1
|
Sun S, Hu K, Liu D, Wu H, Zhu Y, Chen J. Carbon-Coated Coaxial Cable-like ZnO@SiO 2@C for High-Performance Lithium-Ion Battery Anode Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26239-26248. [PMID: 39602493 DOI: 10.1021/acs.langmuir.4c03751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The practical applications of SiO2 anode material are limited by large volume changes and poor electronic conductivity. To reduce the effects of these problems, a carbon-coated coaxial cable-like ZnO@SiO2@C composite material was prepared. ZnO has a certian electronic conductivity and an electrochemical activity, and the carbon layer can alleviate the volume variation of SiO2, effectively improving the electronic conductivity and structural stability. At the same time, the carbon layer acts as a barrier to prevent direct contact between SiO2 and the electrolyte, thus promoting the formation of stable solid electrolyte interface films. Carbon-coated coaxial cable-like ZnO@SiO2@C exhibits excellent electrochemical properties, with a discharge specific capacity of 480.3 mAh g-1 after 500 cycles at a current density of 1 A g-1. The carbon-coated coaxial cable-like structure presents a potential application for alloying anode materials.
Collapse
Affiliation(s)
- Songyuan Sun
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Kaihan Hu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Dongmei Liu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Huigui Wu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Yuju Zhu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Jingbo Chen
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Collaborative Innovation Center of Guizhou Province for Efficient Utilization of Phosphorus and Fluorine Resources, Guizhou University, Guiyang 550025, Guizhou, China
| |
Collapse
|
2
|
Jiang Y, Zhao F, Wu X, Zeng L, Yang L, Guan L, Ren Y, Zhou X, Liu Z. Elucidation on Abnormal Capacity Increase in SiO 2@C Core-Shell Nanospheres Anode for Lithium-Ion Battery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39262310 DOI: 10.1021/acs.langmuir.4c02668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
An abnormal capacity increase stage has been observed in nanostructured SiO2 after the initial capacity drop stage. To investigate the Li+ storage kinetic mechanism for each stage, SiO2@C core-shell nanospheres with a total diameter of ∼108 to 170 nm but an adjustable C shell thickness of ∼4 to 31 nm have been fabricated. First, the existence form and specific content of SiO2 nanoparticles with a size of ∼6-10 nm, which are embedded in the outer C shell of SiO2@C core-shell nanospheres, were confirmed by SEM, TEM, BET, and TGA, respectively. It was found that the initial stage for capacity drop happens at 15-43 cycles and is followed by an enhancement stage, which presents an increase of ∼120 to 180% in capacity relative to the lowest capacity value during cycling. Among them, the sample of P-1 with a diameter of 109 nm for the SiO2 core and thickness of 31 nm for the C shell delivers the highest specific capacity of 1060 mAh/g at 100 mA/g and a capacity increase rate of ∼180% through 300 cycles. XPS analysis for the delithiation process indicates that the capacity drop and increase stage involves the partial oxidation of Li silicate, which is correlated to the formation of Li2Si2O5. Our study can be used to explain the mechanism of the abnormal capacity increase phenomenon for the SiO2 anode and provide a high-capacity anode material for LIB application.
Collapse
Affiliation(s)
- Yuhan Jiang
- Department of Physics, School of Physics and Astronomy, Yunnan University, Kunming 650504, China
| | - Fang Zhao
- Department of Physics, School of Physics and Astronomy, Yunnan University, Kunming 650504, China
| | - Xiang Wu
- Department of Physics, School of Physics and Astronomy, Yunnan University, Kunming 650504, China
| | - Lingmu Zeng
- Department of Physics, School of Physics and Astronomy, Yunnan University, Kunming 650504, China
| | - Luwei Yang
- Department of Physics, School of Physics and Astronomy, Yunnan University, Kunming 650504, China
| | - Linlin Guan
- Department of Physics, School of Physics and Astronomy, Yunnan University, Kunming 650504, China
| | - Yang Ren
- Department of Physics, School of Physics and Astronomy, Yunnan University, Kunming 650504, China
| | - Xiaowei Zhou
- Department of Physics, School of Physics and Astronomy, Yunnan University, Kunming 650504, China
| | - Zhu Liu
- Department of Physics, School of Physics and Astronomy, Yunnan University, Kunming 650504, China
| |
Collapse
|
3
|
