1
|
Abrishami S, Xiao H, Asadnia M, Low ZX, Razmjou A. Recent advances in the design principles of lithium selective membranes. WATER RESEARCH 2025; 283:123724. [PMID: 40373372 DOI: 10.1016/j.watres.2025.123724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/14/2025] [Accepted: 04/25/2025] [Indexed: 05/17/2025]
Abstract
The growing demand for lithium in energy storage applications has intensified the need for efficient lithium extraction technologies, with membrane processes emerging as a promising approach. Among various membrane technologies, nanostructured membranes with precisely engineered channels have shown exceptional potential for selective lithium extraction due to their ability to control ion transport at the molecular level. This review provides a comprehensive analysis of the fundamental design principles governing lithium-selective membranes, with a specific focus on nanochannel-based systems. We examine the critical parameters that influence lithium selectivity, including surface charge distribution, nanochannel dimensions, morphology, and wettability, while exploring how these factors interact with external driving forces to enable selective ion transport. This work extensively analyzes recent developments in nanochannel engineering and ion transport mechanisms, providing crucial insights into optimizing membrane selectivity and performance. By critically analyzing current challenges in scaling up these technologies and identifying promising research directions, this work provides a roadmap for developing next-generation lithium-selective membranes with enhanced efficiency and selectivity.
Collapse
Affiliation(s)
- Shayan Abrishami
- School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Huan Xiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing, China
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Ze-Xian Low
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing, China
| | - Amir Razmjou
- School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
2
|
Tang L, Hao Y, Peng L, Liu R, Zhou Y, Li J. Ion current rectification properties of non-Newtonian fluids in conical nanochannels. Phys Chem Chem Phys 2024; 26:2895-2906. [PMID: 38170851 DOI: 10.1039/d3cp05184f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Ionic current rectification generated by the geometric asymmetry of conical nanochannels has gradually attracted attention, but most studies have been limited to Newtonian fluids. In this study, the ionic current rectification characteristics in conical nanochannels filled with non-Newtonian fluids are investigated by numerical simulations. Electroosmotic flow and ion transport in Sisko fluids are solved using the Poisson-Nernst-Planck equations and the Navier-Stokes equations. The effects of the Debye parameter, power-law indexes and applied voltage on the ionic current, axial potential, ion concentration, radial velocity and rectification ratio in the nanopores are investigated. When κRt = 1, the current rectification ratio increases with the increase of the power-law index. However, when κRt = 6, the current rectification ratio first increases and then decreases with the increase of the power law index, reaching the maximum value at n = 1.0. These findings have positive implications for the construction of some nanodevices such as nanofluidic diodes.
Collapse
Affiliation(s)
- Lei Tang
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan, 430063, China.
| | - Yu Hao
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan, 430063, China.
| | - Li Peng
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan, 430063, China.
| | - Runxin Liu
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan, 430063, China.
| | - Yi Zhou
- College of General Aviation and Flight, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Jie Li
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan, 430063, China.
| |
Collapse
|
3
|
Liu T, He X, Zhao J, Shi L, Zhou T, Wen L. Ion transport properties in the pH-dependent bipolar nanochannels. Electrophoresis 2023; 44:1847-1858. [PMID: 37401641 DOI: 10.1002/elps.202300073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/05/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023]
Abstract
In recent years, researchers have made significant strides in understanding the ion transport characteristics of nanochannels, resulting in the development of various materials, modifications, and shapes of nano ion channel membranes. The aim is to create a nanochannel membrane with optimal ion transport properties and high stability by adjusting factors, such as channel size, surface charge, and wettability. However, during the nanochannel film fabrication process, controlling the geometric structures of nanochannels can be challenging. Therefore, exploring the stability of nanochannel performance under different geometric structures has become an essential aspect of nanochannel design. This article focuses on the study of cylindrical nanochannel structures, which are categorized based on the different methods for generating bipolar surface charges on the channel's inner surface, either through pH gradient effects or different material types. Through these two approaches, the study designed and analyzed the stability of ion transport characteristics in two nanochannel models under varying geometric structures. Our findings indicate that nanochannels with bipolar properties generated through pH gradients demonstrate more stable ion selection, whereas nanochannels with bipolar properties generated through different materials show stronger stability in ion rectification. This conclusion provides a theoretical foundation for future nanochannel designs.
