1
|
Shen Y, Sun A, Guo Y, Chang WC. Discovery of Noncanonical Iron and 2-Oxoglutarate Dependent Enzymes Involved in C-C and C-N Bond Formation in Biosynthetic Pathways. ACS BIO & MED CHEM AU 2025; 5:238-261. [PMID: 40255287 PMCID: PMC12006828 DOI: 10.1021/acsbiomedchemau.5c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 04/22/2025]
Abstract
Iron and 2-oxoglutarate dependent (Fe/2OG) enzymes utilize an FeIV=O species to catalyze the functionalization of otherwise chemically inert C-H bonds. In addition to the more familiar canonical reactions of hydroxylation and chlorination, they also catalyze several other types of reactions that contribute to the diversity and complexity of natural products. In the past decade, several new Fe/2OG enzymes that catalyze C-C and C-N bond formation have been reported in the biosynthesis of structurally complex natural products. Compared with hydroxylation and chlorination, the catalytic cycles of these Fe/2OG enzymes involve distinct mechanistic features to enable noncanonical reaction outcomes. This Review summarizes recent discoveries of Fe/2OG enzymes involved in C-C and C-N bond formation with a focus on reaction mechanisms and their roles in natural product biosynthesis.
Collapse
Affiliation(s)
- Yaoyao Shen
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Anyi Sun
- School
of Life Science and Biotechnology, Shanghai
Jiao Tong University, Shanghai 200240, China
| | - Yisong Guo
- Department
of Chemistry, The Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Wei-chen Chang
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
2
|
Ushimaru R. Unusual Enzymatic C-C Bond Formation and Cleavage Reactions during Natural Product Biosynthesis. Chem Pharm Bull (Tokyo) 2024; 72:241-247. [PMID: 38432903 DOI: 10.1248/cpb.c23-00889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Natural products from plants and microorganisms provide a valuable reservoir of pharmaceutical compounds. C-C bond formation and cleavage are crucial events during natural product biosynthesis, playing pivotal roles in generating diverse and intricate chemical structures that are essential for biological functions. This review summarizes our recent findings regarding biosynthetic enzymes that catalyze unconventional C-C bond formation and cleavage reactions during natural product biosynthesis.
Collapse
Affiliation(s)
- Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| |
Collapse
|
3
|
Ushimaru R. Three-membered ring formation catalyzed by α-ketoglutarate-dependent nonheme iron enzymes. J Nat Med 2024; 78:21-32. [PMID: 37980694 PMCID: PMC10764440 DOI: 10.1007/s11418-023-01760-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 11/21/2023]
Abstract
Epoxides, aziridines, and cyclopropanes are found in various medicinal natural products, including polyketides, terpenes, peptides, and alkaloids. Many classes of biosynthetic enzymes are involved in constructing these ring structures during their biosynthesis. This review summarizes our current knowledge regarding how α-ketoglutarate-dependent nonheme iron enzymes catalyze the formation of epoxides, aziridines, and cyclopropanes in nature, with a focus on enzyme mechanisms.
Collapse
Affiliation(s)
- Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, 113-8657, Japan.
| |
Collapse
|
4
|
Pang L, Yao D, Gao F, Bian X, Zhang Y, Zhong G. Biosyntheses of azetidine-containing natural products. Org Biomol Chem 2023; 21:7242-7254. [PMID: 37642579 DOI: 10.1039/d3ob01205k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Azetidine is a four-membered polar heterocycle including a basic secondary amine, and is characterized by its high ring-strain energy, strong molecular rigidity and satisfactory stability. As a result, azetidine exhibits great challenges in its chemical synthesis and biosynthesis, which may explain the limited number of azetidine-containing natural products uncovered to date. In particular, the biosynthetic mechanisms of naturally occurring azetidines are poorly understood. Only some of them have been intensively investigated and few reviews have been published for the summarization of azetidine biosynthesis. In this review, we provide a comprehensive description of the biosyntheses of all the azetidine-containing natural products, especially the biosyntheses of azetidine moieties. We hope that this review will draw much attention to the biosynthetic research of the largely unexplored azetidine moieties as well as the discovery of novel azetidine-containing natural products in the near future.
