1
|
Yu D, Tang Z, Bao S, Guo S, Chen C, Wu Q, Wang M, Zheng Z, Cao P, Xu B, Wu H, Wang N, Huang H, Liu C, Li X, Guo Z. Immunoregulatory Neuro-Vascularized Osseointegration Driven by Different Nano-Morphological CaTiO 3 Bioactive Coatings on Porous Titanium Alloy Scaffolds. Adv Healthc Mater 2025; 14:e2404647. [PMID: 39989094 DOI: 10.1002/adhm.202404647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/14/2025] [Indexed: 02/25/2025]
Abstract
Up to now, how to implement the optimal regenerative repair of large load-bearing bone defects using artificial bone prosthesis remains to be an enormous challenge in clinical practice. Titanium-based alloys, especially Ti6Al4V, are applied as artificial bone grafts due to their favorable mechanical property and biocompatibility, assisted by personalized customization of 3D-printing to completely match with the bone defect. However, their bioinert peculiarity restricts osteointegration at the interface between bone and titanium-based implants and bone growth into porous titanium-based scaffolds, for lack of bone regeneration with the aid of blood vessels and neural networks. Of note, ample blood delivery and integral innervation are pivotal to the survival of artificially tissue-engineered bones. Herein, the functionalized surface of 3D printed titanium alloy scaffolds driven immunoregulatory neuro-vascularized osseointegration is delved. Bone-like micro/nano morphology and chemical composition of calcium-rich formula are scrutinized to accelerate the process of bone defect repair, including inflammatory response, angiogenesis, neurogenesis, and osseointegration. Micro/nano-topographic calcium titanate (CaTiO3) coating, especially 10%H2O2-Ca, driven immunoregulatory neuro-vascularized osseointegration is validated and its underlying mechanism is attributed to the signaling pathway of TNF-α /oxidative phosphorylation, providing an effective tactic of the bone tissue-engineered scaffold with surface functionalization-driven immunoregulatory neuro-vascularized osseointegration for clinical large segmental bone defects.
Collapse
Affiliation(s)
- Dongmei Yu
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
- Institute of Orthopaedic and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, London, HA7 4LP, UK
| | - Zhen Tang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Shusen Bao
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
- Department of Orthopedics, No. 903 Hospital of PLA Joint Logistic Support Force, Hangzhou, 310000, China
| | - Shuo Guo
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Changchen Chen
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Qi Wu
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Mo Wang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Zenghui Zheng
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Pengfei Cao
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Bin Xu
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Hao Wu
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Ning Wang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Hai Huang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Chaozong Liu
- Institute of Orthopaedic and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore, London, HA7 4LP, UK
| | - Xiaokang Li
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Zheng Guo
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| |
Collapse
|
2
|
Fu LH, Yin M, Chen X, Yang C, Lin J, Wang X, Jiang B, Huang P. Targeted Management of Diabetic Osteoporosis by Biocatalytic Cascade Reaction Nanoplatform. NANO LETTERS 2025; 25:3075-3084. [PMID: 39932423 DOI: 10.1021/acs.nanolett.4c05221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Diabetic osteoporosis (DOP) is a chronic complication of diabetes mellitus (DM) that impairs bone health, and effective management of DOP remains a formidable challenge. In this study, we developed a biocatalytic cascade nanoplatform, GOx@SrCaP-CAT-Tet, offering osteogenic, angiogenic, and anti-inflammatory activities for targeted DOP management. The platform includes glucose oxidase (GOx) and catalase (CAT), encapsulated in strontium-doped calcium phosphate (SrCaP), converting glucose into gluconic acid and hydrogen peroxide (H2O2), alleviating the hyperglycemia and promoting hypoxia-induced vascularization. Both the generated H2O2 and any overabundance of H2O2 in the DOP microenvironment can be scavenged by CAT, thus relieving inflammation. Via a surface modified with tetracycline (Tet) for bone targeting, the release of Sr2+, Ca2+, and PO43- can stimulate osteogenesis and suppress osteoclastogenesis, thereby hastening bone formation and reversing osteoporosis. This nanoplatform shows promise in managing DOP both in vitro and in vivo. Our findings open a new horizon for managing DOP through biocatalytic cascade reactions.