Collapse
Affiliation(s)
- Tao Liu
- Mechanical and Electrical Engineering College, Hainan University, Haikou, Hainan, P. R. China
| | - Xiaohan He
- Mechanical and Electrical Engineering College, Hainan University, Haikou, Hainan, P. R. China
| | - Juncheng Zhao
- Mechanical and Electrical Engineering College, Hainan University, Haikou, Hainan, P. R. China
| | - Liuyong Shi
- Mechanical and Electrical Engineering College, Hainan University, Haikou, Hainan, P. R. China
| | - Teng Zhou
- Mechanical and Electrical Engineering College, Hainan University, Haikou, Hainan, P. R. China
| | - Liping Wen
- Mechanical and Electrical Engineering College, Hainan University, Haikou, Hainan, P. R. China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
4
|
Qiao N, Li Z, Zhang Z, Guo H, Liao J, Lu W, Li C. Effect of membrane thermal conductivity on ion current rectification in conical nanochannels under asymmetric temperature. Anal Chim Acta 2023; 1278:341724. [PMID: 37709465 DOI: 10.1016/j.aca.2023.341724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Nowadays, there have been extensively theoretical studies on the phenomenon of ion current rectification (ICR) induced by the asymmetric electrical double layer (EDL). As a key factor influencing the behavior of ion transport, temperature is given high priority by researchers. The thermal conductivity of the material commonly employed to prepare nanopores is 2-3 times higher than that of liquid solutions, which may affect ion transport within the nanochannel. However, it is often neglected in previous studies. Thus, we investigate the effect of membrane thermal conductivity on the ICR in conical nanochannels under asymmetric temperature. Based on the PNP-NS theoretical model, the ion current, the rectification ratio, as well as the temperature and ion concentration distributions along the nanochannel are calculated. It is found that the thermal conductivity of the solid membrane noticeably affects the temperature distribution across the nanochannel, altering the ion transport behavior. Larger membrane thermal conductivity tends to homogenize the temperature distribution in the nanochannel, leading to a decline of ionic thermal down-diffusion by a positive temperature difference and ionic thermal up-diffusion by a negative temperature difference, with the former promoting and the latter inhibiting ion current. As a result, the rectification ratio decreases under the positive temperature difference and increases under the negative temperature difference as the thermal conductivity of the membrane increases. These studies will be instructive for the design of nanofluidic diodes and biosensors.
Collapse
Affiliation(s)
- Nan Qiao
- School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
| | - Zhenquan Li
- School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
| | - Zhe Zhang
- School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
| | - Hengyi Guo
- School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
| | - Jiaqiang Liao
- School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
| | - Wei Lu
- School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
| | - Changzheng Li
- School of Mechanical Engineering, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi, 530004, China.
| |
Collapse
|
5
|
Khatibi M, Dartoomi H, Ashrafizadeh SN. Layer-by-Layer Nanofluidic Membranes for Promoting Blue Energy Conversion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13717-13734. [PMID: 37702658 DOI: 10.1021/acs.langmuir.3c01962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Access to and use of energy resources are now crucial components of modern human existence thanks to the exponential growth of technology. Traditional energy sources provide significant challenges, such as pollution, scarcity, and excessive prices. As a result, there is more need than ever before to replace depleting resources with brand-new, reliable, and environmentally friendly ones. With the aid of reverse electrodialysis, the salinity gradient between rivers and seawater as a clean supply with easy and infinite availability is a viable choice for energy generation. The development of nanofluidic-based reverse electrodialysis (NRED) as a novel high-efficiency technology is attributable to the progress of nanoscience. However, understanding the predominant mechanisms of this process at the nanoscale is necessary to develop and disseminate this technology. One viable option to gain insight into these systems while saving expenses is to employ simulation tools. In this study, we looked at how a layer-by-layer (LBL) soft layer influences ion transport and energy production in charged nanochannels. We solved the steady-state Poisson-Nernst-Planck (PNP) and Navier-Stokes (NS) equations for three different types of nanochannels with a trumpet geometry, where the narrow part is covered with a built-up LbL soft layer and the rest is a hard wall with a surface charge density of σ = -10, 0, or +10 mC/m2. The findings show that in type (I) nanochannels, at NPEL/NA = 100 mol/m3 and pH = 7, the maximum power output rises 675-fold as the concentration ratio rises from 10 to 1000. The results of this study can aid in a better understanding of energy harvesting processes using nanofluidic-based reverse electrodialysis in order to identify optimal conditions for the design of an intelligent route with great controllability and minimal pollution.
