1
|
Padhi P, Mehta SK, Mondal PK, Wongwises S. Towards the characterization of chemiosmotic flow of ionic liquids in charged nanochannels. Phys Chem Chem Phys 2025; 27:8692-8705. [PMID: 40116820 DOI: 10.1039/d5cp00555h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
This study investigates the flow characteristics of a semi-diluted NaCMC-KCl aqueous solution in a charged nanochannel. A numerical model, consistent with ion transport mechanisms, is developed to analyze chemiosmotic flow under the influence of electrokinetic effects. The modeling framework employs a finite element-based approach to solve the governing equations and validate the theoretical predictions. We looked into how the bulk polyelectrolyte concentration, salt concentration in the left-side reservoir, and nanochannel height affect the mobile ions' space charge density, induced axial electric field, local viscosity, local and average flow velocity, and convective current. The findings show that the modulation of the degree of electrical-double layer (EDL) overlap with an increase in polyelectrolyte bulk concentration allows for an increase in mobile ion space charge density. The results of this analysis suggest that the concentrations of salt and polyelectrolyte have a significant impact on the local viscosity. The local viscosity increases with the increase in polyelectrolyte concentration and decreases with augmented left-side reservoir salt concentration. Furthermore, higher left-side reservoir salt concentrations result in an augmented convective current, while higher polyelectrolyte bulk concentrations lead to reduction of the same. Interestingly, modulation of the degree of EDL overlap with varied nanochannel heights yields non-intuitive flow patterns. In light of this, we established the critical bulk polyelectrolyte and left-side reservoir concentrations beyond which flow reversal occurs at greater nanochannel heights. The findings of this analysis are deemed pertinent to the development of state-of-the-art nanofluidic devices, largely used for chemiosmotic flow actuation of polyelectrolyte solutions.
Collapse
Affiliation(s)
- Prasenjeet Padhi
- Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Sumit Kumar Mehta
- Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Pranab Kumar Mondal
- Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
- School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Guwahati-781039, India
| | - Somchai Wongwises
- Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Laboratory (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangmod, Bangkok-10140, Thailand
| |
Collapse
|
2
|
Chowdhury S, Pal SK, Gopmandal PP. Dynamic electroosmotic flow and solute dispersion through a nanochannel filled with an electrolyte surrounded by a layer of a dielectric and immiscible liquid. SOFT MATTER 2025; 21:1085-1112. [PMID: 39808495 DOI: 10.1039/d4sm01255k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The present article deals with the modulation of oscillatory electroosmotic flow (EOF) and solute dispersion across a nanochannel filled with an electrolyte solution surrounded by a layer of a dielectric liquid. The dielectric permittivity of the liquid layer adjacent to supporting rigid walls is taken to be lower than that of the electrolyte solution. Besides, the aforesaid liquid layer may bear additional mobile charges, e.g., free lipid molecules, charged surfactant molecules etc., which in turn lead to a nonzero charge along the liquid-liquid interface. Such a layer of a dielectric liquid resembles the membrane of various biological cells. An AC voltage is applied to generate the fluid motion. Note that among others, the major advantage of AC voltage is that it can suppress the formation of gas bubbles that are often very detrimental in flow through microdevices. Considering the combined impact of ion partitioning and ion steric effects, we have studied the EOF modulation and its impact on the dispersion of the solute band of given width placed initially at the middle of the channel. The full scale numerical results for flow modulation induced by an AC electric field and its impact on the solute transport are presented considering a wide range of pertinent parameters. It is observed that the molar concentration of additional charge present in the dielectric liquid layer and its thickness, interfacial charge, and concentration of the bulk electrolyte, ion partitioning and ion steric effects, frequency of oscillatory electric field, channel height etc., have a substantial impact on the flow modulation, effective dispersion coefficient as well as broadening of the solute band across the channel. We have further highlighted the impact of the Péclet number on the transport and dispersion of solutes. Along with the numerical results, several benchmark analytical results under various limits are deduced for electrostatic potential, flow velocity and various quantities associated with the dispersion process.
Collapse
Affiliation(s)
- Sourav Chowdhury
- Department of Mathematics, National Institute of Technology Durgapur, Durgapur-713209, India.
| | - Sanjib Kr Pal
- Department of Mathematics, Jadavpur University, Jadavpur-700032, Kolkata, India
| | - Partha P Gopmandal
- Department of Mathematics, National Institute of Technology Durgapur, Durgapur-713209, India.
| |
Collapse
|
3
|
Mehta SK, Padhi P, Wongwises S, Mondal PK. Harvesting Enhanced Blue Energy in Charged Nanochannels Using Semidiluted Polyelectrolyte Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18750-18759. [PMID: 39162365 DOI: 10.1021/acs.langmuir.4c02557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Blue energy generation in nanochannels based on salinity gradients is currently the most promising method in the area of nonconventional energy production. We used a semidiluted pure sodium carboxymethylcellulose (NaCMC)-KCl aqueous solution to study the characteristics of blue energy generation within a charged nanochannel. We solve the corresponding equations for ionic transport using a numerical technique based on the finite element method. Our analysis focused on the electric double layer (EDL) potential field, open circuit current, diffuse potential, electric conductance, maximum generated pore power, and maximum energy conversion efficiency by varying concentrations of the salt in the left-side reservoir and the bulk polyelectrolyte. The results indicate that as the polyelectrolyte concentration increases, the extent of EDL overlap considerably reduces. With an increase in polyelectrolyte concentration, the open circuit current increases, while the diffuse potential reduces. It was observed that both electrical conductance and maximal pore power improve considerably with higher polyelectrolyte concentrations. Interestingly, our modeling framework demonstrates a power density substantially higher (up to 16.31 W/m2) than earlier configurations and surpasses the established commercial limit (5 W/m2). Furthermore, our findings reveal that the reservoir salt concentration significantly affects the rate of decline in the maximum energy conversion efficiency as the polyelectrolyte concentration increases. The research paves the way for the development of high-power-density devices with several practical applications.
