1
|
Miao K, Jiang W, Chen Z, Luo Y, Xiang D, Wang C, Kang X. Hollow-Structured and Polyhedron-Shaped High Entropy Oxide toward Highly Active and Robust Oxygen Evolution Reaction in a Full pH Range. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308490. [PMID: 38049153 DOI: 10.1002/adma.202308490] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/20/2023] [Indexed: 12/06/2023]
Abstract
High entropy metal oxides (HEO) are superior to many reactions involving multi-step elementary reactions. However, controlled synthesis of hollow-structured HEO catalysts, which offers large surface area and fast mass transfer kinetics, remains challenging and unexplored due to the complicated metal precursors. Herein, a metal organic framework-templated synthesis of hollow-structured and polyhedron-shaped HEO catalysts assembled with ultra-small nanoparticles, with up to ten metal elements, can be achieved, by taking advantage of the ion-exchange method. ZnFeNiCuCoRu-O HEO catalyst displays excellent activity and ultra-stability for oxygen evolution reaction in full pH range, with an overpotential of 170 mV at a current density of 10 mA cm-2 , a Tafel slope of 56 mV dec-1 , and a decay of activity by 7% in 30 h in alkaline medium, as well as a 12% and 8% decay in acidic and neutral medium, respectively. DFT calculation indicates that the energy barrier of the potential determining step on Ru-Fe bridge site is significantly lower than any other Ru-related bridge sites for the unique hollow structured HEO structures. This work highlights the importance of ion-exchange method in preparing highly stable and active hollow-structured HEOs catalysts toward highly efficient energy conversion and storage devices.
Collapse
Affiliation(s)
- Kanghua Miao
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Higher Education Mega Center, 382 East Waihuan Road, Guangzhou, 510006, China
| | - Wendan Jiang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Higher Education Mega Center, 382 East Waihuan Road, Guangzhou, 510006, China
| | - Zhaoqian Chen
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Higher Education Mega Center, 382 East Waihuan Road, Guangzhou, 510006, China
| | - Yan Luo
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Higher Education Mega Center, 382 East Waihuan Road, Guangzhou, 510006, China
| | - Dong Xiang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Higher Education Mega Center, 382 East Waihuan Road, Guangzhou, 510006, China
| | - Chaohui Wang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Higher Education Mega Center, 382 East Waihuan Road, Guangzhou, 510006, China
| | - Xiongwu Kang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Higher Education Mega Center, 382 East Waihuan Road, Guangzhou, 510006, China
| |
Collapse
|
2
|
Thangarasu S, Baby N, Bhosale M, Lee J, Jeong C, Oh TH. Fe 2O 3/Ni Nanocomposite Electrocatalyst on Cellulose for Hydrogen Evolution Reaction and Oxygen Evolution Reaction. Int J Mol Sci 2023; 24:16282. [PMID: 38003475 PMCID: PMC10671088 DOI: 10.3390/ijms242216282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
A key challenge in the development of sustainable water-splitting (WS) systems is the formulation of electrodes by efficient combinations of electrocatalyst and binder materials. Cellulose, a biopolymer, can be considered an excellent dispersing agent and binder that can replace high-cost synthetic polymers to construct low-cost electrodes. Herein, a novel electrocatalyst was fabricated by combining Fe2O3 and Ni on microcrystalline cellulose (MCC) without the use of any additional binder. Structural characterization techniques confirmed the formation of the Fe2O3-Ni nanocomposite. Microstructural studies confirmed the homogeneity of the ~50 nm-sized Fe2O3-Ni on MCC. The WS performance, which involves the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), was evaluated using a 1 M KOH electrolyte solution. The Fe2O3-Ni nanocomposite on MCC displayed an efficient performance toward lowering the overpotential in both the HER (163 mV @ 10 mA cm-2) and OER (360 mV @ 10 mA cm-2). These results demonstrate that MCC facilitated the cohesive binding of electrocatalyst materials and attachment to the substrate surface. In the future, modified cellulose-based structures (such as functionalized gels and those dissolved in various media) can be used as efficient binder materials and alternative options for preparing electrodes for WS applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Tae-Hwan Oh
- Department of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea (M.B.); (J.L.); (C.J.)