Collapse
Affiliation(s)
- Mahdi Khatibi
- Research Laboratory for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| | - Hossein Dartoomi
- Research Laboratory for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| | - Seyed Nezameddin Ashrafizadeh
- Research Laboratory for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| |
Collapse
|
6
|
Wu C, Sun J, Almuaalemi HYM, Sohan ASMMF, Yin B. Structural Optimization Design of Microfluidic Chips Based on Fast Sequence Pair Algorithm. MICROMACHINES 2023; 14:1577. [PMID: 37630113 PMCID: PMC10456452 DOI: 10.3390/mi14081577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
The market for microfluidic chips is experiencing significant growth; however, their development is hindered by a complex design process and low efficiency. Enhancing microfluidic chips' design quality and efficiency has emerged as an integral approach to foster their advancement. Currently, the existing structural design schemes lack careful consideration regarding the impact of chip area, microchannel length, and the number of intersections on chip design. This inadequacy leads to redundant chip structures resulting from the separation of layout and wiring design. This study proposes a structural optimization method for microfluidic chips to address these issues utilizing a simulated annealing algorithm. The simulated annealing algorithm generates an initial solution in advance using the fast sequence pair algorithm. Subsequently, an improved simulated annealing algorithm is employed to obtain the optimal solution for the device layout. During the wiring stage, an advanced wiring method is used to designate the high wiring area, thereby increasing the success rate of microfluidic chip wiring. Furthermore, the connection between layout and routing is reinforced through an improved layout adjustment method, which reduces the length of microchannels and the number of intersections. Finally, the effectiveness of the structural optimization approach is validated through six sets of test cases, successfully achieving the objective of enhancing the design quality of microfluidic chips.
Collapse
Affiliation(s)
- Chuang Wu
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; (J.S.); (H.Y.M.A.)
- Nantong Fuleda Vehicle Accessory Component Co., Ltd., Nantong 226300, China
- Jiangsu Tongshun Power Technology Co., Ltd., Nantong 226300, China
| | - Jiju Sun
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; (J.S.); (H.Y.M.A.)
| | | | - A. S. M. Muhtasim Fuad Sohan
- Faculty of Engineering, Department of Mechanical Engineering, University of Adelaide, Adelaide, SA 5000, Australia;
| | - Binfeng Yin
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; (J.S.); (H.Y.M.A.)
| |
Collapse
|
7
|
Kim J, Wang C, Park J. Multi-Layered Bipolar Ionic Diode Working in Broad Range Ion Concentration. MICROMACHINES 2023; 14:1311. [PMID: 37512622 PMCID: PMC10384376 DOI: 10.3390/mi14071311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/18/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023]
Abstract
Ion current rectification (ICR) is the ratio of ion current by forward bias to backward bias and is a critical indicator of diode performance. In previous studies, there have been many attempts to improve the performance of this ICR, but there is the intrinsic problem for geometric changes that induce ionic rectification due to fabrication problems. Additionally, the high ICR could be achieved in the narrow salt concentration range only. Here, we propose a multi-layered bipolar ionic diode based on an asymmetric nanochannel network membrane (NCNM), which is realized by soft lithography and self-assembly of homogenous-sized nanoparticles. Owing to the freely changeable geometry based on soft lithography, the ICR performance can be explored according to the variation of microchannel shape. The presented diode with multi-layered configuration shows strong ICR performance, and in a broad range of salt concentrations (0.1 mM~100 mM), steady ICR performance. It is interesting to note that when each anion-selective (AS) and cation-selective (CS) NCNM volume was similar to each optimized volume in a single-layered device, the maximum ICR was obtained. Multi-physics simulation, which reveals greater ionic concentration at the bipolar diode junction under forward bias and less depletion under backward in comparison to the single-layer scenario, supports this tendency as well. Additionally, under different frequencies and salt concentrations, a large-area hysteresis loop emerges, which indicates fascinating potential for electroosmotic pumps, memristors, biosensors, etc.