Collapse
Affiliation(s)
- Sumit Kumar Mehta
- Microfluidics and Microscale Transport Processes LaboratoryDepartment of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Laboratory (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangmod, Bangkok 10140, Thailand
| | - Prasenjeet Padhi
- Microfluidics and Microscale Transport Processes LaboratoryDepartment of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Somchai Wongwises
- Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Laboratory (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangmod, Bangkok 10140, Thailand
| | - Pranab Kumar Mondal
- Microfluidics and Microscale Transport Processes LaboratoryDepartment of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Laboratory (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangmod, Bangkok 10140, Thailand
- School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
4
|
Saha B, Chowdhury S, Sarkar S, Gopmandal PP. Electroosmotic flow modulation and dispersion of uncharged solutes in soft nanochannel. SOFT MATTER 2024; 20:6458-6489. [PMID: 39091251 DOI: 10.1039/d4sm00614c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
We perform a systematic study on the modulation of electroosmotic flow (EOF), tuning the selectivity using electrolyte ions and hydrodynamic dispersion of the solute band across the soft nanochannel. The supporting walls of the channel are considered to be hydrophobic and bear non-zero surface charge. For such a channel, the inner side of the supporting rigid walls of the channel are coated with a soft polyelectrolyte layer (PEL). The inhomogeneous distribution of monomers and accompanying volume charge within the PEL is modelled via soft-step function. The dielectric permittivity of the PEL and electrolyte solution are in general different, which in turn leads to the ion partitioning effect. The impact of ion steric effects due to finite sized ions is further accounted through the modified ion activity coefficient. To model the EOF modulation considering the combined impact of the ion steric and ion partitioning effects as well as inhomogeneous distribution of monomers across the PEL, we adopt the modified Poisson-Boltzmann equation as the governing equation for electrostatic potential. The Debye-Bueche model is adopted to study the flow field across the PEL and the Stokes equation governs the EOF outside the PEL. In order to study the impact of the modulated EOF field on the dispersion of uncharged solution, we adopt three different models, i.e., a general 2D convective-diffusion model as well as cross-sectional averaged dispersion models due to Gill and late-time Taylor and Aris. Going beyond the widely employed Debye-Hückel approximation and uniform distribution of the monomer as well as accompanying volume charge, we find the results for the electric double layer (EDL) potential, EOF field and averaged throughput, by tuning the ion selectivity, etc., which is sufficient to analyze the transport of ionized liquid across the channel. The numerical results are supplemented with analytical results for the EDL potential as well as the EOF field under various limiting situations. Besides, we have further shown the impact of the modulated EOF field on the solute dispersion process. We have presented results that highlight the impact of parameters related to EOF field modulation, on solute dispersion governed by a convective-diffusive process, as well as obtaining the results for an effective dispersion coefficient. The dispersion models under the modulated EOF field adopted in the present study can thus be applied to study the dispersion process in engineered microdevices.
Collapse
Affiliation(s)
- Biswadip Saha
- Physics and Applied Mathematics Unit, Indian Statistical Institute Kolkata, Kolkata-700108, India
| | - Sourav Chowdhury
- Department of Mathematics, National Institute of Technology Durgapur, Durgapur-713209, India.
| | - Sankar Sarkar
- Physics and Applied Mathematics Unit, Indian Statistical Institute Kolkata, Kolkata-700108, India
| | - Partha P Gopmandal
- Department of Mathematics, National Institute of Technology Durgapur, Durgapur-713209, India.
| |
Collapse
|
5
|
Alinezhad A, Khatibi M, Ashrafizadeh SN. Impact of surface charge density modulation on ion transport in heterogeneous nanochannels. Sci Rep 2024; 14:18409. [PMID: 39117730 PMCID: PMC11310325 DOI: 10.1038/s41598-024-69335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
The PNP nanotransistor, consisting of emitter, base, and collector regions, exhibits distinct behavior based on surface charge densities and various electrolyte concentrations. In this study, we investigated the impact of surface charge density on ion transport behavior within PNP nanotransistors at different electrolyte concentrations and applied voltages. We employed a finite-element method to obtain steady-state solutions for the Poisson-Nernst-Planck and Navier-Stokes equations. The ions form a depletion region, influencing the ionic current, and we analyze the influence of surface charge density on the depth of this depletion region. Our findings demonstrate that an increase in surface charge density results in a deeper depletion zone, leading to a reduction in ionic current. However, at very low electrolyte concentrations, an optimal surface charge density causes the ion current to reach its lowest value, subsequently increasing with further increments in surface charge density. As such, atV app = + 1 V andC 0 = 1 mM , the ionic current increases by 25% when the surface charge density rises from 5 to 20 mC . m - 2 , whereas atC 0 = 10 mM , the ionic current decreases by 65% with the same increase in surface charge density. This study provides valuable insights into the behavior of PNP nanotransistors and their potential applications in nanoelectronic devices.