Collapse
Affiliation(s)
- Linlin Pang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Daichen Yao
- School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Fenghui Gao
- School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Xiaoying Bian
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology and Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guannan Zhong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
- Suzhou Research Institute of Shandong University, Suzhou 215123, China
| |
Collapse
|
5
|
Van Cura D, Ng TL, Huang J, Hager H, Hartwig JF, Keasling JD, Balskus EP. Discovery of the Azaserine Biosynthetic Pathway Uncovers a Biological Route for α-Diazoester Production. Angew Chem Int Ed Engl 2023; 62:e202304646. [PMID: 37151182 PMCID: PMC10330308 DOI: 10.1002/anie.202304646] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/09/2023]
Abstract
Azaserine is a bacterial metabolite containing a biologically unusual and synthetically enabling α-diazoester functional group. Herein, we report the discovery of the azaserine (aza) biosynthetic gene cluster from Glycomyces harbinensis. Discovery of related gene clusters reveals previously unappreciated azaserine producers, and heterologous expression of the aza gene cluster confirms its role in azaserine assembly. Notably, this gene cluster encodes homologues of hydrazonoacetic acid (HYAA)-producing enzymes, implicating HYAA in α-diazoester biosynthesis. Isotope feeding and biochemical experiments support this hypothesis. These discoveries indicate that a 2-electron oxidation of a hydrazonoacetyl intermediate is required for α-diazoester formation, constituting a distinct logic for diazo biosynthesis. Uncovering this biological route for α-diazoester synthesis now enables the production of a highly versatile carbene precursor in cells, facilitating approaches for engineering complete carbene-mediated biosynthetic transformations in vivo.
Collapse
Affiliation(s)
- Devon Van Cura
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Tai L Ng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Jing Huang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
| | - Harry Hager
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Jay D Keasling
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Synthetic Biochemistry Center, Institute for Synthetic Biology, Shenzhen Institute for Advanced Technologies, Shenzhen, China
- Center for Biosustainability, Danish Technical University, Lyngby, Denmark
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| |
Collapse
|
6
|
Tao H, Abe I. Oxidative modification of free-standing amino acids by Fe(II)/αKG-dependent oxygenases. ENGINEERING MICROBIOLOGY 2023; 3:100062. [PMID: 39628521 PMCID: PMC11611013 DOI: 10.1016/j.engmic.2022.100062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/06/2024]
Abstract
Fe(II)/α-ketoglutarate (αKG)-dependent oxygenases catalyze the oxidative modification of various molecules, from DNA, RNA, and proteins to primary and secondary metabolites. They also catalyze a variety of biochemical reactions, including hydroxylation, halogenation, desaturation, epoxidation, cyclization, peroxidation, epimerization, and rearrangement. Given the versatile catalytic capability of such oxygenases, numerous studies have been conducted to characterize their functions and elucidate their structure-function relationships over the past few decades. Amino acids, particularly nonproteinogenic amino acids, are considered as important building blocks for chemical synthesis and components for natural product biosynthesis. In addition, the Fe(II)/αKG-dependent oxygenase superfamily includes important enzymes for generating amino acid derivatives, as they efficiently modify various free-standing amino acids. The recent discovery of new Fe(II)/αKG-dependent oxygenases and the repurposing of known enzymes in this superfamily have promoted the generation of useful amino acid derivatives. Therefore, this study will focus on the recent progress achieved from 2019 to 2022 to provide a clear view of the mechanism by which these enzymes have expanded the repertoire of free amino acid oxidative modifications.
