan University of Science and Technology, New Borg El-Arab 21934, Egypt
- Applied Chemistry Group, Department of Chemistry, College of Sciences, University of Sharjah, P.O. Box 27272, Sharjah 000, United Arab Emirates
| | - Ahmed Elsayed Rashed
- Graphene Center of Excellence, Energy and Electronics Applications, Egypt-Japan University of Science and Technology, New Borg El-Arab 21934, Egypt
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Ahmed Abd El-Moneim
- Graphene Center of Excellence, Energy and Electronics Applications, Egypt-Japan University of Science and Technology, New Borg El-Arab 21934, Egypt
- School of Basic and Applied Science, Egypt-Japan University of Science and Technology, New Borg El Arab City, Alexandria 21934, Egypt
- Physical Chemistry Department, National Research Centre, El-Dokki, Cairo 12622, Egypt
| |
Collapse
|
3
|
Simonenko TL, Simonenko NP, Gorobtsov PY, Simonenko EP, Kuznetsov NT. Current Trends and Promising Electrode Materials in Micro-Supercapacitor Printing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6133. [PMID: 37763411 PMCID: PMC10533130 DOI: 10.3390/ma16186133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
The development of scientific and technological foundations for the creation of high-performance energy storage devices is becoming increasingly important due to the rapid development of microelectronics, including flexible and wearable microelectronics. Supercapacitors are indispensable devices for the power supply of systems requiring high power, high charging-discharging rates, cyclic stability, and long service life and a wide range of operating temperatures (from -40 to 70 °C). The use of printing technologies gives an opportunity to move the production of such devices to a new level due to the possibility of the automated formation of micro-supercapacitors (including flexible, stretchable, wearable) with the required type of geometric implementation, to reduce time and labour costs for their creation, and to expand the prospects of their commercialization and widespread use. Within the framework of this review, we have focused on the consideration of the key commonly used supercapacitor electrode materials and highlighted examples of their successful printing in the process of assembling miniature energy storage devices.
Collapse
Affiliation(s)
| | - Nikolay P. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (T.L.S.); (P.Y.G.); (E.P.S.); (N.T.K.)
| | | | | | | |
Collapse
|
4
|
Konwar M, Mahanta B, Patar S, Saikia P, Guha AK, Borthaku LJ. A Reduced ‐ Graphene ‐ Oxide Entrapped CuCo
2
S
4
Nano‐Array for High‐performance Supercapacitor Electrode. ChemistrySelect 2022. [DOI: 10.1002/slct.202203585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Madhabi Konwar
- Department of Chemistry Gauhati University Guwahati Assam India, Pin- 781014
| | - Baishali Mahanta
- Department of Chemistry Gauhati University Guwahati Assam India, Pin- 781014
| | - Shyamalee Patar
- Department of Chemistry Gauhati University Guwahati Assam India, Pin- 781014
| | - Pranjal Saikia
- Department of Chemistry Nowgong College (Autonomous) Nagaon Assam India, Pin- 782001
| | - Ankur Kanti Guha
- Department of Chemistry Cotton University Panbazar Guwahati Assam India, Pin- 781001
| | - Lakhya Jyoti Borthaku
- Department of Chemistry Nowgong College (Autonomous) Nagaon Assam India, Pin- 782001
| |
Collapse
|
5
|
Zhang Y, Guo C, Li G, Xu L, Guo M. Construction of CoMo2S4 nanorods/nanosheets electrode with enhanced electrochemical properties for battery‐supercapacitor hybrid devices. Chempluschem 2022; 87:e202200180. [DOI: 10.1002/cplu.202200180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/18/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Yuyu Zhang
- Taiyuan University of Technology College of Materials Science and Engineering CHINA
| | - Chunli Guo
- Taiyuan University of Technology Yingze West Street No.79 CHINA
| | - Gang Li
- Taiyuan University of Technology College of Materials Science and Engineering CHINA
| | - Lichun Xu
- Taiyuan University of Technology College of Physics and optoelectronics CHINA
| | - Meiqing Guo
- Taiyuan University of Technology College of Mechanical and Vehicle Engineering CHINA
| |
Collapse
|
6
|
Ternary Nanohybrid of Ni3S2/CoMoS4/MnO2 on Nickel Foam for Aqueous and Solid-State High-Performance Supercapacitors. NANOMATERIALS 2022; 12:nano12111945. [PMID: 35683798 PMCID: PMC9182481 DOI: 10.3390/nano12111945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023]
Abstract
To overcome the issues related to supercapacitor (SC) electrodes, such as high cost, low specific capacitance (Cs), low energy density (ED), requirements for expensive binder, etc., binderless electrodes are highly desirable. Here, a new ternary nanohybrid is presented as a binder-free SC electrode based on Ni3S2, CoMoS4, and MnO2. A facile two-step hydrothermal route, followed by a short thermal annealing process, is developed to grow amorphous polyhedral structured CoMoS4 and further wrap MnO2 nanowires on Ni foam. This rationally designed binder-free electrode exhibited the highest Cs of 2021 F g−1 (specific capacity of 883.8 C g−1 or 245.5 mAh g−1) at a current density of 1 A g−1 in 1 M KOH electrolyte with a highly porous surface morphology. This electrode material exhibited excellent cycling stability (90% capacitance retention after 4000 cycles) due to the synergistic contribution of individual components and advanced surface properties. Furthermore, an aqueous binder-free asymmetric SC based on this ternary composite exhibited an ED of 20.7 Wh kg−1, whereas a solid-state asymmetric SC achieved an ED of 13.8 Wh kg−1. This nanohybrid can be considered a promising binder-free electrode for both aqueous and solid-state asymmetric SCs with these remarkable electrochemical properties.
