1
|
Sun Y, Yang F, Sun S, Wei K, Wang Y, Ma G, An J, Yuan J, Zhao M, Liu J, Liu H, Li Y. Phase regulation of Ni(OH) 2 nanosheets induced by W doping as self-supporting electrodes for boosted water electrolysis. J Colloid Interface Sci 2025; 684:1-10. [PMID: 39764892 DOI: 10.1016/j.jcis.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/31/2025]
Abstract
Developing high-performance and low-cost electrodes for hydrogen and oxygen evolution reactions (HER and OER, respectively) represents a pivotal challenge in the field of water electrolysis. Herein, W doped NiFe LDH nanosheets (NiFe-Wx/NF) were immobilized on nickel foam (NF) through one-step corrosion engineering, which induced the coexistence of α-Ni(OH)2 and β-Ni(OH)2. The doping of large atomic radius W influenced the growth of crystal planes of Ni(OH)2, promoting the formation of α-Ni(OH)2, which results in large layer spaces and neatly arranged nanosheets structure. The optimized NiFe-W0.5/NF catalyst require potentials of only 69 to attain 10 mA/cm2 for HER, and require overpotentials of 269 mV to reach 100 mA/cm2 current density for OER, respectively. The W6+ with high oxidation state can withdraw neighboring electrons from Ni, altering the adsorption energy of hydrogen intermediates, which improves the Volmer step and electrical conductivity in HER. And the large layer space of α-Ni(OH)2 in NiFe-W0.5/NF can be contributed to accelerating the formation of high valence γ-NiOOH, which can accelerate OER kinetics. In addition, the NiFe-W0.5/NF catalyst also provides an overall water splitting activity of 780 mA/cm2 current density at a cell voltage of only 1.90 V, and remains highly stable for over 70 h at 100 mA/cm2, which makes it a bifunctional efficient catalyst for water electrolysis.
Collapse
Affiliation(s)
- Yang Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Changping 102249, China
| | - Fan Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Changping 102249, China.
| | - Siyuan Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Changping 102249, China
| | - Kexin Wei
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Changping 102249, China
| | - Ye Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Changping 102249, China
| | - Guang Ma
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Changping 102249, China
| | - Junpu An
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Changping 102249, China
| | - Junwei Yuan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Changping 102249, China
| | - Meitong Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Changping 102249, China
| | - Jiahui Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Changping 102249, China
| | - Hongchen Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Changping 102249, China
| | - Yongfeng Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Changping 102249, China.
| |
Collapse
|
2
|
Hu F, Huang P, Feng X, Zhou C, Zeng X, Liu C, Wang G, Yang X, Hu H. A porous network of boron-doped IrO 2 nanoneedles with enhanced mass activity for acidic oxygen evolution reactions. MATERIALS HORIZONS 2025; 12:630-641. [PMID: 39508486 DOI: 10.1039/d4mh01358a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
While proton exchange membrane water electrolyzers (PEMWEs) are essential for realizing practical hydrogen production, the trade-off among activity, stability, and cost of state-of-the-art iridium (Ir)-based oxygen evolution reaction (OER) electrocatalysts for PEMWE implementation is still prohibitively challenging. Ir minimization coupled with mass activity improvement of Ir-based catalysts is a promising strategy to address this challenge. Here, we present a discovery demonstrating that boron doping facilitates the one-dimensional (1D) anisotropic growth of IrO2 crystals, as supported by both experimental and theoretical evidence. The synthesized porous network of ultralong boron-doped iridium oxide (B-IrO2) nanoneedles exhibits improved electronic conductivity and reduced charge transfer resistance, thereby increasing the number of active sites. As a result, B-IrO2 displays an ultrahigh OER mass activity of 3656.3 A gIr-1 with an Ir loading of 0.08 mgIr cm-2, which is 4.02 and 6.18 times higher than those of the un-doped IrO2 nanoneedle network (L-IrO2) and Adams IrO2 nanoparticles (A-IrO2), respectively. Density functional theory (DFT) calculations reveal that the B doping moderately increases the d-band center energy level and significantly lowers the free energy barrier for the conversion of *O to *OOH, thereby improving the intrinsic activity. On the other hand, the stability of B-IrO2 can be synchronously promoted, primarily attributed to the B-induced strengthening of the Ir bonds, which help resist electrochemical dissolution. More importantly, when the B-IrO2 catalysts are applied to the membrane electrode assembly for PEM water electrolysis (PEMWE), they generate a remarkable current density of up to 2.8 A cm-2 and maintain operation for at least 160 h at a current density of 1.0 A cm-2. This work provides new insights into promoting intrinsic activity and stability while minimizing the usage of noble-metal-based OER electrocatalysts for critical energy conversion and storage.