Collapse
Affiliation(s)
- Amin Alinezhad
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, NarmakTehran, 16846-13114, Iran
| | - Mahdi Khatibi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, NarmakTehran, 16846-13114, Iran
| | - Seyed Nezameddin Ashrafizadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, NarmakTehran, 16846-13114, Iran.
| |
Collapse
|
6
|
Seo J, Ha S, Kim SJ. Investigation of Operational Parameters for Nanoelectrokinetic Purification and Preconcentration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16443-16453. [PMID: 39048092 DOI: 10.1021/acs.langmuir.4c01773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
This work reports on experimental investigations into the operational parameters of nanoelectrokinetic purification and preconcentration, especially utilizing on ion concentration polarization (ICP). ICP as a nanoscale electrokinetic phenomenon has demonstrated promising advances in various fields utilizing an ion depletion zone (IDZ) with a steep electric field gradient inside the ICP layer. However, the inevitable electrokinetic instability occurring within the IDZ has posed a challenge in operating the ICP system stably. To address the need for a stable and efficient ICP operation in various devices and applications, we propose an operational strategy along with conducted research to determine optimal operating ranges. In order to investigate the operational parameters, a unit voltage (VTH) is introduced as the threshold for initiating ICP. We examined the applicability of VTH across various operating ranges to ensure its effectiveness and versatility. In ICP purification, we categorize three modes (steady, burst, and unsteady) based on IDZ expansion and stability under varying VTH and flow rate conditions, presenting optimal operational conditions that minimize the voltage margin. In ICP preconcentration, a systematic investigation is conducted to observe the influence of background electrolyte concentration and voltage conditions on preconcentration efficiency, offering insights into the correlation between preconcentration factor, electrical conditions, and preconcentration time. Therefore, this research would contribute to the practical understanding of nanoelectrokinetics, providing insight into experimental designs. These findings are expected to offer valuable guidance to researchers aiming to utilize ICP's potential across a spectrum of applications, from purification to preconcentration, in the realm of micro/nanofluidic systems.
Collapse
Affiliation(s)
- Joowon Seo
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungjae Ha
- ProvaLabs, Inc., Seoul 08826, Republic of Korea
| | - Sung Jae Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
- SOFT Foundry Institute, Seoul National University, Seoul 08826, Republic of Korea
- Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
7
|
Mehta SK, Deb D, Nandy A, Shen AQ, Mondal PK. Maximizing blue energy: the role of ion partitioning in nanochannel systems. Phys Chem Chem Phys 2024. [PMID: 39036903 DOI: 10.1039/d4cp01671h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
This study describes a numerical analysis on blue energy generation using a charged nanochannel with an integrated pH-sensitive polyelectrolyte layer (PEL), considering ion partitioning effects due to permittivity differences. The mathematical model for ionic and fluidic transport is solved using the finite element method, and the model validation is performed against existing theoretical and experimental results. The study investigates the influence of electrolyte concentration, permittivity ratio, and salt types (KCl, BeCl2, AlCl3) on the energy conversion process. The findings illustrate the substantial role of ion partitioning in modulating ionic concentration and potential fields, thereby affecting current profiles and energy conversion efficiencies. Remarkably, overlooking ion partitioning leads to significant overestimations of power density, highlighting the necessity of this consideration for accurate device performance predictions. This work introduces a promising configuration that achieves higher power densities, paving the way for the next generation of efficient energy-harvesting devices. The findings offer valuable insights into the development of state-of-the-art blue energy harvesting nanofluidic devices, advancing sustainable energy production.
Collapse
Affiliation(s)
- Sumit Kumar Mehta
- Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati - 781039, India.
- School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Guwahati - 781039, India
| | - Debarthy Deb
- Department of Electronics and Communication Engineering, National Institute of Technology Silchar, Silchar - 788010, India
| | - Adhiraj Nandy
- Department of Electronics and Communication Engineering, National Institute of Technology Silchar, Silchar - 788010, India
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Pranab Kumar Mondal
- Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati - 781039, India.
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
- School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Guwahati - 781039, India
| |
Collapse
|
8
|
Zhang X, Hu N, Wang Y, Zhao Y, Wang D. Effect of Membrane Thickness on Ion Transport in pH-Regulated Zero-Depth Interfacial Nanopores. Anal Chem 2024; 96:11009-11017. [PMID: 38934578 DOI: 10.1021/acs.analchem.4c01700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Zero-depth interfacial nanopores, which are formed by two crossed nanoscale channels at their intersection interface, have been proposed to increase the spatial resolution of solid-state nanopores. However, research on zero-depth interfacial nanopores is still in its early stages. Although it has been shown that the current passing through an interfacial nanopore is largely independent of the membrane thickness, existing studies have not fully considered the impact of membrane thickness on other ion transport characteristics within these nanopores. In this paper, we investigate the electrokinetic ion transport phenomenon in the zero-depth interfacial nanopores, especially focusing on the influence of membrane thickness on the ion transport phenomenon. Our model incorporates the Poisson-Nernst-Planck equations and the Navier-Stokes equations, featuring a pH-regulated surface charge density. We find that when the thickness of the nanochannels is close to the interface size of the formed interfacial nanopore, the phenomenon of ion transport in the interfacial nanopore is similar to that in a conventional cylindrical nanopore. However, when the thickness of the nanochannels is much greater than the interface size of the formed interfacial nanopore, several distinct phenomena occur. The surface charge density on the inner walls of the interfacial nanopores has a small peak at the interface of the two crossing nanochannels, and the anion concentration changes greatly between the two nanochannels; that is, a much greater anion concentration forms in the nanochannel near the anode side than in the nanochannel near the cathode side. When the surface charge is nonzero, the electric field within the interfacial nanopore creates three extreme points, and the directions of the local electric fields are opposite at the ends of the membrane.
