1
|
Zhou L, Tang T, Deng D, Wang Y, Pei D. Isolation and Electrochemical Analysis of a Facultative Anaerobic Electrogenic Strain Klebsiella sp. SQ-1. Pol J Microbiol 2024; 73:143-153. [PMID: 38676960 PMCID: PMC11192523 DOI: 10.33073/pjm-2024-013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/26/2024] [Indexed: 04/29/2024] Open
Abstract
Electricigens decompose organic matter and convert stored chemical energy into electrical energy through extracellular electron transfer. They are significant biocatalysts for microbial fuel cells with practical applications in green energy generation, effluent treatment, and bioremediation. A facultative anaerobic electrogenic strain SQ-1 is isolated from sludge in a biotechnology factory. The strain SQ-1 is a close relative of Klebsiella variicola. Multilayered biofilms form on the surface of a carbon electrode after the isolated bacteria are inoculated into a microbial fuel cell device. This strain produces high current densities of 625 μA cm-2 by using acetate as the carbon source in a three-electrode configuration. The electricity generation performance is also analyzed in a dual-chamber microbial fuel cell. It reaches a maximum power density of 560 mW m-2 when the corresponding output voltage is 0.59 V. The facultative strain SQ-1 utilizes hydrous ferric oxide as an electron acceptor to perform extracellular electricigenic respiration in anaerobic conditions. Since facultative strains possess better properties than anaerobic strains, Klebsiella sp. SQ-1 may be a promising exoelectrogenic strain for applications in microbial electrochemistry.
Collapse
Affiliation(s)
- Lei Zhou
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, College of Biology and Food, Shangqiu Normal University, Shangqiu, PR China
| | - Tuoxian Tang
- Department of Biological Sciences, Virginia Tech, Blacksburg, USA
| | - Dandan Deng
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, College of Biology and Food, Shangqiu Normal University, Shangqiu, PR China
| | - Yayue Wang
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, College of Biology and Food, Shangqiu Normal University, Shangqiu, PR China
| | - Dongli Pei
- Henan Provincial Engineering Research Center for Development and Application of Characteristic Microorganism Resources, College of Biology and Food, Shangqiu Normal University, Shangqiu, PR China
| |
Collapse
|
2
|
Gao Y, Huang J, Zhang L, Zhu Y, Yang P, Xue L, Wang N, He W. A three-dimensional phenolic-based carbon anode for microbial electrochemical system with customized macroscopic pore structure to promote interior bacteria colonization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160131. [PMID: 36372162 DOI: 10.1016/j.scitotenv.2022.160131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Microbial electrochemical system (MES) is an emerging wastewater treatment technology that compensates the energy demands of containments removal by in situ converting the chemical energy of organic pollutants. As the structure for exoelectrogens and the reaction site of extracellular electron transfer (EET), the anode is essential for MES. The future commercial application of MES requires efficiency and large-scale fabrication available anode. In this study, a 3D anode with millimeter-scale pores (3D-MPA) was successfully constructed by sacrificial template method, with low-cost phenolic resin as carbon precursor and polymethyl methacrylate (PMMA) pellets as template. With customized and ordered pore of 1 mm, the 3D-MPAs allowed the microorganisms to colonize inside, improving anodic space utilization efficiency. Different carbonization temperature in tested range from 700 °C to 1000 °C regulated the micrometer-scale convex structures and surface roughness of 3D-MPAs, causing electrochemical performance changes. The 3D-MPA-900 obtained the largest electroactive surface area (102 ± 4.1 cm2) and smallest ohmic resistance (1.8 ± 0.09 Ω). Equipped with MES, 3D-MPA-900 reached the highest power density and current density (2590 ± 25 mW m-2 and 5.20 ± 0.07 A m-2). Among tested 3D-MPA, the excellent performance of 3D-MPA-900 might be attributed by its convex structures with suitable size and surface coverage. The surface roughness of 3D-MPA-900 enhanced the microorganism adherence, which then promoted EET on anode surface. Generally, phenolic-based 3D-MPA made of sacrificial-template method had controllable porous structure, large-scale fabrication availability, high chemical stability and excellent mechanical property, which could be promising for the commercial application of MES.
Collapse
Affiliation(s)
- Yaqian Gao
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jianjun Huang
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Lijuan Zhang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yujie Zhu
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Pinpin Yang
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Lefei Xue
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Naiyu Wang
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Weihua He
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
3
|
Electrode Microbial Communities Associated with Electron Donor Source Types in a Bioelectrochemical System Treating Azo-Dye Wastewater. WATER 2022. [DOI: 10.3390/w14091505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Bioelectrochemical systems (BESs) have been acknowledged to be an efficient technology for refractory pollution treatment. An electron donor is as an indispensable element of BES, and domestic wastewater (DW) has been proved as a cost-efficient and accessible alternative option to expensive carbon sources (such as acetate and glucose), yet its effect on microbial community evolution has not been thoroughly revealed. In this study, the electrode microbial communities from BESs treating azo dye wastewater fed by DW (RDW), acetate (RAc), and glucose (RGlu) were systematically revealed based on 16S rRNA Illumina MiSeq sequencing platform. It was found that there were significant differences between three groups in microbial community structures. Desulfovibrio, Acinetobacter, and Klebsiella were identified as the predominant bacterial genera in RDW, RAc, and RGlu, respectively. Methanosaeta, the most enriched methanogen in all reactors, had a relative lower abundance in RDW. Microbial communities in RAc and RGlu were sensitive to electrode polarity while RDW was sensitive to electrode position. Compared with pure substrates, DW increased the diversity of microbial community and, thus, may enhance the stability of electrode biofilm. This study provides an insight into the microbial response mechanism to the electron donors and provides engineering implications for the development of BES.
Collapse
|