Collapse
Affiliation(s)
- Jaehyun Kim
- Department of Mechanical Engineering, Sogang University, Sinsu-dong, Mapo-gu, Seoul 121-742, Republic of Korea
| | - Cong Wang
- School of Mechanical Engineering and Electronic Information, China University of Geosciences (Wuhan), 388, Lumo Road, Wuhan 430074, China
| | - Jungyul Park
- Department of Mechanical Engineering, Sogang University, Sinsu-dong, Mapo-gu, Seoul 121-742, Republic of Korea
| |
Collapse
|
8
|
Dartoomi H, Khatibi M, Ashrafizadeh SN. Enhanced Ionic Current Rectification through Innovative Integration of Polyelectrolyte Bilayers and Charged-Wall Smart Nanochannels. Anal Chem 2023; 95:1522-1531. [PMID: 36537870 DOI: 10.1021/acs.analchem.2c04559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The tools utilized by humans continue to shrink and speed up. Lab-on-a-chip (LOC) is one of the most recent techniques for decreasing the size of chemical systems. Today, LOCs have made substantial strides in developing nanomaterial fabrication techniques. Controlling and regulating the fluid and ion mobility in these systems is crucial. Layer-by-layer (LBL) soft layers are one of the most effective strategies for controlling fluid flow in channels. In light of the present constraints for developing these systems and the high expense of experimental investigations, it is vital to employ modeling to minimize costs and comprehend their underlying ideas and operations. In this study, we examined the influence of the LBL soft layer's presence in the charged nanochannels on the ion transport parameters. To examine the effect of the coating length of the LBL soft layer, we first examined three lengths of coating: one with a length greater than half (type (I)), one with a length equal to half (type (II)), and one with a length less than half (type (III)) of the nanochannel length. Then, by solving Poisson-Nernst-Planck and Navier-Stokes equations, we determined the influences of pH, soft layer charge density (NPEL/NA), bulk concentration (C0), and hard surface charge density (σ) on the ionic current rectification (Rf) and selectivity (S) of the nanochannel. The maximum rectification of 30.65 was achieved using a nanochannel of type (III) and σ = +10 mC/m2. The current results demonstrate a promising hybrid architecture consisting of an LBL soft layer and a smart charged nanochannel for enhanced rectification.
Collapse
Affiliation(s)
- Hossein Dartoomi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran16846-13114, Iran
| | - Mahdi Khatibi
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran16846-13114, Iran
| | - Seyed Nezameddin Ashrafizadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran16846-13114, Iran
| |
Collapse
|
9
|
Mareev S, Gorobchenko A, Ivanov D, Anokhin D, Nikonenko V. Ion and Water Transport in Ion-Exchange Membranes for Power Generation Systems: Guidelines for Modeling. Int J Mol Sci 2022; 24:34. [PMID: 36613476 PMCID: PMC9820504 DOI: 10.3390/ijms24010034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Artificial ion-exchange and other charged membranes, such as biomembranes, are self-organizing nanomaterials built from macromolecules. The interactions of fragments of macromolecules results in phase separation and the formation of ion-conducting channels. The properties conditioned by the structure of charged membranes determine their application in separation processes (water treatment, electrolyte concentration, food industry and others), energy (reverse electrodialysis, fuel cells and others), and chlore-alkali production and others. The purpose of this review is to provide guidelines for modeling the transport of ions and water in charged membranes, as well as to describe the latest advances in this field with a focus on power generation systems. We briefly describe the main structural elements of charged membranes which determine their ion and water transport characteristics. The main governing equations and the most commonly used theories and assumptions are presented and analyzed. The known models are classified and then described based on the information about the equations and the assumptions they are based on. Most attention is paid to the models which have the greatest impact and are most frequently used in the literature. Among them, we focus on recent models developed for proton-exchange membranes used in fuel cells and for membranes applied in reverse electrodialysis.
Collapse
Affiliation(s)
- Semyon Mareev
- Membrane Institute, Kuban State University, 350040 Krasnodar, Russia
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Andrey Gorobchenko
- Membrane Institute, Kuban State University, 350040 Krasnodar, Russia
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Dimitri Ivanov
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
- Institut de Sciences des Matériaux de Mulhouse-IS2M, CNRS UMR 7361, Jean Starcky, 15, F-68057 Mulhouse, France
- Center for Genetics and Life Science, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
| | - Denis Anokhin
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Institute of Chemical Physics Problems of RAS, Acad. Semenov Av., 1, 142432 Chernogolovka, Russia
| | - Victor Nikonenko
- Membrane Institute, Kuban State University, 350040 Krasnodar, Russia
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
10
|
Dartoomi H, Khatibi M, Ashrafizadeh SN. Importance of nanochannels shape on blue energy generation in soft nanochannels. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Lo HY, Tsou TY, Hsu JP. Ion transport in a non-isothermal electrokinetic energy conversion system. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Alinezhad A, Alinezhad A. Influence of location junction on ion transfer behavior in conical nanopores with bipolar polyelectrolyte brushes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Li C, Liu Z, Qiao N, Feng Z, Tian ZQ. The electroviscous effect in nanochannels with overlapping electric double layers considering the height size effect on surface charge. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|