Collapse
Affiliation(s)
- Xiaoling Zhang
- School of Smart Health, Chongqing College of Electronic Engineering, Chongqing 401331, P. R. China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Yunjiao Wang
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
| | - Yun Zhao
- School of Smart Health, Chongqing College of Electronic Engineering, Chongqing 401331, P. R. China
| | - Deqiang Wang
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
| |
Collapse
|
9
|
Laucirica G, Hernández Parra LM, Huamani AL, Wagner MF, Albesa AG, Toimil-Molares ME, Marmisollé W, Azzaroni O. Insight into the transport of ions from salts of moderated solubility through nanochannels: negative incremental resistance assisted by geometry. NANOSCALE 2024; 16:12599-12610. [PMID: 38869491 DOI: 10.1039/d3nr06212k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
In this study, the transport of salt with moderate solubility through bioinspired solid-state nanochannels was comprehensively investigated. For this purpose, bullet-shaped channels were fabricated and exposed to KClO4, a monovalent salt with moderate solubility. These channels displayed the typical rectifying behavior characteristic of asymmetrical channels but with one remarkable difference, the iontronic output exhibited a negative incremental resistance phenomenon of high gating efficiency when the transmembrane voltage in the open state was increased enough, giving rise to an inactivated state characterized by a low and stable ion current. The behavior is attributed to salt precipitation inside the channel and remarkably, it is not observed in other geometries such as cylindrical or cigar-shaped channels. Considering the central role of the surface in precipitation formation, the influence of several parameters such as electrolyte concentration, pH, and channel size was studied. Under optimized conditions, this system can alternate among three different conductance states (closed, open, and inactivated) and exhibits gating ratios higher than 20. Beyond its potential application in fields related to electronics or sensing, this study provides valuable insight into the fundamental principles behind ion rectifying behavior in solid-state channels and highlights the implications of surface phenomena at the nanoscale.
Collapse
Affiliation(s)
- Gregorio Laucirica
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina.
| | - L Miguel Hernández Parra
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina.
| | - Angel L Huamani
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina.
| | - Michael F Wagner
- GSI Helmholtzzentrum für Schwerionenforschung, 64291, Darmstadt, Germany
| | - Alberto G Albesa
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina.
| | - María Eugenia Toimil-Molares
- GSI Helmholtzzentrum für Schwerionenforschung, 64291, Darmstadt, Germany
- Technische Universität Darmstadt, Materialwissenschaft, 64287, Darmstadt, Germany
| | - Waldemar Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina.
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina.
| |
Collapse
|
10
|
Park JS, Cho I, Park J, Kim SJ. Differential Impact of Surface Conduction and Electroosmotic Flow on Ion Transport Enhancement by Microscale Auxiliary Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10098-10106. [PMID: 38696820 DOI: 10.1021/acs.langmuir.4c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Our research investigates the impact of auxiliary structures on ion transport in electrochemical systems such as batteries and microscale desalination units, whose importance for sustainable development has increased dramatically in recent decades. The electrochemical systems typically feature ion-selective surfaces, such as electrodes and ion exchange membranes, where ion depletion can cause performance issues including metal dendrite formation and flow instability. Recent research has shown that auxiliary structures in these electrochemical systems can enhance ion transfer near ion-selective surfaces, thereby resolving the instability problem and improving the energy conversion efficiency of the system. Our study leverages recent advancements in nanoscale electrokinetics to model these auxiliary structures as pillar arrays near an ion exchange membrane in a microchannel. We examine how these structures enhance ion transports relative to the characteristic length scale of microchannel depth and pillars' proximity to the ion-selective surface. Results show that the effect of the pillars varies significantly with their placement. Specifically, in deeper microchannels, where electrokinetic convection is stronger, the closer the auxiliary structure is to the ion-selective membrane, the better the ion transfer. However, in the thinner microchannel, the proximity of the auxiliary structure to the ion selective membrane has a less significant correlation with the ion transfer. Therefore, this finding highlights the importance of spatial arrangement of the auxiliary structures in improving the performance of electrochemical devices. Conclusively, this study can help to better understand energy conversion systems such as fuel cells, salinity gradient power generation systems, and electrochemical desalination systems, where auxiliary structures can be used in the vicinity of ion-selective surfaces. Especially, our fundamental electrokinetic study provides an effective means for designing the efficient electrochemical platforms utilizing micro/nanofluidics.
Collapse
Affiliation(s)
- Jae Suk Park
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Inhee Cho
- Korea-Russia Innovation Center, Korea Institute of Industrial Technology, Incheon 21655, Republic of Korea
| | - Jihee Park
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
- SOFT Foundry Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Jae Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
- SOFT Foundry Institute, Seoul National University, Seoul 08826, Republic of Korea
- Inter-university Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
11
|
Tang J, Wang Y, Yang H, Zhang Q, Wang C, Li L, Zheng Z, Jin Y, Wang H, Gu Y, Zuo T. All-natural 2D nanofluidics as highly-efficient osmotic energy generators. Nat Commun 2024; 15:3649. [PMID: 38684671 PMCID: PMC11058229 DOI: 10.1038/s41467-024-47915-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
Two-dimensional nanofluidics based on naturally abundant clay are good candidates for harvesting osmotic energy between the sea and river from the perspective of commercialization and environmental sustainability. However, clay-based nanofluidics outputting long-term considerable osmotic power remains extremely challenging to achieve due to the lack of surface charge and mechanical strength. Here, a two-dimensional all-natural nanofluidic (2D-NNF) is developed as a robust and highly efficient osmotic energy generator based on an interlocking configuration of stacked montmorillonite nanosheets (from natural clay) and their intercalated cellulose nanofibers (from natural wood). The generated nano-confined interlamellar channels with abundant surface and space negative charges facilitate selective and fast hopping transport of cations in the 2D-NNF. This contributes to an osmotic power output of ~8.61 W m-2 by mixing artificial seawater and river water, higher than other reported state-of-the-art 2D nanofluidics. According to detailed life cycle assessments (LCA), the 2D-NNF demonstrates great advantages in resource consumption (1/14), greenhouse gas emissions (1/9), and production costs (1/13) compared with the mainstream 2D nanofluidics, promising good sustainability for large-scale and highly-efficient osmotic power generation.