Collapse
Affiliation(s)
- Fei Hu
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528000, P.R. China.
| | - Peiyu Huang
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528000, P.R. China.
| | - Xu Feng
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528000, P.R. China.
| | - Changjian Zhou
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528000, P.R. China.
| | - Xinjuan Zeng
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528000, P.R. China.
| | - Congcong Liu
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang 330013, P.R. China
| | - Guangjin Wang
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528000, P.R. China.
| | - Xiaowei Yang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Huawen Hu
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528000, P.R. China.
| |
Collapse
|
3
|
Yu J, Zhu Q, Ma W, Dai Y, Zhang S, Wang F, Zhu H. Hydrophilic Chitosan-Doped Composite Diaphragm Reducing Gas Permeation for Alkaline Water Electrolysis Producing Hydrogen. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1394-1403. [PMID: 38157839 DOI: 10.1021/acsami.3c13426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The present paper studied the chitosan-doped composite diaphragm by the phase exchange method with the objective of developing a composite diaphragm that complies with the alkaline water electrolysis requirements, as well as tested the electrolytic performance of the diaphragm in alkaline water electrolysis. The structure and morphology are characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The performance of chitosan-doped composite diaphragms was tested; CS3Z12 composite diaphragm with a low area resistance (0.20 Ω cm2), a high bubble point pressure (2.75 bar), and excellent electrochemical performance (current density of 650 mA cm-2 at 1.83 V) shows the best performance. Moreover, the performance of the synthesized composite diaphragm is significantly elevated compared to commercial diaphragms (Zirfon PERL), which is promising for practical application in alkaline electrolytic cells.
Collapse
Affiliation(s)
- Jinghua Yu
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Qingqing Zhu
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Wenli Ma
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yajie Dai
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shuhuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Fanghui Wang
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hong Zhu
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
4
|
Yan Y, Lin J, Huang K, Zheng X, Qiao L, Liu S, Cao J, Jun SC, Yamauchi Y, Qi J. Tensile Strain-Mediated Spinel Ferrites Enable Superior Oxygen Evolution Activity. J Am Chem Soc 2023; 145:24218-24229. [PMID: 37874900 DOI: 10.1021/jacs.3c08598] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Exploring efficient strategies to overcome the performance constraints of oxygen evolution reaction (OER) electrocatalysts is vital for electrocatalytic applications such as H2O splitting, CO2 reduction, N2 reduction, etc. Herein, tunable, wide-range strain engineering of spinel oxides, such as NiFe2O4, is proposed to enhance the OER activity. The lattice strain is regulated by interfacial thermal mismatch during the bonding process between thermally expanding NiFe2O4 nanoparticles and the nonexpanding carbon fiber substrate. The tensile lattice strain causes energy bands to flatten near the Fermi level, lowering eg orbital occupancy, effectively increasing the number of electronic states near the Fermi level, and reducing the pseudoenergy gap. Consequently, the energy barrier of the rate-determining step for strained NiFe2O4 is reduced, achieving a low overpotential of 180 mV at 10 mA/cm2. A total water decomposition voltage range of 1.52-1.56 V at 10 mA/cm2 (without iR correction) was achieved in an asymmetric alkaline electrolytic cell with strained NiFe2O4 nanoparticles, and its robust stability was verified with a voltage retention of approximately 99.4% after 100 h. Furthermore, the current work demonstrates the universality of tuning OER performance with other spinel ferrite systems, including cobalt, manganese, and zinc ferrites.
