1
|
Liu H, Zhu Z, Demir M, He Y, Saha P, Cheng Q. Controllable Synthesis of Heterogeneous ZnS/SnS 2 Encapsulated in Hollow Nitrogen-Doped Carbon Microcubes as Anode for High-Performance Li-ion Capacitors. Chem Asian J 2025; 20:e202400926. [PMID: 39812408 DOI: 10.1002/asia.202400926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/26/2024] [Accepted: 01/13/2025] [Indexed: 01/16/2025]
Abstract
Li-ion capacitors (LICs) integrate the desirable features of lithium-ion batteries (LIBs) and supercapacitors (SCs), but the kinetic imbalance between the both electrodes leads to inferior electrochemical performance. Thus, constructing an advanced anode with outstanding rate capability and terrific redox kinetics is crucial to LICs. Herein, heterostructured ZnS/SnS2 nanosheets encapsulated into N-doped carbon microcubes (ZnS/SnS2@NC) are successfully fabricated. The sufficient ZnS/SnS2 heterostructure possesses abundant active sites, and the built-in electric field formed at the heterojunction interface can facilitate electron/ion migration. The interconnected hollow carbon layers could reduce the electron transfer resistance effectively and accommodate the volume change of SnS2, thereby maintaining the structural stability. Due to the synergy between multi-components, the ZnS/SnS2@NC anode demonstrates impressive Li storage performance with an excellent cyclic durablity (690 mAh g-1 at 0.5 A g-1 after 600 cycles) and considerable rate capability. Moreover, when matched with active carbon, the ZnS/SnS2@NC based LIC device delivers an admirable energy density of 134.1 Wh kg-1 and a high power output of 11,250 W kg-1, as well as remarkable capacity retention of 73.2 % after 6,000 cycles at 1.0 A g-1. The experimental results demonstrate the significance of optimized heterointerface engineering toward construction of electrode materials with high-performance for Li storage.
Collapse
Affiliation(s)
- Huandong Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Zhengju Zhu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Muslum Demir
- Department of Chemical Engineering, Osmaniye Korkut Ata University, Osmaniye, Turkey
| | - Ying He
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Petr Saha
- Sino-EU Joint Laboratory of New Energy Materials and Devices, Tomas Bata University in Zlin, nam. T. G. Masaryka 5555, 760 01, Zlin, Czech Republic
| | - Qilin Cheng
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
- Sino-EU Joint Laboratory of New Energy Materials and Devices, Tomas Bata University in Zlin, nam. T. G. Masaryka 5555, 760 01, Zlin, Czech Republic
| |
Collapse
|
2
|
Chen M, Fan Q, Yu P, Chen K, Li P, Liang K. Engineering Ti 3C 2-MXene Surface Composition for Excellent Li + Storage Performance. Molecules 2024; 29:1731. [PMID: 38675552 PMCID: PMC11052082 DOI: 10.3390/molecules29081731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Exploiting novel materials with high specific capacities is crucial for the progress of advanced energy storage devices. Intentionally constructing functional heterostructures based on a variety of two-dimensional (2D) substances proves to be an extremely efficient method for capitalizing on the shared benefits of these materials. By elaborately designing the structure, a greatly escalated steadiness can be achieved throughout electrochemical cycles, along with boosted electron transfer kinetics. In this study, chemical vapor deposition (CVD) was utilized to alter the surface composition of multilayer Ti3C2Tx MXene, contributing to contriving various layered heterostructure materials through a precise adjustment of the reaction temperature. The optimal composite materials at a reaction temperature of 500 °C (defined as MX500), incorporating MXene as the conductive substrate, exhibited outstanding stability and high coulombic efficiency during electrochemical cycling. Meanwhile, the reactive sites are increased by using TiS2 and TiO2 at the heterogeneous interfaces, which sustains a specific capacity of 449 mAh g-1 after 200 cycles at a current density of 0.1 A g-1 and further demonstrates their exceptional electrochemical characteristics. Additionally, the noted pseudocapacitive properties, like MXene materials, further highlight the diverse capabilities of intuitive material design. This study illuminates the complex details of surface modification in multilayer MXene and offers a crucial understanding of the strategic creation of heterostructures, significantly impacting sophisticated electrochemical applications.
Collapse
Affiliation(s)
- Minghua Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Qi Fan
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Ping Yu
- School of Electronic and Information Engineering, Ningbo University of Technology, Ningbo 315211, China
| | - Ke Chen
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Qianwan Institute of CNITECH, Ningbo 315336, China
| | - Peng Li
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Qianwan Institute of CNITECH, Ningbo 315336, China
| | - Kun Liang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
- Qianwan Institute of CNITECH, Ningbo 315336, China
| |
Collapse
|
3
|
Prabhakar Vattikuti SV, Shim J, Rosaiah P, Mauger A, Julien CM. Recent Advances and Strategies in MXene-Based Electrodes for Supercapacitors: Applications, Challenges and Future Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:62. [PMID: 38202517 PMCID: PMC10780966 DOI: 10.3390/nano14010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
With the growing demand for technologies to sustain high energy consumption, supercapacitors are gaining prominence as efficient energy storage solutions beyond conventional batteries. MXene-based electrodes have gained recognition as a promising material for supercapacitor applications because of their superior electrical conductivity, extensive surface area, and chemical stability. This review provides a comprehensive analysis of the recent progress and strategies in the development of MXene-based electrodes for supercapacitors. It covers various synthesis methods, characterization techniques, and performance parameters of these electrodes. The review also highlights the current challenges and limitations, including scalability and stability issues, and suggests potential solutions. The future outlooks and directions for further research in this field are also discussed, including the creation of new synthesis methods and the exploration of novel applications. The aim of the review is to offer a current and up-to-date understanding of the state-of-the-art in MXene-based electrodes for supercapacitors and to stimulate further research in the field.