Jiao W, Cheng W, Fei Y, Zhang X, Liu Y, Ding B. TiO 2/SiO 2 spiral crimped Janus fibers engineered for stretchable ceramic membranes with high-temperature resistance. NANOSCALE 2024; 16:12248-12257. [PMID: 38847572 DOI: 10.1039/d4nr01069h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The tensile brittleness of ceramic nanofibrous materials makes them unable to withstand the relatively large fracture strain, greatly limiting their applications in extreme environments such as high or ultra-low temperatures. Herein, highly stretchable and elastic ceramic nanofibrous membranes composed of titanium dioxide/silicon dioxide (TiO2/SiO2) bicomponent spiral crimped Janus fibers were designed and synthesized via conjugate electrospinning combined with calcination treatment. Owing to the opposite charges attached, the two fibers assembled side by side to form a Janus structure. Interestingly, radial shrinkage differences existed on the two sides of the TiO2/SiO2 composite nanofibers, constructing a helical crimp structure along the fiber axis. The special configuration effectively improves the stretchability of TiO2/SiO2 ceramic nanofibrous membranes, with up to 70.59% elongation at break, excellent resilience at 20% tensile strain and plastic deformation of only 3.48% after 100 cycles. Additionally, the relatively fluffy ceramic membranes constructed from spiral crimped Janus fibers delivered a lower thermal conductivity of 0.0317 W m-1 K-1, attributed to the increased internal still air content. This work not only reveals the attractive tensile mechanism of ceramic membranes arising from the highly curly nanofibers, but also proposes an effective strategy to make the ceramic materials withstand the complex dynamic strain in extreme temperature environments (from -196 °C to 1300 °C).
Collapse
Affiliation(s)
- Wenling Jiao
- Shanghai Frontiers Science Research Center of Advanced Textiles, Engineering Research Center of Technical Textiles (Ministry of Education), Key Laboratory of Textile Science & Technology (Ministry of Education), College of Textiles, Donghua University, Shanghai 201620, China.
| | - Wei Cheng
- Shanghai Frontiers Science Research Center of Advanced Textiles, Engineering Research Center of Technical Textiles (Ministry of Education), Key Laboratory of Textile Science & Technology (Ministry of Education), College of Textiles, Donghua University, Shanghai 201620, China.
| | - Yifan Fei
- Shanghai Frontiers Science Research Center of Advanced Textiles, Engineering Research Center of Technical Textiles (Ministry of Education), Key Laboratory of Textile Science & Technology (Ministry of Education), College of Textiles, Donghua University, Shanghai 201620, China.
| | - Xiaohua Zhang
- Shanghai Frontiers Science Research Center of Advanced Textiles, Engineering Research Center of Technical Textiles (Ministry of Education), Key Laboratory of Textile Science & Technology (Ministry of Education), College of Textiles, Donghua University, Shanghai 201620, China.
| | - Yitao Liu
- Shanghai Frontiers Science Research Center of Advanced Textiles, Engineering Research Center of Technical Textiles (Ministry of Education), Key Laboratory of Textile Science & Technology (Ministry of Education), College of Textiles, Donghua University, Shanghai 201620, China.
| | - Bin Ding
- Shanghai Frontiers Science Research Center of Advanced Textiles, Engineering Research Center of Technical Textiles (Ministry of Education), Key Laboratory of Textile Science & Technology (Ministry of Education), College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
4
|
Guo D, Xu Y, Xu J, Guo K, Wu N, Cao A, Liu G, Liu X. Synergistic Engineering of CoO/MnO Heterostructures Integrated with Nitrogen-Doped Carbon Nanofibers for Lithium-Ion Batteries. Molecules 2024; 29:2228. [PMID: 38792090 PMCID: PMC11123785 DOI: 10.3390/molecules29102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The integration of heterostructures within electrode materials is pivotal for enhancing electron and Li-ion diffusion kinetics. In this study, we synthesized CoO/MnO heterostructures to enhance the electrochemical performance of MnO using a straightforward electrostatic spinning technique followed by a meticulously controlled carbonization process, which results in embedding heterostructured CoO/MnO nanoparticles within porous nitrogen-doped carbon nanofibers (CoO/MnO/NC). As confirmed by density functional theory calculations and experimental results, CoO/MnO heterostructures play a significant role in promoting Li+ ion and charge transfer, improving electronic conductivity, and reducing the adsorption energy. The accelerated electron and Li-ion diffusion kinetics, coupled with the porous nitrogen-doped carbon nanofiber structure, contribute to the exceptional electrochemical performance of the CoO/MnO/NC electrode. Specifically, the as-prepared CoO/MnO/NC exhibits a high reversible specific capacity of 936 mA h g-1 at 0.1 A g-1 after 200 cycles and an excellent high-rate capacity of 560 mA h g-1 at 5 A g-1, positioning it as a competitive anode material for lithium-ion batteries. This study underscores the critical role of electronic and Li-ion regulation facilitated by heterostructures, offering a promising pathway for designing transition metal oxide-based anode materials with high performances for lithium-ion batteries.