Collapse
Affiliation(s)
- Jiadong Tang
- Key Laboratory of Advanced Functional Materials of Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Yun Wang
- Key Laboratory of Advanced Functional Materials of Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Hongyang Yang
- Institute of Circular Economy, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Qianqian Zhang
- Key Laboratory of Advanced Functional Materials of Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, PR China.
| | - Ce Wang
- Key Laboratory of Advanced Functional Materials of Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Leyuan Li
- Key Laboratory of Advanced Functional Materials of Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Zilong Zheng
- Key Laboratory of Advanced Functional Materials of Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, PR China.
| | - Yuhong Jin
- Key Laboratory of Advanced Functional Materials of Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Hao Wang
- Key Laboratory of Advanced Functional Materials of Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Yifan Gu
- Institute of Circular Economy, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, PR China.
| | - Tieyong Zuo
- Institute of Circular Economy, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, PR China
| |
Collapse
|
12
|
Khatibi M, Ashrafizadeh SN. Ion Transport in Intelligent Nanochannels: A Comparative Analysis of the Role of Electric Field. Anal Chem 2023. [PMID: 38019778 DOI: 10.1021/acs.analchem.3c03809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
This research delves into investigating ion transport behavior within nanochannels, enhanced through modification with a negatively charged polyelectrolyte layer (PEL), aimed at achieving superior control. The study examines two types of electric fields─direct current and alternating current with square, sinusoidal, triangular, and sawtooth waveforms─to understand their impact on ion transport. Furthermore, the study compares symmetric (cylindrical) and asymmetric (conical) nanochannel geometries to assess the influence of overlapping electrical double layers (EDLs) in generating specific electrokinetic behaviors such as ionic current rectification (ICR) and ion selectivity. The research employs the finite element method to solve the coupled Poisson-Nernst-Planck and Navier-Stokes equations under unsteady-state conditions. By considering factors such as electrolyte concentration, soft layer charge density, and electric field type, the study evaluates ion transport performance in charged nanochannels, investigating effects on concentration polarization, electroosmotic flow (EOF), ion current, rectification, and ion selectivity. Notably, the study accounts for ion partitioning between the PEL and electrolyte to simulate real conditions. Findings reveal that conical nanochannels, due to improved EDL overlap, significantly enhance ion transport and related characteristics compared to cylindrical ones. For instance, under ηε = ηD = 0.8, ημ = 2, C0 = 20 mM, and NPEL/NA = 80 mol m-3 conditions, the average EOF for conical and cylindrical geometries is 0.1 and 0.008 m/s, respectively. Additionally, the study explores ion selectivity and rectification based on the electric field type, unveiling the potential of nanochannels as ion gates or diodes. In cylindrical nanochannels, the ICR remains at unity, with lower ion selectivity across waveforms compared to conical channels. Furthermore, rectification and ion selectivity trends are identified as Rf,square > Rf,DC > Rf,triangular > Rf,sinusoidal > Rf,sawtooth and Ssawtooth > Ssinusoidal > Striangular > SDC > Ssquare for conical nanochannels. Our study of ion transport control in nanochannels, guided by tailored electric fields and unique geometries, offers versatile applications in the field of Analytical Chemistry. This includes enhanced sample separation, controlled drug delivery, optimized pharmaceutical analysis, and the development of advanced biosensing technologies for precise chemical analysis and detection. These applications highlight the diverse analytical contributions of our methodology, providing innovative solutions to challenges in chemical analysis and biosensing.
Collapse
Affiliation(s)
- Mahdi Khatibi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| | - Seyed Nezameddin Ashrafizadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| |
Collapse
|
13
|
Qiao N, Li Z, Zhang Z, Guo H, Liao J, Lu W, Li C. Effect of membrane thermal conductivity on ion current rectification in conical nanochannels under asymmetric temperature. Anal Chim Acta 2023; 1278:341724. [PMID: 37709465 DOI: 10.1016/j.aca.2023.341724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Nowadays, there have been extensively theoretical studies on the phenomenon of ion current rectification (ICR) induced by the asymmetric electrical double layer (EDL). As a key factor influencing the behavior of ion transport, temperature is given high priority by researchers. The thermal conductivity of the material commonly employed to prepare nanopores is 2-3 times higher than that of liquid solutions, which may affect ion transport within the nanochannel. However, it is often neglected in previous studies. Thus, we investigate the effect of membrane thermal conductivity on the ICR in conical nanochannels under asymmetric temperature. Based on the PNP-NS theoretical model, the ion current, the rectification ratio, as well as the temperature and ion concentration distributions along the nanochannel are calculated. It is found that the thermal conductivity of the solid membrane noticeably affects the temperature distribution across the nanochannel, altering the ion transport behavior. Larger membrane thermal conductivity tends to homogenize the temperature distribution in the nanochannel, leading to a decline of ionic thermal down-diffusion by a positive temperature difference and ionic thermal up-diffusion by a negative temperature difference, with the former promoting and the latter inhibiting ion current. As a result, the rectification ratio decreases under the positive temperature difference and increases under the negative temperature difference as the thermal conductivity of the membrane increases. These studies will be instructive for the design of nanofluidic diodes and biosensors.
