1
|
Du X, Zhang P, Zhang G, Gao H, Zhang L, Zhang M, Wang T, Gong J. Confinement of ionomer for electrocatalytic CO 2 reduction reaction via efficient mass transfer pathways. Natl Sci Rev 2024; 11:nwad149. [PMID: 38213529 PMCID: PMC10776366 DOI: 10.1093/nsr/nwad149] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/21/2023] [Indexed: 01/13/2024] Open
Abstract
Gas diffusion electrodes (GDEs) mediate the transport of reactants, products and electrons for the electrocatalytic CO2 reduction reaction (CO2RR) in membrane electrode assemblies. The random distribution of ionomer, added by the traditional physical mixing method, in the catalyst layer of GDEs affects the transport of ions and CO2. Such a phenomenon results in elevated cell voltage and decaying selectivity at high current densities. This paper describes a pre-confinement method to construct GDEs with homogeneously distributed ionomer, which enhances mass transfer locally at the active centers. The optimized GDE exhibited comparatively low cell voltages and high CO Faradaic efficiencies (FE > 90%) at a wide range of current densities. It can also operate stably for over 220 h with the cell voltage staying almost unchanged. This good performance can be preserved even with diluted CO2 feeds, which is essential for pursuing a high single-pass conversion rate. This study provides a new approach to building efficient mass transfer pathways for ions and reactants in GDEs to promote the electrocatalytic CO2RR for practical applications.
Collapse
Affiliation(s)
- Xiaowei Du
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of the Ministry of Education, Tianjin University, Tianjin300072, China
- CollaborativeInnovation Center of Chemical Science and Engineering (Tianjin), Tianjin300072, China
| | - Peng Zhang
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of the Ministry of Education, Tianjin University, Tianjin300072, China
- CollaborativeInnovation Center of Chemical Science and Engineering (Tianjin), Tianjin300072, China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin300350, China
| | - Gong Zhang
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of the Ministry of Education, Tianjin University, Tianjin300072, China
- CollaborativeInnovation Center of Chemical Science and Engineering (Tianjin), Tianjin300072, China
| | - Hui Gao
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of the Ministry of Education, Tianjin University, Tianjin300072, China
- CollaborativeInnovation Center of Chemical Science and Engineering (Tianjin), Tianjin300072, China
| | - Lili Zhang
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of the Ministry of Education, Tianjin University, Tianjin300072, China
- CollaborativeInnovation Center of Chemical Science and Engineering (Tianjin), Tianjin300072, China
| | - Mengmeng Zhang
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of the Ministry of Education, Tianjin University, Tianjin300072, China
- CollaborativeInnovation Center of Chemical Science and Engineering (Tianjin), Tianjin300072, China
| | - Tuo Wang
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of the Ministry of Education, Tianjin University, Tianjin300072, China
- CollaborativeInnovation Center of Chemical Science and Engineering (Tianjin), Tianjin300072, China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin300350, China
- Joint School of the National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou350207, China
| | - Jinlong Gong
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of the Ministry of Education, Tianjin University, Tianjin300072, China
- CollaborativeInnovation Center of Chemical Science and Engineering (Tianjin), Tianjin300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin300192, China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin300350, China
| |
Collapse
|
2
|
Chen B, Li H, Qu G, Yang J, Jin C, Wu F, Ren Y, Liu Y, Liu X, Qin J, Kuang L. Aluminium sulfate synergistic electrokinetic separation of soluble components from phosphorus slag and simultaneous stabilization of fluoride. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116942. [PMID: 36495822 DOI: 10.1016/j.jenvman.2022.116942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
In this study, fluoride (F) was stabilized and soluble components, namely phosphate (P), K, Ca, Cr, Mn, and Pb, were extracted from phosphorus slag (PS) by using aluminum sulfate (AS) synergistic electrokinetic. PHREEQC simulation was used to determine the occurrence form of each ion in the PS. The mechanisms by which various electrokinetic treatment methods affected conductivity and pH distribution were carefully investigated. Electrokinetic treatment increased P concentration of the anode chamber from 22.7 mg/L to 63.39 mg/L, whereas K concentration increased from 15.26 mg/L to 93.44 mg/L. After AS-enhanced electrokinetic treatments, the concentrations of the different components were as follows: P, 131.66 mg/L; K, 198.2 mg/L; and Ca, 331.3 mg/L. The removal rate of soluble P in PS slices increased to 80.88% by 1.5 V/cm of treatment, and it increased to 94.04% after AS enhancement treatment. For water-soluble F, the removal rate from the PS slices in the anode region was 86.03%, decreasing F concentration in the electrode chamber to 9.57 × 10-3 mg/L. Different extraction efficiencies and stability levels of each component in the PS were regulated at various electrode regions by using different processes such as electromigration, electro-osmotic flow, flocculation, and precipitation. Good results can be obtained if fluoride is solidified concurrently with the removal or recovery of P, K, Ca, and other elements using 2%-4% AS enhanced electrokinetic treatment. Furthermore, CaSO4·2H2O whiskers were produced in the electrode regions when AS content was 6%. The findings of this study indicated that the AS synergistic electrokinetic method is suitable for stabilizing F and removing heavy metals from PS, thus providing a promising technology for recycling valuable components such as P, K, Ca, and Sr and for the simultaneous production of CaSO4·2H2O whiskers. This study provides insights for developing novel technologies for the clean treatment and high-value utilization of PS.
Collapse
Affiliation(s)
- Bangjin Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, Yunnan, China; National-Regional Engineering Research Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| | - Hailin Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, Yunnan, China; National-Regional Engineering Research Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| | - Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, Yunnan, China; National-Regional Engineering Research Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China.
| | - Jieqian Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, Yunnan, China; National-Regional Engineering Research Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| | - Caiyue Jin
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, Yunnan, China; National-Regional Engineering Research Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| | - Fenghui Wu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, Yunnan, China; National-Regional Engineering Research Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| | - Yuanchuan Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, Yunnan, China; National-Regional Engineering Research Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| | - Ye Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, Yunnan, China; National-Regional Engineering Research Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| | - Xinxin Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, Yunnan, China; National-Regional Engineering Research Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| | - Jin Qin
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, Yunnan, China; National-Regional Engineering Research Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| | - Lingrui Kuang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, Yunnan, China; National-Regional Engineering Research Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| |
Collapse
|
3
|
Yang Y, Li P, Zheng X, Sun W, Dou SX, Ma T, Pan H. Anion-exchange membrane water electrolyzers and fuel cells. Chem Soc Rev 2022; 51:9620-9693. [DOI: 10.1039/d2cs00038e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The key components, working management, and operating techniques of anion-exchange membrane water electrolyzers and fuel cells are reviewed for the first time.
Collapse
Affiliation(s)
- Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi’an Technological University, Xi’an, 710021, P. R. China
| | - Peng Li
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
- Institute for Superconducting & Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Xiaobo Zheng
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wenping Sun
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
| | - Shi Xue Dou
- Institute of Energy Material Science, University of Shanghai for Science and Technology, Shanghai 200093, China
- Institute for Superconducting & Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi’an Technological University, Xi’an, 710021, P. R. China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|