Collapse
Affiliation(s)
- Donglei Guo
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (D.G.); (Y.X.); (K.G.); (N.W.)
| | - Yaya Xu
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (D.G.); (Y.X.); (K.G.); (N.W.)
| | - Jiaqi Xu
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (D.G.); (Y.X.); (K.G.); (N.W.)
| | - Kailong Guo
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (D.G.); (Y.X.); (K.G.); (N.W.)
| | - Naiteng Wu
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (D.G.); (Y.X.); (K.G.); (N.W.)
| | - Ang Cao
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark;
| | - Guilong Liu
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (D.G.); (Y.X.); (K.G.); (N.W.)
| | - Xianming Liu
- Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (D.G.); (Y.X.); (K.G.); (N.W.)
| |
Collapse
|
5
|
Wang S, Cai Z, Cao R, Ma Z, Wu Q, Moin M, Ahsan Z, Ma Y, Song G, Yang W, Wen C. Facile synthesis of multi-phase (Si+SiO 2)@C anode materials for lithium-ion batteries. Dalton Trans 2024; 53:4119-4126. [PMID: 38315146 DOI: 10.1039/d3dt04075e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
To bring about a revolution in energy storage through Li-ion batteries, it is crucial to develop a scalable preparation method for Si-based composite anodes. However, the severe volume expansion and poor ionic transport properties of Si-based composites present significant challenges. Previous research focused on SiO and nano Si/C composites to address these issues. In this study, mechanical milling was used to introduce a SiOx layer onto the surface of Si by mixing Si and SiO2 in a 1 : 1 mass ratio. The resulting Si+SiO2 composites (denoted as SS50) exhibited an initial coulombic efficiency (ICE) of 73.5% and high rate performance. To further stabilize the overall structure, kerosene was introduced as a carbon source precursor to generate a coating layer. The resulting multiphase composite structure (SiOx+SiO2+C), designated as SS50-900C, demonstrated a capacity retention of 79.5% over 280 cycles at its capacity of 487 mA h g-1. These results suggest that a cost-effective mechanical ball milling refinement of Si+SiO2 and a gas-phase encapsulation process can significantly improve the electrochemical performance of Si-based composites.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243000, China.
| | - Zhenfei Cai
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243000, China.
| | - Rui Cao
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243000, China.
| | - Ziyang Ma
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243000, China.
| | - Qinyu Wu
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243000, China.
| | - Muhmmad Moin
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243000, China.
| | - Zishan Ahsan
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243000, China.
| | - Yangzhou Ma
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243000, China.
| | - Guangsheng Song
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243000, China.
| | - Weidong Yang
- Future Manufacturing Flagship, Commonwealth Scientific and Industry Research Organization, Melbourne, Victoria 3168, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
6
|
Electrospun porous carbon nanofibers derived from bio-based phenolic resins as free-standing electrodes for high-performance supercapacitors. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2260-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
7
|
Han D, Yang X, Li K, Sun L, Hou T, Zhang L, Sun Y, Zhai L, Mi L. Distributed Li-Ion Flux Enabled by Sulfonated Covalent Organic Frameworks for High-Performance Lithium Metal Anodes. Macromol Rapid Commun 2022; 44:e2200803. [PMID: 36519731 DOI: 10.1002/marc.202200803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/14/2022] [Indexed: 12/23/2022]
Abstract
Metallic Li is considered the most promising anode material for high-energy-density batteries owing to its high theoretical capacity and low electrochemical potential. However, inhomogeneous lithium deposition and uncontrollable growth of lithium dendrites result in low lithium utilization, rapid capacity fading, and poor cycling performance. Herein, two sulfonated covalent organic frameworks (COFs) with different sulfonated group contents are synthesized as the multifunctional interlayers in lithium metal batteries. The sulfonic acid groups in the pore channels can serve as Li-anchoring sites that effectively coordinate Li ions. These periodically arranged subunits significantly guide uniform Li-ion flux distribution, guarantee smooth Li deposition, and reduce lithium dendrite formation. Consequently, these characteristics afford an excellent quasi-solid-state electrolyte with a high ionic conductivity of 1.9 × 10-3 S cm-1 at room temperature and a superior Li++ transference number of 0.91. A Li/LiFePO4 battery with the COF-based electrolyte exhibited dendrite-free Li deposition during the charge process, accompanied by no capacity decay after 100 cycles at 0.1 C.