Collapse
Affiliation(s)
- Yaotian Yan
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China
| | - Jinghuang Lin
- Institute of Applied Physics and Materials Engineering (IAPME), University of Macau, Taipa, 999078, China
| | - Keke Huang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaohang Zheng
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China
| | - Liang Qiao
- Key Laboratory of Materials Design and Quantum Simulation, College of Science, Changchun University, Changchun, 130022, China
| | - Shude Liu
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Jian Cao
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, Seoul, 120-749, South Korea
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Junlei Qi
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
5
|
Ding L, Xie Z, Yu S, Wang W, Terekhov AY, Canfield BK, Capuano CB, Keane A, Ayers K, Cullen DA, Zhang FY. Electrochemically Grown Ultrathin Platinum Nanosheet Electrodes with Ultralow Loadings for Energy-Saving and Industrial-Level Hydrogen Evolution. NANO-MICRO LETTERS 2023; 15:144. [PMID: 37269447 PMCID: PMC10239421 DOI: 10.1007/s40820-023-01117-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/26/2023] [Indexed: 06/05/2023]
Abstract
Nanostructured catalyst-integrated electrodes with remarkably reduced catalyst loadings, high catalyst utilization and facile fabrication are urgently needed to enable cost-effective, green hydrogen production via proton exchange membrane electrolyzer cells (PEMECs). Herein, benefitting from a thin seeding layer, bottom-up grown ultrathin Pt nanosheets (Pt-NSs) were first deposited on thin Ti substrates for PEMECs via a fast, template- and surfactant-free electrochemical growth process at room temperature, showing highly uniform Pt surface coverage with ultralow loadings and vertically well-aligned nanosheet morphologies. Combined with an anode-only Nafion 117 catalyst-coated membrane (CCM), the Pt-NS electrode with an ultralow loading of 0.015 mgPt cm-2 demonstrates superior cell performance to the commercial CCM (3.0 mgPt cm-2), achieving 99.5% catalyst savings and more than 237-fold higher catalyst utilization. The remarkable performance with high catalyst utilization is mainly due to the vertically well-aligned ultrathin nanosheets with good surface coverage exposing abundant active sites for the electrochemical reaction. Overall, this study not only paves a new way for optimizing the catalyst uniformity and surface coverage with ultralow loadings but also provides new insights into nanostructured electrode design and facile fabrication for highly efficient and low-cost PEMECs and other energy storage/conversion devices.
Collapse
Affiliation(s)
- Lei Ding
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Zhiqiang Xie
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Shule Yu
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Weitian Wang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Alexander Y Terekhov
- Center for Laser Applications, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Brian K Canfield
- Center for Laser Applications, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | | | - Alex Keane
- Nel Hydrogen, Wallingford, CT, 06492, USA
| | | | - David A Cullen
- Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, TN, 37831, USA
| | - Feng-Yuan Zhang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA.
| |
Collapse
|
6
|
Ding L, Wang W, Xie Z, Li K, Yu S, Capuano CB, Keane A, Ayers K, Zhang FY. Highly Porous Iridium Thin Electrodes with Low Loading and Improved Reaction Kinetics for Hydrogen Generation in PEM Electrolyzer Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24284-24295. [PMID: 37167124 DOI: 10.1021/acsami.2c23304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Highly efficient electrodes with simplified fabrication and low cost are highly desired for the commercialization of proton exchange membrane electrolyzer cells (PEMECs). Herein, highly porous Ir-coated thin/tunable liquid/gas diffusion layers with honeycomb-structured catalyst layers were fabricated as anode electrodes for PEMECs via integrating a facile and fast electroplating process with efficient template removal. Combined with a Nafion 117 membrane, a low cell voltage of 1.842 V at 2000 mA/cm2 and a high mass activity of 4.16 A/mgIr at 1.7 V were achieved with a low Ir loading of 0.27 mg/cm2, outperforming most of the recently reported anode catalysts. Moreover, the thin electrode shows outstanding stability at a high current density of 1800 mA/cm2 in the practical PEMEC. Moreover, with in-situ high-speed visualizations in PEMECs, the catalyst layer structure's impact on real-time electrochemical reactions and mass transport phenomena was investigated for the first time. Increased active sites and improved multiphase transport properties with favorable bubble detachment and water diffusion for the honeycomb-structured electrode are revealed. Overall, the significantly simplified ionomer-free honeycomb thin electrode with low catalyst loading and remarkable performance could efficiently accelerate the industrial application of PEMECs.