| |
Collapse
|
3
|
Wu Z, Gao Y, Wang Z, Xiao W, Wang X, Li B, Li Z, Liu X, Ma T, Wang L. Surface-enriched ultrafine Pt nanoparticles coupled with defective CoP as efficient trifunctional electrocatalyst for overall water splitting and flexible Zn-air battery. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64198-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
4
|
Yang PZ, Wang X, Zhang LJ, Tong N, Wang XL. Electrochemically Reconstructed Vanadic Oxide-Doped Cobalt Pyrophosphate as an Electrocatalyst for the Oxygen Evolution Reaction. Inorg Chem 2023; 62:2317-2325. [PMID: 36696163 DOI: 10.1021/acs.inorgchem.2c04064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
More and more attention has been paid to the development of the efficient electrocatalysts for the oxygen evolution reaction (OER). Herein, a porous vanadic oxide-doped cobalt pyrophosphate electrocatalyst, namely V2O5-Co2P2O7, was exploited by using the electrochemical reconstruction method in the alkaline electrolyte and selecting a cobalt vanadium phosphate Co(H2O)4(VOPO4)2 as a precursor. The reconstructed vanadic oxide-doped cobalt pyrophosphate catalyst V2O5-Co2P2O7 exhibited efficient electrocatalytic activity for the OER in 1.0 M KOH, requiring a low overpotential of 199 mV at 10 mA cm-2, compared to the reported pyrophosphate electrocatalysts. The porous morphology and doping of vanadic oxide after electrochemical reconstruction were beneficial to enhance the electrocatalytic performance for the OER, through improving the surface area to bring in more accessibly active sites and regulating the electronic structures. The results provided a promising strategy to prepare the pyrophosphate electrocatalysts and improve the performance of the OER catalyst.
Collapse
Affiliation(s)
- Pei-Ze Yang
- College of Chemistry and Materials Engineering, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121000, P. R. China
| | - Xiang Wang
- College of Chemistry and Materials Engineering, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121000, P. R. China
| | - Ling-Jie Zhang
- College of Chemistry and Materials Engineering, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121000, P. R. China
| | - Na Tong
- College of Chemistry and Materials Engineering, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121000, P. R. China
| | - Xiu-Li Wang
- College of Chemistry and Materials Engineering, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121000, P. R. China
| |
Collapse
|
5
|
Wei Y, Hui Y, Lu X, Liu C, Zhang Y, Fan Y, Chen W. One-pot preparation of NiMn layered double hydroxide-MOF material for highly sensitive electrochemical sensing of glucose. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
6
|
Farhan A, Arshad J, Rashid EU, Ahmad H, Nawaz S, Munawar J, Zdarta J, Jesionowski T, Bilal M. Metal ferrites-based nanocomposites and nanohybrids for photocatalytic water treatment and electrocatalytic water splitting. CHEMOSPHERE 2023; 310:136835. [PMID: 36243091 DOI: 10.1016/j.chemosphere.2022.136835] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/18/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Photocatalytic degradation is one of the most promising technologies available for removing a variety of synthetic and organic pollutants from the environmental matrices because of its high catalytic activity, reduced energy consumption, and low total cost. Due to its acceptable bandgap, broad light-harvesting efficiency, significant renewability, and stability, Fe2O3 has emerged as a fascinating material for the degradation of organic contaminants as well as numerous dyes. This study thoroughly reviewed the efficiency of Fe2O3-based nanocomposite and nanomaterials for water remediation. Iron oxide structure and various synthetic methods are briefly discussed. Additionally, the electrocatalytic application of Fe2O3-based nanocomposites, including oxygen evolution reaction, oxygen reduction reaction, hydrogen evolution reaction, and overall water splitting efficiency, was also highlighted to illustrate the great promise of these composites. Finally, the ongoing issues and future prospects are directed to fully reveal the standards of Fe2O3-based catalysts. This review is intended to disseminate knowledge for further research on the possible applications of Fe2O3 as a photocatalyst and electrocatalyst.
Collapse
Affiliation(s)
- Ahmad Farhan
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Javeria Arshad
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Ehsan Ullah Rashid
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Haroon Ahmad
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Shahid Nawaz
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Junaid Munawar
- College of Chemistry, Beijing University of Chemical Technology, 100029, China
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695, Poznan, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695, Poznan, Poland.
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695, Poznan, Poland.