Collapse
Affiliation(s)
- Nan Qiao
- School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
| | - Zhenquan Li
- School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
| | - Zhe Zhang
- School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
| | - Hengyi Guo
- School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
| | - Jiaqiang Liao
- School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
| | - Wei Lu
- School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
| | - Changzheng Li
- School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi, 530004, China.
| |
Collapse
|
14
|
Heydari A, Khatibi M, Ashrafizadeh SN. Smart nanochannels: tailoring ion transport properties through variation in nanochannel geometry. Phys Chem Chem Phys 2023; 25:26716-26736. [PMID: 37779455 DOI: 10.1039/d3cp03768a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
This research explores ion transport behavior and functionality in a hybrid nanochannel that consists of two conical and cylindrical parts. The numerical investigation focuses on analyzing the length of each part in the nanochannel. The nanochannels are hybrid cavities embedded in a membrane, where the size of the conical part varies as equal to, larger than, or smaller than the cylindrical part. The nanochannel is coated with a polyelectrolyte layer that exhibits a dense charge density distribution. The charge density of the soft layer is described using the soft step distribution function. We study the electroosmotic flow, ionic current, rectification, and selectivity of the nanochannel versus bulk electrolyte concentration, the charge density of the polyelectrolyte layer, and decay length, while considering the effect of ionic partitioning. The steady-state Poisson-Nernst-Planck and Navier-Stokes equations are solved using the finite element method. The findings reveal that the nanochannel with a more extensive conical section demonstrates increased rectification, with the rectification factor rising from 1.4 to 2 at a bulk concentration of 100 mM. Additionally, the nanochannel with a longer cylindrical part exhibits improved selectivity under negative voltage conditions, while positive voltage introduces a different situation. The nanochannel with equal cylindrical and conical parts significantly affects conductivity by modifying the charge density in the soft layer, resulting in a 3.125-fold increase in conductivity under positive voltage when the charge density in the polyelectrolyte layer is raised from 25 to 100 mol m-3. This research focuses on creating intelligent nanochannels by controlling mass concentration, charge density, and collapse length, improving system performance, and optimizing properties. It also offers valuable insights into ion transport mechanisms in nanochannel systems, advancing our understanding in this field.
Collapse
Affiliation(s)
- Amirhossein Heydari
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| | - Mahdi Khatibi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| | - Seyed Nezameddin Ashrafizadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| |
Collapse
|
15
|
Khatibi M, Dartoomi H, Ashrafizadeh SN. Layer-by-Layer Nanofluidic Membranes for Promoting Blue Energy Conversion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13717-13734. [PMID: 37702658 DOI: 10.1021/acs.langmuir.3c01962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Access to and use of energy resources are now crucial components of modern human existence thanks to the exponential growth of technology. Traditional energy sources provide significant challenges, such as pollution, scarcity, and excessive prices. As a result, there is more need than ever before to replace depleting resources with brand-new, reliable, and environmentally friendly ones. With the aid of reverse electrodialysis, the salinity gradient between rivers and seawater as a clean supply with easy and infinite availability is a viable choice for energy generation. The development of nanofluidic-based reverse electrodialysis (NRED) as a novel high-efficiency technology is attributable to the progress of nanoscience. However, understanding the predominant mechanisms of this process at the nanoscale is necessary to develop and disseminate this technology. One viable option to gain insight into these systems while saving expenses is to employ simulation tools. In this study, we looked at how a layer-by-layer (LBL) soft layer influences ion transport and energy production in charged nanochannels. We solved the steady-state Poisson-Nernst-Planck (PNP) and Navier-Stokes (NS) equations for three different types of nanochannels with a trumpet geometry, where the narrow part is covered with a built-up LbL soft layer and the rest is a hard wall with a surface charge density of σ = -10, 0, or +10 mC/m2. The findings show that in type (I) nanochannels, at NPEL/NA = 100 mol/m3 and pH = 7, the maximum power output rises 675-fold as the concentration ratio rises from 10 to 1000. The results of this study can aid in a better understanding of energy harvesting processes using nanofluidic-based reverse electrodialysis in order to identify optimal conditions for the design of an intelligent route with great controllability and minimal pollution.
Collapse
Affiliation(s)
- Mahdi Khatibi
- Research Laboratory for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| | - Hossein Dartoomi
- Research Laboratory for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| | - Seyed Nezameddin Ashrafizadeh
- Research Laboratory for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| |
Collapse
|
16
|
Kim J, Wang C, Park J. Multi-Layered Bipolar Ionic Diode Working in Broad Range Ion Concentration. MICROMACHINES 2023; 14:1311. [PMID: 37512622 PMCID: PMC10384376 DOI: 10.3390/mi14071311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/18/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023]
Abstract
Ion current rectification (ICR) is the ratio of ion current by forward bias to backward bias and is a critical indicator of diode performance. In previous studies, there have been many attempts to improve the performance of this ICR, but there is the intrinsic problem for geometric changes that induce ionic rectification due to fabrication problems. Additionally, the high ICR could be achieved in the narrow salt concentration range only. Here, we propose a multi-layered bipolar ionic diode based on an asymmetric nanochannel network membrane (NCNM), which is realized by soft lithography and self-assembly of homogenous-sized nanoparticles. Owing to the freely changeable geometry based on soft lithography, the ICR performance can be explored according to the variation of microchannel shape. The presented diode with multi-layered configuration shows strong ICR performance, and in a broad range of salt concentrations (0.1 mM~100 mM), steady ICR performance. It is interesting to note that when each anion-selective (AS) and cation-selective (CS) NCNM volume was similar to each optimized volume in a single-layered device, the maximum ICR was obtained. Multi-physics simulation, which reveals greater ionic concentration at the bipolar diode junction under forward bias and less depletion under backward in comparison to the single-layer scenario, supports this tendency as well. Additionally, under different frequencies and salt concentrations, a large-area hysteresis loop emerges, which indicates fascinating potential for electroosmotic pumps, memristors, biosensors, etc.