Collapse
Affiliation(s)
- Diandian Han
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Xiubei Yang
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Kuokuo Li
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Linhai Sun
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Tian Hou
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Lin Zhang
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Yanyun Sun
- School of Automobile and Traffic Engineering, Jiangsu University of Technology, Changzhou, Jiangsu Province, 213001, P. R. China
| | - Lipeng Zhai
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Liwei Mi
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Henan, 450007, P. R. China
| |
Collapse
|
8
|
Duan Y, Li C, Ye Z, Li H, Yang Y, Sui D, Lu Y. Advances of Carbon Materials for Dual-Carbon Lithium-Ion Capacitors: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3954. [PMID: 36432240 PMCID: PMC9698505 DOI: 10.3390/nano12223954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Lithium-ion capacitors (LICs) have drawn increasing attention, due to their appealing potential for bridging the performance gap between lithium-ion batteries and supercapacitors. Especially, dual-carbon lithium-ion capacitors (DC-LICs) are even more attractive because of the low cost, high conductivity, and tunable nanostructure/surface chemistry/composition, as well as excellent chemical/electrochemical stability of carbon materials. Based on the well-matched capacity and rate between the cathode and anode, DC-LICs show superior electrochemical performances over traditional LICs and are considered to be one of the most promising alternatives to the current energy storage devices. In particular, the mismatch between the cathode and anode could be further suppressed by applying carbon nanomaterials. Although great progresses of DC-LICs have been achieved, a comprehensive review about the advances of electrode materials is still absent. Herein, in this review, the progresses of traditional and nanosized carbons as cathode/anode materials for DC-LICs are systematically summarized, with an emphasis on their synthesis, structure, morphology, and electrochemical performances. Furthermore, an outlook is tentatively presented, aiming to develop advanced DC-LICs for commercial applications.
Collapse
Affiliation(s)
- Ying Duan
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Changle Li
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Zhantong Ye
- School of Chemistry & Material Science, Langfang Normal University, Langfang 065000, China
| | - Hongpeng Li
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - Yanliang Yang
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Dong Sui
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Yanhong Lu
- School of Chemistry & Material Science, Langfang Normal University, Langfang 065000, China
| |
Collapse
|
9
|
Guo D, Yang M, Xu S, Zhu S, Liu G, Wu N, Cao A, Mi H, Liu X. Ni activated Mo 2C by regulating the interfacial electronic structure for highly efficient lithium-ion storage. NANOSCALE 2022; 14:14575-14584. [PMID: 36149683 DOI: 10.1039/d2nr03832c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Regulating the electronic structure plays a positive role in improving the ion/electron kinetics of electrode materials for lithium ion batteries (LIBs). Herein, an effective approach is demonstrated to achieve Ni/Mo2C hybrid nanoparticles embedded in porous nitrogen-doped carbon nanofibers (Ni/Mo2C/NC). Density functional theory calculations indicate that Ni can activate the interface of Ni/Mo2C by regulating the electronic structure, and accordingly improve the electron/Li-ion diffusion kinetics. The charge at the interface transfers from Ni atoms to Mo atoms on the surface of Mo2C, illustrating the formation of an interfacial electric field in Ni/Mo2C. The formed interfacial electric field in Ni/Mo2C can improve the intrinsic electronic conductivity, and reduce the Li adsorption energy and the Li+ diffusion barrier. Thus, the obtained Ni/Mo2C/NC shows an excellent high-rate capability of 344.1 mA h g-1 at 10 A g-1, and also displays a superior cyclic performance (remaining at 412.7 mA h g-1 after 1800 cycles at 2 A g-1). This work demonstrates the important role of electronic structure regulation by assembling hybrid materials and provides new guidance for future work on designing novel electrode materials for LIBs.
Collapse
Affiliation(s)
- Donglei Guo
- Key Laboratory of Function-oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China.
| | - Mengke Yang
- Key Laboratory of Function-oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China.
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830046, P. R. China.
| | - Shu Xu
- Key Laboratory of Function-oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China.
| | - Shuping Zhu
- Key Laboratory of Function-oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China.
| | - Guilong Liu
- Key Laboratory of Function-oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China.
| | - Naiteng Wu
- Key Laboratory of Function-oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China.
| | - Ang Cao
- Department of Physics, Technical University of Denmark, Lyngby 2800, Denmark
| | - Hongyu Mi
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830046, P. R. China.
| | - Xianming Liu
- Key Laboratory of Function-oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, P. R. China.
| |
Collapse
|