1
|
Villemur J, Romero C, Crego JM, Gordo E. Fabrication and Coating of Porous Ti6Al4V Structures for Application in PEM Fuel Cell and Electrolyzer Technologies. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6253. [PMID: 39769852 PMCID: PMC11678821 DOI: 10.3390/ma17246253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
The production of green hydrogen through proton exchange membrane water electrolysis (PEMWE) is a promising technology for industry decarbonization, outperforming alkaline water electrolysis (AWE). However, PEMWE requires significant investment, which can be mitigated through material and design advancements. Components like bipolar porous plates (BPPs) and porous transport films (PTFs) contribute substantially to costs and performance. BPPs necessitate properties like corrosion resistance, electrical conductivity, and mechanical integrity. Titanium, commonly used for BPPs, forms a passivating oxide layer, reducing efficiency. Effective coatings are crucial to address this issue, requiring conductivity and improved corrosion resistance. In this study, porous Ti64 structures were fabricated via powder technology, treating them with thermochemical nitriding. The resulting structures with controlled porosity exhibited enhanced corrosion resistance and electrical conductivity. Analysis through scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), grazing incidence XRD and X-ray photoelectron spectroscopy (XPS) confirmed the effectiveness of the coating, meeting performance requirements for BPPs.
Collapse
Affiliation(s)
- Juan Villemur
- Department of Material Science and Engineering, Universidad Carlos III de Madrid, IAAB, 28911 Leganés, Madrid, Spain
| | - Carlos Romero
- Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid, Spain;
| | - Jose Manuel Crego
- Department of Material Science and Engineering, Universidad Carlos III de Madrid, IAAB, 28911 Leganés, Madrid, Spain
| | - Elena Gordo
- Department of Material Science and Engineering, Universidad Carlos III de Madrid, IAAB, 28911 Leganés, Madrid, Spain
| |
Collapse
|
2
|
Sangtam BT, Park H. Review on Bubble Dynamics in Proton Exchange Membrane Water Electrolysis: Towards Optimal Green Hydrogen Yield. MICROMACHINES 2023; 14:2234. [PMID: 38138403 PMCID: PMC10745635 DOI: 10.3390/mi14122234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Water electrolysis using a proton exchange membrane (PEM) holds substantial promise to produce green hydrogen with zero carbon discharge. Although various techniques are available to produce hydrogen gas, the water electrolysis process tends to be more cost-effective with greater advantages for energy storage devices. However, one of the challenges associated with PEM water electrolysis is the accumulation of gas bubbles, which can impair cell performance and result in lower hydrogen output. Achieving an in-depth knowledge of bubble dynamics during electrolysis is essential for optimal cell performance. This review paper discusses bubble behaviors, measuring techniques, and other aspects of bubble dynamics in PEM water electrolysis. It also examines bubble behavior under different operating conditions, as well as the system geometry. The current review paper will further improve the understanding of bubble dynamics in PEM water electrolysis, facilitating more competent, inexpensive, and feasible green hydrogen production.
Collapse
Affiliation(s)
| | - Hanwook Park
- Department of Biomedical Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Asan 31538, Chungnam, Republic of Korea;
| |
Collapse
|
3
|
Liu RT, Xu ZL, Li FM, Chen FY, Yu JY, Yan Y, Chen Y, Xia BY. Recent advances in proton exchange membrane water electrolysis. Chem Soc Rev 2023; 52:5652-5683. [PMID: 37492961 DOI: 10.1039/d2cs00681b] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Proton exchange membrane water electrolyzers (PEMWEs) are an attractive technology for renewable energy conversion and storage. By using green electricity generated from renewable sources like wind or solar, high-purity hydrogen gas can be produced in PEMWE systems, which can be used in fuel cells and other industrial sectors. To date, significant advances have been achieved in improving the efficiency of PEMWEs through the design of stack components; however, challenges remain for their large-scale and long-term application due to high cost and durability issues in acidic conditions. In this review, we examine the latest developments in engineering PEMWE systems and assess the gap that still needs to be filled for their practical applications. We provide a comprehensive summary of the reaction mechanisms, the correlation among structure-composition-performance, manufacturing methods, system design strategies, and operation protocols of advanced PEMWEs. We also highlight the discrepancies between the critical parameters required for practical PEMWEs and those reported in the literature. Finally, we propose the potential solution to bridge the gap and enable the appreciable applications of PEMWEs. This review may provide valuable insights for research communities and industry practitioners working in these fields and facilitate the development of more cost-effective and durable PEMWE systems for a sustainable energy future.