Collapse
Affiliation(s)
- Lei Ding
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Weitian Wang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Zhiqiang Xie
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Kui Li
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | - Shule Yu
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| | | | - Alex Keane
- Nel Hydrogen, Wallingford, Connecticut 06492, United States
| | - Kathy Ayers
- Nel Hydrogen, Wallingford, Connecticut 06492, United States
| | - Feng-Yuan Zhang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, Tullahoma, Tennessee 37388, United States
| |
Collapse
|
7
|
Roy Chowdhury P, Medhi H, Bhattacharyya KG, Mustansar Hussain C. Recent progress in the design and functionalization strategies of transition metal-based layered double hydroxides for enhanced oxygen evolution reaction: A critical review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
8
|
Li J, Du X, Luo Y, Han B, Liu G, Li J. MoS2/NiVFe crystalline/amorphous heterostructure induced electronic modulation for efficient neutral-alkaline hydrogen evolution. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Sahoo DP, Das KK, Mansingh S, Sultana S, Parida K. Recent progress in first row transition metal Layered double hydroxide (LDH) based electrocatalysts towards water splitting: A review with insights on synthesis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214666] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Nb-doped NiFe LDH nanosheet with superhydrophilicity and superaerophobicity surface for solar cell-driven electrocatalytic water splitting. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Singh TI, Maibam A, Cha DC, Yoo S, Babarao R, Lee SU, Lee S. High-Alkaline Water-Splitting Activity of Mesoporous 3D Heterostructures: An Amorphous-Shell@Crystalline-Core Nano-Assembly of Co-Ni-Phosphate Ultrathin-Nanosheets and V- Doped Cobalt-Nitride Nanowires. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201311. [PMID: 35666047 PMCID: PMC9376825 DOI: 10.1002/advs.202201311] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/04/2022] [Indexed: 05/27/2023]
Abstract
Introducing amorphous and ultrathin nanosheets of transition bimetal phosphate arrays that are highly active in the oxygen evolution reaction (OER) as shells over an electronically modulated crystalline core with low hydrogen absorption energy for an excellent hydrogen evolution reaction (HER) can boost the sluggish kinetics of the OER and HER in alkaline electrolytes. Therefore, in this study, ultrathin and amorphous cobalt-nickel-phosphate (CoNiPOx ) nanosheet arrays are deposited over vanadium (V)-doped cobalt-nitride (V3% -Co4 N) crystalline core nanowires to obtain amorphous-shell@crystalline-core mesoporous 3D-heterostructures (CoNiPOx @V-Co4 N/NF) as bifunctional electrocatalysts. The optimized electrocatalyst shows extremely low HER and OER overpotentials of 53 and 270 mV at 10 mA cm-2 , respectively. The CoNiPOx @V3% -Co4 N/NF (+/-) electrolyzer utilizing the electrocatalyst as both anode and cathode demonstrates remarkable overall water-splitting activity, requiring a cell potential of only 1.52 V at 10 mA cm-2 , 30 mV lower than that of the RuO2 /NF (+)/20%-Pt/C/NF (-) electrolyzer. Such impressive bifunctional activities can be attributed to abundant active sites, adjusted electronic structure, lower charge-transfer resistance, enhanced electrochemically active surface area (ECSA), and surface- and volume-confined electrocatalysis resulting from the synergistic effects of the crystalline V3% -Co4 N core and amorphous CoNiPOx shells boosting water splitting in alkaline media.