| |
Collapse
|
7
|
Recent Trends in Electrochemical Catalyst Design for Hydrogen Evolution, Oxygen Evolution, and Overall Water Splitting. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Xu W, Wu K, Wu Y, Guo Q, Fan F, Li A, Yang L, Zheng F, Fan Y, Chen W. High-efficiency water splitting catalyzed by NiMoO4 nanorod arrays decorated with vacancy defect-rich NiTex and MoOy layers. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Challenges and innovative strategies related to synthesis and electrocatalytic/energy storage applications of metal sulfides and its derivatives. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Fereja SL, Zhang Z, Fang Z, Guo J, Zhang X, Liu K, Li Z, Chen W. High-Entropy Oxide Derived from Metal-Organic Framework as a Bifunctional Electrocatalyst for Efficient Urea Oxidation and Oxygen Evolution Reactions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38727-38738. [PMID: 35973162 DOI: 10.1021/acsami.2c09161] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-entropy oxides (HEOs) offer unique features through a combination of incompatible metal cations to a single crystalline lattice. Owing to their special characteristics such as abundant cation compositions, high entropy stabilization, chemical and thermal stability, and lattice distortion effect, they have drawn ever-increasing attention for various applications. However, very few studies have been reported for catalytic application, and developing HEOs with large surface areas for efficient catalytic application is still in infancy. Herein, we design nanostructured HEO of (FeNiCoCrCu)3O4 using metal-organic frameworks (MOFs) as sacrificial templates to achieve a large surface area, high density of exposed active sites, and more oxygen vacancies. Single-crystalline phase HEOs with surface area as large as 206 m2 g-1 are produced and further applied as bifunctional electrocatalysts for the urea oxidation reaction (UOR) and oxygen evolution reaction (OER). Benefiting from enhanced oxygen vacancies and a large surface area with abundant exposed active sites, the optimized HEO exhibited excellent electrocatalytic activity toward UOR with a very low potential of 1.35 V at the current density of 10 mA cm-2 and showed long-term stability for 36 h operation, making a significant catalytic performance over previously reported HEOs. Moreover, the HEO demonstrated an efficient catalytic performance toward OER with a low overpotential of 270 mV at 10 mA cm-2 and low Tafel slope of 49 mV dec-1. The excellent catalytic activity is ascribed to the starting MOF precursor and favorable high-entropy effect.
Collapse
Affiliation(s)
- Shemsu Ligani Fereja
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- University of Science and Technology of China, Hefei 230026, China
- Wolkite University College of Natural and Computational Science, Wolkite 07, Ethiopia
| | - Ziwei Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- University of Science and Technology of China, Hefei 230026, China
| | - Zhongying Fang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- University of Science and Technology of China, Hefei 230026, China
| | - Jinhan Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- University of Science and Technology of China, Hefei 230026, China
| | - Xiaohui Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- University of Science and Technology of China, Hefei 230026, China
| | - Kaifan Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- University of Science and Technology of China, Hefei 230026, China
| | - Zongjun Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | - Wei Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
11
|
Abazari R, Amani-Ghadim AR, Slawin AMZ, Carpenter-Warren CL, Kirillov AM. Non-Calcined Layer-Pillared Mn 0.5Zn 0.5 Bimetallic-Organic Framework as a Promising Electrocatalyst for Oxygen Evolution Reaction. Inorg Chem 2022; 61:9514-9522. [PMID: 35699592 PMCID: PMC9775468 DOI: 10.1021/acs.inorgchem.2c00542] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Electrocatalytic generation of oxygen is of great significance for sustainable, clean, and efficient energy production. Multiple electron transfer in oxygen evolution reaction (OER) and its slow kinetics represent a serious hedge for efficient water splitting, requiring the design and development of advanced electrocatalysts with porous structures, high surface areas, abundant electroactive sites, and low overpotentials. These requisites are common for metal-organic frameworks (MOFs) and derived materials that are promising electrocatalysts for OER. The present work reports on the synthesis and full characterization of a heteroleptic 3D MOF, [Zn2(μ4-odba)2(μ-bpdh)]n·nDMF (Zn-MUM-1), assembled from 4,4'-oxydibenzoic acid and 2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene (bpdh). Besides, a series of heterometallic MnZn-MUM-1 frameworks (abbreviated as Mn0.5Zn0.5-MUM-1, Mn0.66Zn0.33-MUM-1, and Mn0.33Zn0.66-MUM-1) was also prepared, characterized, and used for the fabrication of working electrodes based on Ni foam (NF), followed by their exploration in OER. These noble-metal-free and robust electrocatalysts are stable and do not require pyrolysis or calcination while exhibiting better electrocatalytic performance than the parent Zn-MUM-1/NF electrode. The experimental results show that the Mn0.5Zn0.5-MUM-1/NF electrocatalyst features the best OER activity with a low overpotential (253 mV at 10 mA cm-2) and Tafel slope (73 mV dec-1) as well as significant stability after 72 h or 6000 cycles. These excellent results are explained by a synergic effect of two different metals present in the Mn-Zn MOF as well as improved charge and ion transfer, conductivity, and stability characteristics. The present study thus widens the application of heterometallic MOFs as prospective and highly efficient electrocatalysts for OER.
Collapse
Affiliation(s)
- Reza Abazari
- Department
of Chemistry, Faculty of Science, University
of Maragheh, Maragheh 55181-83111, Iran,
| | - Ali Reza Amani-Ghadim
- Applied
Chemistry Research Laboratory, Department of Chemistry, Faculty of
Sciences, Azarbaijan Shahid Madani University, Tabriz 53751-71379, Iran,
| | - Alexandra M. Z. Slawin
- EaStCHEM,
School of Chemistry, University of St Andrews, St Andrews, Fife, Scotland KY16 9ST, U.K.
| | | | - Alexander M. Kirillov
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal,
| |
Collapse
|