Collapse
Affiliation(s)
- Jaehyun Kim
- Department of Mechanical Engineering, Sogang University, Sinsu-dong, Mapo-gu, Seoul 121-742, Republic of Korea
| | - Cong Wang
- School of Mechanical Engineering and Electronic Information, China University of Geosciences (Wuhan), 388, Lumo Road, Wuhan 430074, China
| | - Jungyul Park
- Department of Mechanical Engineering, Sogang University, Sinsu-dong, Mapo-gu, Seoul 121-742, Republic of Korea
| |
Collapse
|
17
|
Effect of Surface Charge Gradient on the Concentration Difference Driven Energy Conversion in Nanochannel. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Dartoomi H, Khatibi M, Ashrafizadeh SN. Enhanced Ionic Current Rectification through Innovative Integration of Polyelectrolyte Bilayers and Charged-Wall Smart Nanochannels. Anal Chem 2023; 95:1522-1531. [PMID: 36537870 DOI: 10.1021/acs.analchem.2c04559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The tools utilized by humans continue to shrink and speed up. Lab-on-a-chip (LOC) is one of the most recent techniques for decreasing the size of chemical systems. Today, LOCs have made substantial strides in developing nanomaterial fabrication techniques. Controlling and regulating the fluid and ion mobility in these systems is crucial. Layer-by-layer (LBL) soft layers are one of the most effective strategies for controlling fluid flow in channels. In light of the present constraints for developing these systems and the high expense of experimental investigations, it is vital to employ modeling to minimize costs and comprehend their underlying ideas and operations. In this study, we examined the influence of the LBL soft layer's presence in the charged nanochannels on the ion transport parameters. To examine the effect of the coating length of the LBL soft layer, we first examined three lengths of coating: one with a length greater than half (type (I)), one with a length equal to half (type (II)), and one with a length less than half (type (III)) of the nanochannel length. Then, by solving Poisson-Nernst-Planck and Navier-Stokes equations, we determined the influences of pH, soft layer charge density (NPEL/NA), bulk concentration (C0), and hard surface charge density (σ) on the ionic current rectification (Rf) and selectivity (S) of the nanochannel. The maximum rectification of 30.65 was achieved using a nanochannel of type (III) and σ = +10 mC/m2. The current results demonstrate a promising hybrid architecture consisting of an LBL soft layer and a smart charged nanochannel for enhanced rectification.
Collapse
Affiliation(s)
- Hossein Dartoomi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran16846-13114, Iran
| | - Mahdi Khatibi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran16846-13114, Iran
| | - Seyed Nezameddin Ashrafizadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran16846-13114, Iran
| |
Collapse
|
19
|
Chuang PY, Hsu JP. Influence of shape and charged conditions of nanopores on their ionic current rectification, electroosmotic flow, and selectivity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
20
|
Dartoomi H, Khatibi M, Ashrafizadeh SN. Importance of nanochannels shape on blue energy generation in soft nanochannels. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Seifollahi Z, Ashrafizadeh SN. Effect of charge density distribution of polyelectrolyte layer on electroosmotic flow and ion selectivity in a conical soft nanochannel. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Alinezhad A, Alinezhad A. Influence of location junction on ion transfer behavior in conical nanopores with bipolar polyelectrolyte brushes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Karimzadeh M, Khatibi M, Ashrafizadeh SN, Mondal PK. Blue energy generation by the temperature-dependent properties in funnel-shaped soft nanochannels. Phys Chem Chem Phys 2022; 24:20303-20317. [PMID: 35979759 DOI: 10.1039/d2cp01015a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Salinity energy generation (SEG) studies have only been done under isothermal conditions at ambient temperature. The production of salinity energy can be improved under non-isothermal conditions, albeit preserving the energy efficiency. In the current study, the effects of gradients of temperature and concentration on the salinity energy generation process were examined simultaneously. Based on the temperature-dependent properties resulting from both temperature and concentration gradients, a numerical study was carried out to determine the maximum efficiency of salinity energy generation in funnel-shaped soft nanochannels. It was presumed that a dense layer of negative charge, called a polyelectrolyte layer (PEL), is coated on the walls of the nanochannels. Co-current and counter-current modes were used to obtain temperature and concentration gradients. Under steady-state conditions, the Poisson-Nernst-Planck, Stokes-Brinkman, and energy equations were numerically solved using equivalent approaches. The results revealed that by increasing the temperature and concentration ratios in both co-current and counter-current modes of operation, the salinity energy generation increased appreciably. The salinity energy generation increased from 30 to 80 pW upon increasing the temperature ratio from 1 to 8 at a constant concentration ratio of 1000 in counter-current mode. As verified from this analysis, low-grade heat sources (<100 °C) provide considerable energy conversion in PEL grafted nanofluidic confinement when placed between electrolyte solutions of different temperatures.