Collapse
Affiliation(s)
- Lian-Hua Fu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Mengting Yin
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xin Chen
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Chen Yang
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Xiansong Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Baoguo Jiang
- National Center for Trauma Medicine, Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China
- Shenzhen University General Hospital, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| |
Collapse
|
3
|
Zheng J, Zhao J, Li C, Zhang F, Saiding Q, Zhang X, Wang G, Qi J, Cui W, Deng L. Targeted Protein Fate Modulating Functional Microunits Promotes Intervertebral Fusion. SMALL METHODS 2024; 8:e2301375. [PMID: 38143276 DOI: 10.1002/smtd.202301375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/03/2023] [Indexed: 12/26/2023]
Abstract
Stable regulation of protein fate is a prerequisite for successful bone tissue repair. As a ubiquitin-specific protease (USP), USP26 can stabilize the protein fate of β-catenin to promote the osteogenic activity of mesenchymal cells (BMSCs) and significantly increased bone regeneration in bone defects in aged mice. However, direct transfection of Usp26 in vivo is inefficient. Therefore, improving the efficient expression of USP26 in target cells is the key to promoting bone tissue repair. Herein, 3D printing combined with microfluidic technology is applied to construct a functional microunit (protein fate regulating functional microunit, denoted as PFFM), which includes GelMA microspheres loaded with BMSCs overexpressing Usp26 and seeded into PCL 3D printing scaffolds. The PFFM provides a microenvironment for BMSCs, significantly promotes adhesion, and ensures cell activity and Usp26 supplementation that stabilizes β-catenin protein significantly facilitates BMSCs to express osteogenic phenotypes. In vivo experiments have shown that PFFM effectively accelerates intervertebral bone fusion. Therefore, PFFM can provide new ideas and alternatives for using USP26 for intervertebral fusion and other hard-to-repair bone defect diseases and is expected to provide clinical translational potential in future treatments.
Collapse
Affiliation(s)
- Jiancheng Zheng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Jian Zhao
- Department of Neurosurgery, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, 271000, China
| | - Cuidi Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Fangke Zhang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Qimanguli Saiding
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Xingkai Zhang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Guojun Wang
- Department of Neurosurgery, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, 271000, China
| | - Jin Qi
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
4
|
Agostinacchio F, Biada E, Gambari L, Grassi F, Bucciarelli A, Motta A. Surfactant-assisted photo-crosslinked silk fibroin sponges: A versatile platform for the design of bone scaffolds. BIOMATERIALS ADVANCES 2024; 161:213887. [PMID: 38735199 DOI: 10.1016/j.bioadv.2024.213887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/16/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
Critical size bone defects cannot heal without aid and current clinical approaches exhibit some limitations, underling the need for novel solutions. Silk fibroin, derived from silkworms, is widely utilized in tissue engineering and regenerative medicine due to its remarkable properties, making it a promising candidate for bone tissue regeneration in vitro and in vivo. However, the clinical translation of silk-based materials requires refinements in 3D architecture, stability, and biomechanical properties. In earlier research, improved mechanical resistance and stability of chemically crosslinked methacrylate silk fibroin (Sil-Ma) sponges over physically crosslinked counterparts were highlighted. Furthermore, the influence of photo-initiator and surfactant concentrations on silk properties was investigated. However, the characterization of sponges with Sil-Ma solution concentrations above 10 % (w/V) was hindered by production optimization challenges, with only cell viability assessed. This study focuses on the evaluation of methacrylate sponges' suitability as temporal bone tissue regeneration scaffolds. Sil-Ma sponge fabrication at a fixed concentration of 20 % (w/V) was optimized and the impact of photo-initiator (LAP) concentrations and surfactant (Tween 80) presence/absence was studied. Their effects on pore formation, silk secondary structure, mechanical properties, and osteogenic differentiation of hBM-MSCs were investigated. We demonstrated that, by tuning silk sponges' composition, the optimal combination boosted osteogenic gene expression, offering a strategy to tailor biomechanical properties for effective bone regeneration. Utilizing Design of Experiment (DoE), correlations between sponge composition, porosity, and mechanical properties are established, guiding tailored material outcomes. Additionally, correlation matrices elucidate the microstructure's influence on gene expressions, providing insights for personalized approaches in bone tissue regeneration.