Collapse
Affiliation(s)
- Thangjam Ibomcha Singh
- Department of Chemical and Molecular EngineeringHanyang University ERICAAnsan15588Republic of Korea
- Center for Bionano Intelligence Education and ResearchHanyang University ERICAAnsan15588Republic of Korea
| | - Ashakiran Maibam
- School of ScienceRMIT UniversityMelbourneVictoria3001Australia
- Physical and Materials DivisionCSIR‐National Chemical LaboratoryPune411 008India
- Academy of Scientific and Innovative ResearchCSIR‐Human Resource Development Centre (CSIR‐HRDC) CampusPostal Staff College AreaGhaziabadUttar Pradesh201002India
| | - Dun Chan Cha
- Center for Bionano Intelligence Education and ResearchHanyang University ERICAAnsan15588Republic of Korea
- Department of Applied ChemistryHanyang University ERICAAnsan15588Republic of Korea
| | - Sunghoon Yoo
- Department of Chemical and Molecular EngineeringHanyang University ERICAAnsan15588Republic of Korea
- Department of Applied ChemistryHanyang University ERICAAnsan15588Republic of Korea
| | - Ravichandar Babarao
- School of ScienceRMIT UniversityMelbourneVictoria3001Australia
- ManufacturingCSIRONormanby RoadVictoriaClayton3168Australia
| | - Sang Uck Lee
- Department of Chemical and Molecular EngineeringHanyang University ERICAAnsan15588Republic of Korea
- Center for Bionano Intelligence Education and ResearchHanyang University ERICAAnsan15588Republic of Korea
- Department of Applied ChemistryHanyang University ERICAAnsan15588Republic of Korea
| | - Seunghyun Lee
- Department of Chemical and Molecular EngineeringHanyang University ERICAAnsan15588Republic of Korea
- Center for Bionano Intelligence Education and ResearchHanyang University ERICAAnsan15588Republic of Korea
- Department of Applied ChemistryHanyang University ERICAAnsan15588Republic of Korea
| |
Collapse
|
12
|
Pearson’s Principle-Inspired Robust 2D Amorphous Ni-Fe-Co Ternary Hydroxides on Carbon Textile for High-Performance Electrocatalytic Water Splitting. NANOMATERIALS 2022; 12:nano12142416. [PMID: 35889644 PMCID: PMC9316908 DOI: 10.3390/nano12142416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022]
Abstract
Layered double hydroxide (LDH) is widely used in electrocatalytic water splitting due to its good structural tunability, high intrinsic activity, and mild synthesis conditions, especially for flexible fiber-based catalysts. However, the poor stability of the interface between LDH and flexible carbon textile prepared by hydrothermal and electrodeposition methods greatly affects its active area and cyclic stability during deformation. Here, we report a salt-template-assisted method for the growth of two-dimensional (2D) amorphous ternary LDH based on dip-rolling technology. The robust and high-dimensional structure constructed by salt-template and fiber could achieve a carbon textile-based water splitting catalyst with high loading, strong catalytic activity, and good stability. The prepared 2D NiFeCo-LDH/CF electrode showed overpotentials of 220 mV and 151 mV in oxygen evolution and hydrogen evolution reactions, respectively, and simultaneously had no significant performance decrease after 100 consecutive bendings. This work provides a new strategy for efficiently designing robust, high-performance LDH on flexible fibers, which may have great potential in commercial applications.
Collapse
|
13
|
Yang M, Zhao M, Yuan J, Luo J, Zhang J, Lu Z, Chen D, Fu X, Wang L, Liu C. Oxygen Vacancies and Interface Engineering on Amorphous/Crystalline CrO x -Ni 3 N Heterostructures toward High-Durability and Kinetically Accelerated Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106554. [PMID: 35150071 DOI: 10.1002/smll.202106554] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Manipulating catalytic active sites and reaction kinetics in alkaline media is crucial for rationally designing mighty water-splitting electrocatalysts with high efficiency. Herein, the coupling between oxygen vacancies and interface engineering is highlighted to fabricate a novel amorphous/crystalline CrOx -Ni3 N heterostructure grown on Ni foam for accelerating the alkaline hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Density functional theory (DFT) calculations reveal that the electron transfer from amorphous CrOx to Ni3 N at the interfaces, and the optimized Gibbs free energies of H2 O dissociation (ΔGH-OH ) and H adsorption (ΔGH ) in the amorphous/crystalline CrOx -Ni3 N heterostructure are conducive to the superior and stable HER activity. Experimental data confirm that numerous oxygen vacancies and amorphous/crystalline interfaces in the CrOx -Ni3 N catalysts are favorable for abundant accessible active sites and enhanced intrinsic activity, resulting in excellent catalytic performances for HER and OER. Additionally, the in situ reconstruction of CrOx -Ni3 N into highly active Ni3 N/Ni(OH)2 is responsible for the optimized OER performance in a long-term stability test. Eventually, an alkaline electrolyzer using CrOx -Ni3 N as both cathode and anode has a low cell voltage of 1.53 V at 10 mA cm-2 , together with extraordinary durability for 500 h, revealing its potential in industrial applications.