Collapse
Affiliation(s)
| | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (S.V.P.V.); (J.S.)
| | - Pitcheri Rosaiah
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India;
| | - Alain Mauger
- Institut de Minéralogie, de Physique des Matériaux et de Cosmologie (IMPMC), Sorbonne Université, UMR-CNRS 7590, 4 Place Jussieu, 75005 Paris, France;
| | - Christian M. Julien
- Institut de Minéralogie, de Physique des Matériaux et de Cosmologie (IMPMC), Sorbonne Université, UMR-CNRS 7590, 4 Place Jussieu, 75005 Paris, France;
| |
Collapse
|
4
|
Xiong Z, Shi H, Zhang W, Yan J, Wu J, Wang C, Wang D, Wang J, Gu Y, Chen FR, Yang Y, Xu B, Yan X. In Situ Growth of Iron Sulfide on Fast Charge Transfer V 2 C-MXene for Superior Sodium Storage Anodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206767. [PMID: 36642851 DOI: 10.1002/smll.202206767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Due to the upstream pressure of lithium resources, low-cost sodium-ion batteries (SIBs) have become the most potential candidates for energy storage systems in the new era. However, anode materials of SIBs have always been a major problem in their development. To address this, V2 C/Fe7 S8 @C composites with hierarchical structures prepared via an in situ synthesis method are proposed here. The 2D V2 C-MXene as the growth substrate for Fe7 S8 greatly improves the rate capability of SIBs, and the carbon layer on the surface provides a guarantee for charge-discharge stability. Unexpectedly, the V2 C/Fe7 S8 @C anode achieves satisfactory sodium storage capacity and exceptional rate performance (389.7 mAh g-1 at 5 A g-1 ). The sodium storage mechanism and origin of composites are thoroughly studied via ex situ characterization techniques and first-principles calculations. Furthermore, the constructed sodium-ion capacitor assembled with N-doped porous carbon delivers excellent energy density (135 Wh kg-1 ) and power density (11 kW kg-1 ), showing certain practical value. This work provides an advanced system of sodium storage anode materials and broadens the possibility of MXene-based materials in the energy storage.
Collapse
Affiliation(s)
- Zhihao Xiong
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haofeng Shi
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenyuan Zhang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jingtao Yan
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jun Wu
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chengdeng Wang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Donghua Wang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiashuai Wang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yousong Gu
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Fu-Rong Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineeringin Advanced Materials, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, Shanxi, 030032, China
| | - Bingshe Xu
- Key Laboratory of Interface Science and Engineeringin Advanced Materials, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, Shanxi, 030032, China
| | - Xiaoqin Yan
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
5
|
Wang H, Wang Y, Liu Y, Dou S, Gan W, Yuan Q. A Novel Hierarchical Structure of SnCu 2Se 4/d-Ti 3C 2T x/NPC for a Lithium/Sodium Ion Battery and Hybrid Capacitor with Long-Term Cycling Stabilities. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56919-56929. [PMID: 36516443 DOI: 10.1021/acsami.2c19347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To alleviate kinetics imbalance and capacity insufficiency simultaneously, a novel hierarchical structure (SnCu2Se4/d-Ti3C2Tx/NPC) composed of delaminated Ti3C2Tx, SnCu2Se4 nanoparticles, and N-doped porous carbon layers is designed as a battery-type anode for lithium/sodium ion hybrid capacitor (LIC/SIC). The combination of SnCu2Se4 nanoparticles with high specific capacity, d-Ti3C2Tx with accelerated ion diffusion path, and NPC with enhanced electronic conductivity makes the SnCu2Se4/d-Ti3C2Tx/NPC composite possess excellent cycling stabilities in half-cell lithium-ion and sodium-ion batteries (LIB and SIB), with capacities of 114 mAh g-1 after 6000 cycles at 10 A g-1 for LIB and 296 mAh g-1 after 900 cycles at 1.0 A g-1 for SIB. The rate performance is also outstanding, with recovered capacity of 738 mAh g-1 at 0.1 A g-1 after cycles at current densities up to 50 A g-1 for LIB. Subsequently, LIC and SIC based on the SnCu2Se4/d-Ti3C2Tx/NPC anode and activated carbon cathode exhibit high energy densities of 147.9 and 158.6 Wh kg-1 at a power density of 100 W kg-1, respectively. They also possess distinctive long lifespans with capacity retentions of 78 and 81% after 10,000 cycles at 1.0 A g-1, respectively, demonstrating the feasibility of SnCu2Se4/d-Ti3C2Tx/NPC toward energy devices requiring high energy density, power density, and long-term stability.
Collapse
Affiliation(s)
- Haoqiang Wang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong518055, China
| | - Yu Wang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong518055, China
| | - Yani Liu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong518055, China
| | - Shuming Dou
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong518055, China
| | - Wei Gan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong518055, China
| | - Qunhui Yuan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong518055, China
| |
Collapse
|
6
|
Sandwich-like SnO2/Cu@Carbon composites with long-term cycling stability as lithium-ion battery anodes. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|