Collapse
Affiliation(s)
- Mohammad Karimzadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| | - Mahdi Khatibi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| | - Seyed Nezameddin Ashrafizadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| | - Pranab Kumar Mondal
- Microfluidics and Microscale Transport Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
24
|
Dartoomi H, Khatibi M, Ashrafizadeh SN. Nanofluidic Membranes to Address the Challenges of Salinity Gradient Energy Harvesting: Roles of Nanochannel Geometry and Bipolar Soft Layer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10313-10330. [PMID: 35952366 DOI: 10.1021/acs.langmuir.2c01790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Researchers are looking for new, clean, and accessible sources of energy due to rising global warming caused by the usage of fossil fuels and the irreversible harm that this does to the environment. Water salinity is one of the newest and most accessible renewable energy sources, which has sparked a lot of interest. Reverse electrodialysis (RED) has been utilized in the past to turn saline water into electricity. NRED, a reverse electrodialysis method utilizing nanofluidics, has gained popularity as nanoscale research advances. Developing and evaluating NRED systems is time-consuming and expensive due to the method's novelty; thus, modeling is required to identify the best locations for implementation and to comprehend its workings. In this work, we examined the influence of bipolar soft layer and nanochannel geometry on ion transfer and power production simultaneously. To achieve this, the two trumpet and cigarette geometries were coated with a bipolar soft layer so that both negative (type (I)) and positive (type (II)) charges could be positioned in the nanochannel's small aperture. After that, at steady state conditions, the Poisson-Nernst-Planck (PNP) and Navier-Stokes (NS) equations were solved concurrently. The findings revealed that altering the nanochannel coating from type (I) to type (II) alters the channel's selectivity from cations to anions. An approximately 22-fold improvement in energy conversion efficiency was achieved by raising the concentration ratio from 10 to 100 for the type (I) trumpet nanochannel. Type (I) cigarette geometry is advised for maximum power output at low and medium concentration ratios, whereas type (I) trumpet geometry is recommended for the maximum power production at high concentration ratios.
Collapse
Affiliation(s)
- Hossein Dartoomi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| | - Mahdi Khatibi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| | - Seyed Nezameddin Ashrafizadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| |
Collapse
|
25
|
Seifollahi Z, Ashrafizadeh SN. Ionic-size dependent electroosmotic flow in ion-selective biomimetic nanochannels. Colloids Surf B Biointerfaces 2022; 216:112545. [PMID: 35561637 DOI: 10.1016/j.colsurfb.2022.112545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/16/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
Electrokinetic phenomena, especially electroosmosis in ion-selective environments, play a key role in many systems, from ion-selective nanopores to cellular processes. In this paper, the impact of ionic size on the electroosmotic flow through an ion-selective soft slit nanochannel is analytically studied. Meanwhile, the modified Poisson-Boltzmann and the modified Navier-Stokes equations were used for modeling the electrostatics and the electrohydrodynamics of the problem, respectively, and the derived equations were solved by linearizing method. The results reveal the importance of considering the effect of ionic size in the calculation, as the steric effects, especially at high charge densities of polyelectrolytes (PELs), dramatically alter both the ions arrangement and the electric potential; and amplify the electroosmotic flow. Considering Debye-Huckel parameters of 4 and 10 for the electrolyte layer and the PEL, respectively, we demonstrate that the dimensionless electroosmotic velocity in a soft nanochannel having a dimensionless soft layer thickness of 0.2, from 3.2 by ignoring the steric effect, can reach the value of 6 by considering the steric effect of ν=0.3.
Collapse
Affiliation(s)
- Zahra Seifollahi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| | - Seyed Nezameddin Ashrafizadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran.
| |
Collapse
|
26
|
A simulation study of an electro-membrane extraction for enhancement of the ion transport via tailoring the electrostatic properties. Sci Rep 2022; 12:12170. [PMID: 35842540 PMCID: PMC9288467 DOI: 10.1038/s41598-022-16482-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/11/2022] [Indexed: 01/09/2023] Open
Abstract
Membrane technology with advantages such as reduced energy consumption due to no phase change, low volume and high mass transfer, high separation efficiency for solution solutions, straightforward design of membranes, and ease of use on industrial scales are different from other separation methods. There are various methods such as liquid-liquid extraction, adsorption, precipitation, and membrane processes to separate contaminants from an aqueous solution. The liquid membrane technique provides a practical and straightforward separation method for metal ions as an advanced solvent extraction technique. Stabilized liquid membranes require less solvent consumption, lower cost, and more effortless mass transfer due to their thinner thickness than other liquid membrane techniques. The influence of the electrostatic properties, derived from the electrical field, on the ionic transport rate and extraction recovery, in flat sheet supported liquid membrane (FSLM) and electro flat sheet supported liquid membrane (EFSLM) were numerically investigated. Both FSLM and EFSLM modes of operation, in terms of implementing electrostatic, were considered. Through adopting a numerical approach, Poisson-Nernst-Planck, and Navier-Stokes equations were solved at unsteady-state conditions by considering different values of permittivity, diffusivity, and viscosity for the presence of electrical force and stirrer, respectively. The most important result of this study is that under similar conditions, by increasing the applied voltage, the extraction recovery increased. For instance, at EFSLM mode, by increasing the applied voltage from [Formula: see text] to [Formula: see text], the extraction recovery increased from [Formula: see text] to [Formula: see text]. Furthermore, it was also observed that the presence of nanoparticles has significant effects on the performance of the SLM system.
Collapse
|
27
|
A simulation study of an applied approach to enhance drug recovery through electromembrane extraction. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
28
|
Alinezhad A, Khatibi M, Nezameddin Ashrafizadeh S. Impact of asymmetry soft layers and ion partitioning on ionic current rectification in bipolar nanochannels. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Liu Z, Liu X, Wang Y, Yang D, Li C. Ion current rectification in asymmetric charged bilayer nanochannels. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139706] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|