Collapse
Affiliation(s)
- Francesca Agostinacchio
- National Interuniversity Consortium of Material Science and Technology, Florence, Italy; BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Elisa Biada
- BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Laura Gambari
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Francesco Grassi
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Antonella Motta
- BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Department of Industrial Engineering, University of Trento, Trento, Italy.
| |
Collapse
|
5
|
Qiao F, Zou Y, Bie B, Lv Y. Dual siRNA-Loaded Cell Membrane Functionalized Matrix Facilitates Bone Regeneration with Angiogenesis and Neurogenesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307062. [PMID: 37824284 DOI: 10.1002/smll.202307062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Vascularization and innervation play irreplaceable roles in bone regeneration and bone defect repair. However, the reconstruction of blood vessels and neural networks is often neglected in material design. This study aims to design a genetically functionalized matrix (GFM) and enable it to regulate angiogenesis and neurogenesis to accelerate the process of bone defect repair. The dual small interfering RNA (siRNA)-polyvinylimide (PEI) (siRP) complexes that locally knocked down soluble vascular endothelial growth factor receptor 1 (sFlt-1) and p75 neurotrophic factor receptor (p75NTR ) are prepared. The hybrid cell membrane (MM) loaded siRP is synthesized as siRNA@MMs to coat on polylactone (PCL) electrospun fibers for mimicking the natural bone matrix. The results indicates that siRNA@MMs could regulate the expression of vascular-related and neuro-related cytokines secreted by mesenchymal stem cells (MSCs). GFMs promote the expression of osteogenic differentiation through paracrine function in vitro. GFMs attenuates inflammation and promotes osseointegration by regulating the coupling of vascularization and innervation in vivo. This study uses the natural hybrid cell membrane to carry genetic material and assist in the vascularization and innervation function of two siRNA. The results present the significance of neuro-vascularized organoid bone and may provide a promising choice for the design of bone tissue engineering scaffold.
Collapse
Affiliation(s)
- Fangyu Qiao
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, 400044, P. R. China
| | - Yang Zou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, P. R. China
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Binglin Bie
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, P. R. China
| |
Collapse
|
6
|
Wekwejt M, Khamenka M, Ronowska A, Gbureck U. Dual-Setting Bone Cement Based On Magnesium Phosphate Modified with Glycol Methacrylate Designed for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55533-55544. [PMID: 38058111 DOI: 10.1021/acsami.3c14491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Magnesium phosphate cement (MPC) is a suitable alternative for the currently used calcium phosphates, owing to beneficial properties like favorable resorption rate, fast hardening, and higher compressive strength. However, due to insufficient mechanical properties and high brittleness, further improvement is still expected. In this paper, we reported the preparation of a novel type of dual-setting cement based on MPC with poly(2-hydroxyethyl methacrylate) (pHEMA). The aim of our study was to evaluate the effect of HEMA addition, especially its concentration and premix time, on the selected properties of the composite. Several beneficial effects were found: better formability, shortened setting time, and improvement of mechanical strengths. The developed cements were hardening in ∼16-21 min, consisted of well-crystallized phases and polymerized HEMA, had porosity between ∼2-11%, degraded slowly by ∼0.1-4%/18 days, their wettability was ∼20-30°, they showed compressive and bending strength between ∼45-73 and 13-20 MPa, respectively, and, finally, their Young's Modulus was close to ∼2.5-3.0 GPa. The results showed that the optimal cement composition is MPC+15%HEMA and 4 min of polymer premixing time. Overall, our research suggested that this developed cement may be used in various biomedical applications.