Collapse
Affiliation(s)
- Mingyang Yang
- Shenzhen University, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen, 518060, China
- Shenzhen University, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen, 518060, China
| | - Mengxuan Zhao
- Shenzhen University, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen, 518060, China
| | - Ji Yuan
- Shenzhen University, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen, 518060, China
| | - Junxuan Luo
- Shenzhen University, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen, 518060, China
| | - Junjun Zhang
- Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Department of Materials Science and Engineering, Shenzhen, 518055, China
| | - Zhouguang Lu
- Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Department of Materials Science and Engineering, Shenzhen, 518055, China
| | - Dazhu Chen
- Shenzhen University, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen, 518060, China
| | - Xianzhu Fu
- Shenzhen University, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen, 518060, China
| | - Lei Wang
- Shenzhen University, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen, 518060, China
| | - Chen Liu
- Shenzhen University, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen, 518060, China
| |
Collapse
|
14
|
Zhai Z, Yan W, Zhang J. Layered FeCoNi double hydroxides with tailored surface electronic configurations induced by oxygen and unsaturated metal vacancies for boosting the overall water splitting process. NANOSCALE 2022; 14:4156-4169. [PMID: 35229091 DOI: 10.1039/d2nr00143h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) layered double hydroxides (LDH) with excellent hydrophilic ability and rapid hydroxyl insertion are regarded as one of the most promising electrocatalysts for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) for overall water splitting to produce hydrogen. However, the electrocatalytic HER/OER activities can be restricted by the inert basal plane due to the poor conductivity, deficient active sites and inferior durability despite there being efficient active sites in the material edge. Thus, capturing many more exposed reactive sites to facilitate the rapid reaction kinetics is a crucial strategy. In this paper, both oxygen and unsaturated metal vacancies with FeCoNi LDH materials are generated through a surface activation approach by pre-covering of fluoride and a post-boronizing process. Such a material is grown on Ni foam to form an F-FeCoNi-Ov LDH/NF electrocatalyst. The activated surface of the electrocatalyst with oxygen vacancies and unsaturated metal sites shows enhanced electroconductivity for regulating the surface electronic structure and optimizing the surface adsorption energy for intermediates during HER/OER processes. As a result, this electrocatalyst exhibits excellent electrocatalytic performance for both the HER and OER with low overpotentials, small Tafel slopes and long durability. The enhancement mechanism is also studied deeply for fundamental understanding. For performance validation, an F-FeCoNi-Ov LDH/NF∥F-FeCoNi-Ov LDH/NF water splitting cell is fabricated and needs only 1.54 V and 1.81 V to reach current densities of 10 and 100 mA cm-2, respectively. This work provides a practicable strategy to develop 2D LDH nanomaterials with boosted electrocatalytic activity for sustainable and clean energy storage systems.
Collapse
Affiliation(s)
- Zibo Zhai
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, China 200444
| | - Wei Yan
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, China 200444
| | - Jiujun Zhang
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, China 200444
| |
Collapse
|
15
|
Boosting the Electrocatalytic Activity of Nickel-Iron Layered Double Hydroxide for the Oxygen Evolution Reaction byTerephthalic Acid. Catalysts 2022. [DOI: 10.3390/catal12030258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The development of a new type of oxygen evolution reaction (OER) catalyst to reduce the energy loss in the process of water electrolysis is of great significance to the realization of the industrialization of hydrogen energy storage. Herein, we report the catalysts of NiFe double-layer hydroxide (NiFe-LDH) mixed with different equivalent terephthalic acid (TPA), synthesized by the hydrothermal method. The catalyst synthesized with the use of the precursor solution containing one equivalent of TPA shows the best performance with the current density of 2 mA cm−2 at an overpotential of 270 mV, the Tafel slope of 40 mV dec−1, and excellent stable electrocatalytic performance for OER. These catalysts were characterized in a variety of methods. X-ray diffraction (XRD), Fourier Transform Infrared Spectrometer (FTIR), and Raman spectrum proved the presence of TPA in the catalysts. The lamellar structure and the uniform distribution of Ni and Fe in the catalysts were observed by a scanning electron microscope (SEM) and a transmission electron microscope (TEM). In X-ray photoelectron spectroscopy (XPS) of NiFe-LDH with and without TPA, the changes in the peak positions of Ni and Fe spectra indicate strong electronic interactions between TPA and Ni and Fe atoms. These results suggest that a certain amount of TPA can boost catalytic activity.
