1
|
Wang C, Yang F, Feng L. Recent advances in iridium-based catalysts with different dimensions for the acidic oxygen evolution reaction. NANOSCALE HORIZONS 2023; 8:1174-1193. [PMID: 37434582 DOI: 10.1039/d3nh00156c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Proton exchange membrane (PEM) water electrolysis is considered a promising technology for green hydrogen production, and iridium (Ir)-based catalysts are the best materials for anodic oxygen evolution reactions (OER) owing to their high stability and anti-corrosion ability in a strong acid electrolyte. The properties of Ir-based nanocatalysts can be tuned by rational dimension engineering, which has received intensive attention recently for catalysis ability boosting. To achieve a comprehensive understanding of the structural and catalysis performance, herein, an overview of the recent progress was provided for Ir-based catalysts with different dimensions for the acidic OER. The promotional effect was first presented in terms of the nano-size effect, synergistic effect, and electronic effect based on the dimensional effect, then the latest progress of Ir-based catalysts classified into zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) catalysts was introduced in detail; and the practical application of some typical examples in the real PEM water electrolyzers (PEMWE) was also presented. Finally, the problems and challenges faced by current dimensionally engineered Ir-based catalysts in acidic electrolytes were discussed. It is concluded that the increased surface area and catalytic active sites can be realized by dimensional engineering strategies, while the controllable synthesis of different dimensional structured catalysts is still a great challenge, and the correlation between structure and performance, especially for the structural evolution during the electrochemical operation process, should be probed in depth. Hopefully, this effort could help understand the progress of dimensional engineering of Ir-based catalysts in OER catalysis and contribute to the design and preparation of novel efficient Ir-based catalysts.
Collapse
Affiliation(s)
- Chunyan Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - Fulin Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| |
Collapse
|
2
|
Péter L, Tsirlina G. Electrochemical traditions in Eastern Europe. J Solid State Electrochem 2023; 27:1-6. [PMID: 37363393 PMCID: PMC10264217 DOI: 10.1007/s10008-023-05528-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 06/28/2023]
Affiliation(s)
- László Péter
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Konkoly-Thege út 29-33, Budapest, 1121 Hungary
| | - Galina Tsirlina
- Department of Electrochemistry, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 1130 Rue de la Piscine, Domaine Universitaire, Gières, 38610 France
| |
Collapse
|
3
|
Galyamin D, Torrero J, Rodríguez I, Kolb MJ, Ferrer P, Pascual L, Salam MA, Gianolio D, Celorrio V, Mokhtar M, Garcia Sanchez D, Gago AS, Friedrich KA, Peña MA, Alonso JA, Calle-Vallejo F, Retuerto M, Rojas S. Active and durable R 2MnRuO 7 pyrochlores with low Ru content for acidic oxygen evolution. Nat Commun 2023; 14:2010. [PMID: 37037807 PMCID: PMC10086044 DOI: 10.1038/s41467-023-37665-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/27/2023] [Indexed: 04/12/2023] Open
Abstract
The production of green hydrogen in water electrolyzers is limited by the oxygen evolution reaction (OER). State-of-the-art electrocatalysts are based on Ir. Ru electrocatalysts are a suitable alternative provided their performance is improved. Here we show that low-Ru-content pyrochlores (R2MnRuO7, R = Y, Tb and Dy) display high activity and durability for the OER in acidic media. Y2MnRuO7 is the most stable catalyst, displaying 1.5 V at 10 mA cm-2 for 40 h, or 5000 cycles up to 1.7 V. Computational and experimental results show that the high performance is owed to Ru sites embedded in RuMnOx surface layers. A water electrolyser with Y2MnRuO7 (with only 0.2 mgRu cm-2) reaches 1 A cm-2 at 1.75 V, remaining stable at 200 mA cm-2 for more than 24 h. These results encourage further investigation on Ru catalysts in which a partial replacement of Ru by inexpensive cations can enhance the OER performance.
Collapse
Affiliation(s)
- Dmitry Galyamin
- Grupo de Energía y Química Sostenibles, Instituto de Catálisis y Petroleoquímica, CSIC. C/Marie Curie 2, 28049, Madrid, Spain
| | - Jorge Torrero
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Isabel Rodríguez
- Grupo de Energía y Química Sostenibles, Instituto de Catálisis y Petroleoquímica, CSIC. C/Marie Curie 2, 28049, Madrid, Spain
| | - Manuel J Kolb
- Departament de Ciència de Materials i Química Fisica & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franqués 1, 08028, Barcelona, Spain
| | - Pilar Ferrer
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Laura Pascual
- Instituto de Catálisis y Petroleoquímica, CSIC. C/Marie Curie 2, 28049, Madrid, Spain
| | - Mohamed Abdel Salam
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80200, Jeddah, 21589, Saudi Arabia
| | - Diego Gianolio
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Verónica Celorrio
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Mohamed Mokhtar
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80200, Jeddah, 21589, Saudi Arabia
| | - Daniel Garcia Sanchez
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Aldo Saul Gago
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Kaspar Andreas Friedrich
- Institute of Engineering Thermodynamics/Electrochemical Energy Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Miguel A Peña
- Grupo de Energía y Química Sostenibles, Instituto de Catálisis y Petroleoquímica, CSIC. C/Marie Curie 2, 28049, Madrid, Spain
| | - José Antonio Alonso
- Instituto de Ciencia de Materiales de Madrid, CSIC. C/Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Federico Calle-Vallejo
- Departament de Ciència de Materials i Química Fisica & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franqués 1, 08028, Barcelona, Spain
- Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Department of Advanced Materials and Polymers: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Avenida Tolosa 72, 20018, San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza de Euskadi 5, 48009, Bilbao, Spain
| | - María Retuerto
- Grupo de Energía y Química Sostenibles, Instituto de Catálisis y Petroleoquímica, CSIC. C/Marie Curie 2, 28049, Madrid, Spain.
| | - Sergio Rojas
- Grupo de Energía y Química Sostenibles, Instituto de Catálisis y Petroleoquímica, CSIC. C/Marie Curie 2, 28049, Madrid, Spain.
| |
Collapse
|