Collapse
Affiliation(s)
- Hui Tao
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Tao H, Ushimaru R, Awakawa T, Mori T, Uchiyama M, Abe I. Stereoselectivity and Substrate Specificity of the Fe(II)/α-Ketoglutarate-Dependent Oxygenase TqaL. J Am Chem Soc 2022; 144:21512-21520. [DOI: 10.1021/jacs.2c08116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Hui Tao
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-0033, Japan
- ACT-X, Japan Science and Technology Agency (JST), Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-0033, Japan
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-0033, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Research Initiative for Supra-Materials (RISM), Shinshu University, Ueda 386-8567, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
8
|
Self-sacrificial tyrosine cleavage by an Fe:Mn oxygenase for the biosynthesis of para-aminobenzoate in Chlamydia trachomatis. Proc Natl Acad Sci U S A 2022; 119:e2210908119. [PMID: 36122239 PMCID: PMC9522330 DOI: 10.1073/pnas.2210908119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chlamydia protein associating with death domains (CADD) is involved in the biosynthesis of para-aminobenzoate (pABA), an essential component of the folate cofactor that is required for the survival and proliferation of the human pathogen Chlamydia trachomatis. The pathway used by Chlamydiae for pABA synthesis differs from the canonical multi-enzyme pathway used by most bacteria that relies on chorismate as a metabolic precursor. Rather, recent work showed pABA formation by CADD derives from l-tyrosine. As a member of the emerging superfamily of heme oxygenase-like diiron oxidases (HDOs), CADD was proposed to use a diiron cofactor for catalysis. However, we report maximal pABA formation by CADD occurs upon the addition of both iron and manganese, which implicates a heterobimetallic Fe:Mn cluster is the catalytically active form. Isotopic labeling experiments and proteomics studies show that CADD generates pABA from a protein-derived tyrosine (Tyr27), a residue that is ∼14 Å from the dimetal site. We propose that this self-sacrificial reaction occurs through O2 activation by a probable Fe:Mn cluster through a radical relay mechanism that connects to the "substrate" Tyr, followed by amination and direct oxygen insertion. These results provide the molecular basis for pABA formation in C. trachomatis, which will inform the design of novel therapeutics.
Collapse
|
9
|
Engelbrecht A, Wolf F, Esch A, Kulik A, Kozhushkov SI, de Meijere A, Hughes CC, Kaysser L. Discovery of a Cryptic Nitro Intermediate in the Biosynthesis of the 3-( trans-2'-Aminocyclopropyl)alanine Moiety of Belactosin A. Org Lett 2022; 24:736-740. [PMID: 34990553 DOI: 10.1021/acs.orglett.1c04205] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Belactosin A, a β-lactone proteasome inhibitor, contains a unique 3-(trans-2'-aminocyclopropyl)alanine moiety. We recently identified the biosynthetic gene cluster of the belactosin series from Streptomyces sp. UCK14. To shed light on the formation of the aminocyclopropylalanine, we established a heterologous pathway expression, constructed a set of gene deletion mutants, and performed feeding studies for a chemical complementation that include the incorporation of stable isotope-labeled precursors. We thereby show that, in the biosynthesis of this building block, a cryptic nitrocyclopropylalanine intermediate is generated from l-lysine. The subsequent reduction of the N-oxygenated precursor to the corresponding amine is mediated by the molybdopterin-dependent enzyme BelN.
Collapse
Affiliation(s)
- Alicia Engelbrecht
- Department of Pharmaceutical Biology, University of Tübingen, 72076 Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, 72076 Tübingen, Germany
| | - Felix Wolf
- Department of Pharmaceutical Biology, University of Tübingen, 72076 Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, 72076 Tübingen, Germany
| | - Annika Esch
- Department of Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen, 72076 Tübingen, Germany
| | - Andreas Kulik
- Department of Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
| | - Sergei I Kozhushkov
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, 37077 Göttingen, Germany
| | - Armin de Meijere
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, 37077 Göttingen, Germany
| | - Chambers C Hughes
- German Center for Infection Research, Partner Site Tübingen, 72076 Tübingen, Germany
- Department of Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen, 72076 Tübingen, Germany
| | - Leonard Kaysser
- Department of Pharmaceutical Biology, University of Tübingen, 72076 Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, 72076 Tübingen, Germany
- Institute for Drug Discovery, Department of Pharmaceutical Biology, University of Leipzig, 04317 Leipzig, Germany
| |
Collapse
|