Collapse
|
16
|
Morphology engineering of iridium electrodes via modifying titanium substrates with controllable pillar structures for highly efficient oxygen evolution reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Ding L, Hu J, Zhang Y, Xu J, Zhang M. Copper-Based Nanocatalysts with SiO 2 and Carbon Dual-Layer Coatings and Metallic Ni/CuNi Decoration toward Highly Efficient Nitroaromatics Reduction. Inorg Chem 2022; 61:1717-1727. [PMID: 35020384 DOI: 10.1021/acs.inorgchem.1c03582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanocomposites with novel architectures and multifunctional properties have attracted extensive attention among related researchers. Herein, we develop a magnetically responsive Ni/CuNi nanoparticle (NP) decoration of Cu-based composites that could serve as recoverable nanocatalysts for nitroaromatics reduction. The nanocatalysts consist of an inner copper core and abundant tiny satellite Ni/CuNi NPs, which are tightly combined as a stable whole part by a silica interlayer and a carbon outer layer. In addition to the high catalytic activity, the outer Ni/CuNi NPs exhibit a strong magnetic response toward the external magnetic field, thereby offering a convenient way to separate the composites from the reaction solution. Moreover, characterization results reveal that high annealing temperature (above 700 °C) favors the construction of yolk-shell nanostructures and the formation of outer bimetallic CuNi NPs. As a result, owing to the excellent catalytic performance of the Cu inner cores, the high coverage of outer Ni or CuNi NPs, and the unique sandwich-like structure, the resultant Cu@SiO2@C-Ni composites show the use of such magnetically responsive recoverable nanocatalysts for the 4-nitrophenol reduction. Hence, this research could provide new guidelines for designing and synthesizing novel and efficient copper-based composites for other fields, such as carbon dioxide reduction, energy storage, and batteries.
Collapse
Affiliation(s)
- Lei Ding
- College of Chemical and Materials Engineering, Key Laboratory for Micro-Nano Energy Storage and Conversion Materials of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Xuchang 461000, China.,College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.,Department of Mechanical, Aerospace and Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville 37388, United States
| | - Jiamin Hu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Yange Zhang
- College of Chemical and Materials Engineering, Key Laboratory for Micro-Nano Energy Storage and Conversion Materials of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Xuchang 461000, China
| | - Jingli Xu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| |
Collapse
|
18
|
Ding L, Zheng J, Xu J, Yin XB, Zhang M. Rational design, synthesis, and applications of carbon-assisted dispersive Ni-based composites. CrystEngComm 2022. [DOI: 10.1039/d1ce01493e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Herein, we review recent developments in the rational design and engineering of various carbon-assisted dispersive nickel-based composites, and boosted properties for protein adsorption and nitroaromatics reduction.
Collapse
Affiliation(s)
- Lei Ding
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
- Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville 37388, USA
| | - Jing Zheng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Jingli Xu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Xue-Bo Yin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China
| |
Collapse
|
19
|
Wang J, Luo Y, Ling L, Wang X, Cui SC, Li Z, Jiao Z, Cheng L. Sandwich-like NiCo-LDH/rGO with Rich Mesopores and High Charge Transfer Capability for Flexible Supercapacitors. CrystEngComm 2022. [DOI: 10.1039/d2ce00565d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Layered double metal hydroxides (LDHs) have been widely used in the energy storage field due to adjustable composition and interlayer spacing. However, easy to agglomerate, poor electrical conductivity, and large...
Collapse
|