Collapse
Affiliation(s)
- Rui-Ting Liu
- Department of Industrial and Systems Engineering, State Key Laboratory of Ultraprecision Machining Technology, Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Zheng-Long Xu
- Department of Industrial and Systems Engineering, State Key Laboratory of Ultraprecision Machining Technology, Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Fu-Min Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan 430074, China.
| | - Fei-Yang Chen
- Department of Industrial and Systems Engineering, State Key Laboratory of Ultraprecision Machining Technology, Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Jing-Ya Yu
- Department of Industrial and Systems Engineering, State Key Laboratory of Ultraprecision Machining Technology, Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Ya Yan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Bao Yu Xia
- School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan 430074, China.
| |
Collapse
|
4
|
Guo L, Zhang X, Gan L, Pan L, Shi C, Huang Z, Zhang X, Zou J. Advances in Selective Electrochemical Oxidation of 5-Hydroxymethylfurfural to Produce High-Value Chemicals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205540. [PMID: 36480314 PMCID: PMC9896064 DOI: 10.1002/advs.202205540] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/02/2022] [Indexed: 06/17/2023]
Abstract
The conversion of biomass is a favorable alternative to the fossil energy route to solve the energy crisis and environmental pollution. As one of the most versatile platform compounds, 5-hydroxymethylfural (HMF) can be transformed to various value-added chemicals via electrolysis combining with renewable energy. Here, the recent advances in electrochemical oxidation of HMF, from reaction mechanism to reactor design are reviewed. First, the reaction mechanism and pathway are summarized systematically. Second, the parameters easy to be ignored are emphasized and discussed. Then, the electrocatalysts are reviewed comprehensively for different products and the reactors are introduced. Finally, future efforts on exploring reaction mechanism, electrocatalysts, and reactor are prospected. This review provides a deeper understanding of mechanism for electrochemical oxidation of HMF, the design of electrocatalyst and reactor, which is expected to promote the economical and efficient electrochemical conversion of biomass for industrial applications.
Collapse
Affiliation(s)
- Lei Guo
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Xiaoxue Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Li Gan
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Chengxiang Shi
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Zhen‐Feng Huang
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Ji‐Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| |
Collapse
|
5
|
Liu H, Tao HB, Liu B. Kinetic Insights of Proton Exchange Membrane Water Electrolyzer Obtained by Operando Characterization Methods. J Phys Chem Lett 2022; 13:6520-6531. [PMID: 35822838 DOI: 10.1021/acs.jpclett.2c01341] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Benefiting from the merits of short response time, high current density, and differential pressure, the proton exchange membrane water electrolyzer (PEMWE) is attracting increasing attention from both academic and industry researchers. A limiting factor that impedes the widespread application of the PEMWE is its reliance on the rarest elements, such as iridium and platinum. In order to optimize the device performance as well as to reduce the usage of rare elements, it is important but difficult to directly observe the reaction within the electrolyzer under working conditions. Thus, operando characterization methods are urgently needed to probe in real time the water electrolysis process during operation. In this perspective, we highlight the important role and summarize the recent advances of operando characterization methods in obtaining kinetic insights about PEMWEs. Based on the demands of kinetic optimization, an outlook of future characterization methods is given at the end.
Collapse
Affiliation(s)
- Han Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Hua Bing Tao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| |
Collapse
|
6
|
Kim P, Lee J, Lee CH, Fahy K, Shrestha P, Krause K, Shafaque H, Bazylak A. Tailoring catalyst layer interface with titanium mesh porous transport layers. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Yang G, Yu S, Li Y, Li K, Ding L, Xie Z, Wang W, Zhang FY. Role of electron pathway in dimensionally increasing water splitting reaction sites in liquid electrolytes. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|