Collapse
Affiliation(s)
- Marcin Wekwejt
- Biomaterials Technology Department, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, G. Narutowicza 11/12 Street, 80-233 Gdańsk, Poland
| | - Maryia Khamenka
- Scientific Club "Materials in Medicine", Advanced Materials Centre, Gdańsk University of Technology, G. Narutowicza 11/12 Street, 80-233 Gdańsk, Poland
| | - Anna Ronowska
- Chair of Clinical Biochemistry, Department of Laboratory Medicine, Medical University of Gdańsk, 2x, M. Skłodowskiej-Curie 3a Street, 80-210 Gdańsk, Poland
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2 Street, D-97070 Würzburg, Germany
| |
Collapse
|
7
|
Gong Y, Wang P, Cao R, Wu J, Ji H, Wang M, Hu C, Huang P, Wang X. Exudate Absorbing and Antimicrobial Hydrogel Integrated with Multifunctional Curcumin-Loaded Magnesium Polyphenol Network for Facilitating Burn Wound Healing. ACS NANO 2023; 17:22355-22370. [PMID: 37930078 DOI: 10.1021/acsnano.3c04556] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Burns are among the most common causes of trauma worldwide. Reducing the healing time of deep burn wounds has always been a major challenge. Traditional dressings not only require a lengthy medical procedure but also cause unbearable pain and secondary damage to patients. In this study, we developed an exudate-absorbing and antimicrobial hydrogel with a curcumin-loaded magnesium polyphenol network (Cur-Mg@PP) to promote burn wound healing. That hydrogel was composed of an ε-poly-l-lysine (ε-PLL)/polymer poly(γ-glutamic acid) (γ-PGA) hydrogel (PP) and curcumin-loaded magnesium polyphenol network (Cur-Mg). Because of the strong water absorption property of ε-PLL and γ-PGA, Cur-Mg@PP powder can quickly absorb the wound exudate and transform into a moist and viscous hydrogel, thus releasing payloads such as magnesium ion (Mg2+) and curcumin (Cur). The released Mg2+ and Cur demonstrated good therapeutic efficacy on analgesic, antioxidant, anti-inflammation, angiogenesis, and tissue regeneration. Our findings provide a strategy for accelerating burn wound healing.
Collapse
Affiliation(s)
- Yan Gong
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Pei Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ran Cao
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jiayingzi Wu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Haoran Ji
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Mingsong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Chuang Hu
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xiansong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
8
|
Wang P, Gong Y, Zhou G, Ren W, Wang X. Biodegradable Implants for Internal Fixation of Fractures and Accelerated Bone Regeneration. ACS OMEGA 2023; 8:27920-27931. [PMID: 37576626 PMCID: PMC10413843 DOI: 10.1021/acsomega.3c02727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023]
Abstract
Bone fractures have always been a burden to patients due to their common occurrence and severe complications. Traditionally, operative treatments have been widely used in the clinic for implanting, despite the fact that they can only achieve bone fixation with limited stability and pose no effect on promoting tissue growth. In addition, the nondegradable implants usually need a secondary surgery for implant removal, otherwise they may block the regeneration of bones resulting in bone nonunion. To overcome the low degradability of implants and avoid multiple surgeries, tissue engineers have investigated various biodegradable materials for bone regeneration, whereas the significance of stability of long-term bone fixation tends to be neglected during this process. Combining the traditional orthopedic implantation surgeries and emerging tissue engineering, we believe that both bone fixation and bone regeneration are indispensable factors for a successful bone repair. Herein, we define such a novel idea as bone regenerative fixation (BRF), which should be the main future development trend of biodegradable materials.
Collapse
Affiliation(s)
- Pei Wang
- Department
of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of
Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yan Gong
- Department
of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of
Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Guangdong Zhou
- Department
of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of
Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Institute
of Regenerative Medicine and Orthopedics, Institutes of Health Central
Plain, Xinxiang Medical University, Henan 453003, China
| | - Wenjie Ren
- Institute
of Regenerative Medicine and Orthopedics, Institutes of Health Central
Plain, Xinxiang Medical University, Henan 453003, China
| | - Xiansong Wang
- Department
of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of
Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Institute
of Regenerative Medicine and Orthopedics, Institutes of Health Central
Plain, Xinxiang Medical University, Henan 453003, China
| |
Collapse
|
9
|
Qiu E, Gong Y, Yao J, Lai J, Liu Z, Yang DP, Shen L, Chen X. A dual aperture (mesoporous and macroporous) system loaded with cell-free fat extract to optimize bone regeneration microenvironment. J Mater Chem B 2023; 11:826-836. [PMID: 36601875 DOI: 10.1039/d2tb01980a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Injured bone regeneration requires a systemically and carefully orchestrated series of events involving inflammation, angiogenesis, and osteogenesis. Thus, we designed a multifunctional cell-supporting and drug-retarding dual-pore system: cell-free fat extract (Ceffe)-mesoporous silica nanoparticle (MSN)@poly(lactic-co-glycolic acid) (PLGA) (Ceffe-MSN@PLGA) to mimic the developmental spatial structure, the microenvironment of bone regeneration and integration during injured bone regeneration. In this system, a macroporous scaffold (pore size 200-250 μm) of PLGA is combined with mesoporous MSN (pore size 2-50 nm), aiming at realizing the slow release of Ceffe. Besides, PLGA and MSN are used to recruit the temporary support of cells that are able to degrade simultaneously with bone regeneration and provide space for bone tissue regeneration. And the Ceffe isolated from fresh human adipose tissue has a therapeutic effect in regulating the important functions of early inflammatory cell transformation, neovascularization and eventual osteogenic differentiation. Our results suggest that the mesoporous and macroporous Ceffe-MSN@PLGA system represents a promising strategy to better fit the regeneration of injured bone tissue.