Collapse
|
7
|
Nguyet HM, Tam LTT, Doan TT, Yen NT, Dung HT, Dung NT, Phan NH, Tuan LA, Phan Ngoc M, Lu LT. Facile synthesis of MnCo 2S 4 nanosheets as a binder-free electrode material for high performance supercapacitor applications. NEW J CHEM 2022. [DOI: 10.1039/d1nj05809f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper reported an easy synthesis of MnCo2S4 (MCS) nanosheets by a one-pot solvothermal method for high performance supercapacitor electrode material applications. The obtained MCS nanosheets with an ultrathin thickness...
Collapse
|
8
|
Thanh Tam LT, Tung DT, Nguyet HM, Ngoc Linh NT, Dung NT, Van Quynh N, Van Dang N, Vernardou D, Le TK, Tuan LA, Minh PN, Lu LT. High electrochemical performance of ink solution based on manganese cobalt sulfide/reduced graphene oxide nano-composites for supercapacitor electrode materials. RSC Adv 2022; 12:20182-20190. [PMID: 35919609 PMCID: PMC9278503 DOI: 10.1039/d2ra02818b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/06/2022] [Indexed: 01/07/2023] Open
Abstract
Large scale supercapacitor electrodes were prepared by 3D-printing directly on a graphite paper substrate from ink solution containing manganese cobalt sulfide/reduced graphene oxide (MCS/rGO) nanocomposites. The MCS/rGO composite solution was synthesized through the dispersion of MCS NPs and rGO in dimethylformamide (DMF) solvent at room temperature. Their morphology and composition were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray diffraction (EDS). The role of rGO on decreasing charge transfer resistance and enhancing ion exchange was discussed. The MCS/rGO electrode exhibits an excellent specific capacitance of 3812.5 F g−1 at 2 A g−1 and it maintains 1780.8 F g−1 at a high current density of 50 A g−1. The cycling stability of the electrodes reveals capacitance retention of over 92% after 22 000 cycles at 50 A g−1. Large scale supercapacitor electrodes were prepared by 3D-printing directly on a graphite paper substrate from ink solution containing manganese cobalt sulfide/reduced graphene oxide (MCS/rGO) nanocomposites.![]()
Collapse
Affiliation(s)
- Le Thi Thanh Tam
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 1000, Vietnam
| | - Doan Thanh Tung
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 1000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 1000, Vietnam
| | - Ha Minh Nguyet
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 1000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 1000, Vietnam
| | - Nguyen Thi Ngoc Linh
- Thai Nguyen University of Sciences, Tan Thinh Ward, Thai Nguyen City 25000, Thai Nguyen, Vietnam
| | - Ngo Thanh Dung
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 1000, Vietnam
| | - Nguyen Van Quynh
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi 1000, Vietnam
| | - Nguyen Van Dang
- Thai Nguyen University of Sciences, Tan Thinh Ward, Thai Nguyen City 25000, Thai Nguyen, Vietnam
| | - Dimitra Vernardou
- Department of Electrical and Computer Engineering, School of Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Top Khac Le
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City, 700000, Viet Nam
- Vietnam National University, Ho Chi Minh City, 700000, Viet Nam
| | - Le Anh Tuan
- Phenikaa University, Nguyen Thanh Binh Street, Yen Nghia Ward, Ha Dong District, Hanoi, 12116, Vietnam
| | - Phan Ngoc Minh
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 1000, Vietnam
| | - Le Trong Lu
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 1000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 1000, Vietnam
| |
Collapse
|