Collapse
Affiliation(s)
- Enhui Qiu
- The Second Affiliated Hospital of Fujian Medical University, Fujian 362000, China.
| | - Yan Gong
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Jieran Yao
- The Second Affiliated Hospital of Fujian Medical University, Fujian 362000, China.
| | - Jinqing Lai
- The Second Affiliated Hospital of Fujian Medical University, Fujian 362000, China.
| | - Zhihua Liu
- The Second Affiliated Hospital of Fujian Medical University, Fujian 362000, China.
| | - Da-Peng Yang
- Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, Fujian Province, P. R. China
| | - Li Shen
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Xiangrong Chen
- The Second Affiliated Hospital of Fujian Medical University, Fujian 362000, China.
| |
Collapse
|
10
|
Zhang D, Su Y, Sun P, Liu X, Zhang L, Ling X, Fan Y, Wu K, Shi Q, Liu J. A TGF-loading hydrogel scaffold capable of promoting chondrogenic differentiation for repairing rabbit nasal septum cartilage defect. Front Bioeng Biotechnol 2022; 10:1057904. [PMID: 36466342 PMCID: PMC9717702 DOI: 10.3389/fbioe.2022.1057904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 05/28/2025] Open
Abstract
Hydrogel-based tissue engineering has been widely used to repair cartilage injury. However, whether this approach can be applied to treat nasal septum cartilage defects remains unclear. In this study, three gelatin methacrylate-based scaffolds loaded with transforming growth factor (TGF)-β1 (GelMA-T) were prepared, and their effects on repair of nasal septum cartilage defects were examined. In vitro, the GelMA-T scaffolds showed good biocompatibility and promoted the chondrogenic differentiation of bone mesenchymal stem cells. Among three scaffolds, the 10% GelMA-T scaffold promoted chondrogenic differentiation most effectively, which significantly improved the expression of chondrocyte-related genes, including Col II, Sox9, and ACAN. In vivo, 10% GelMA-T scaffolds and 10% GelMA-T scaffolds loaded with bone mesenchymal stem cells (BMSCs; 10% GelMA-T/BMSCs) were transplanted into a nasal septum cartilage defect site in a rabbit model. At 4, 12, and 24 weeks after surgery, the nasal septum cartilage defects exhibited more complete repair in rabbits treated with the 10% GelMA-T/BMSC scaffold as demonstrated by hematoxylin & eosin, safranine-O, and toluidine blue staining. We showed that GelMA-T/BMSCs can be applied in physiological and structural repair of defects in nasal septum cartilage, providing a potential strategy for repairing cartilage defects in the clinic.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| | - Ying Su
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute, Soochow University, Suzhou, Jiangsu, China, Suzhou, Jiangsu, China
- Department of Otolaryngology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Peng Sun
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| | - Xingzhi Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute, Soochow University, Suzhou, Jiangsu, China, Suzhou, Jiangsu, China
| | - Lin Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute, Soochow University, Suzhou, Jiangsu, China, Suzhou, Jiangsu, China
| | - Xuwei Ling
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute, Soochow University, Suzhou, Jiangsu, China, Suzhou, Jiangsu, China
| | - Yuhui Fan
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| | - Kang Wu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute, Soochow University, Suzhou, Jiangsu, China, Suzhou, Jiangsu, China
| | - Qin Shi
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute, Soochow University, Suzhou, Jiangsu, China, Suzhou, Jiangsu, China
| | - Jisheng Liu
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|