1
|
Cioffi E, Coppola G, Musumeci O, Gallone S, Silvestri G, Rossi S, Piemonte F, D'Amico J, Tessa A, Santorelli FM, Casali C. Hereditary spastic paraparesis type 46 (SPG46): new GBA2 variants in a large Italian case series and review of the literature. Neurogenetics 2024; 25:51-67. [PMID: 38334933 PMCID: PMC11076336 DOI: 10.1007/s10048-024-00749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Hereditary spastic paraparesis (HSP) is a group of central nervous system diseases primarily affecting the spinal upper motor neurons, with different inheritance patterns and phenotypes. SPG46 is a rare, early-onset and autosomal recessive HSP, linked to biallelic GBA2 mutations. About thirty families have been described worldwide, with different phenotypes like complicated HSP, recessive cerebellar ataxia or Marinesco-Sjögren Syndrome. Herein, we report five SPG46 patients harbouring five novel GBA2 mutations, the largest series described in Italy so far. Probands were enrolled in five different centres and underwent neurological examination, clinical cognitive assessment, column imaging for scoliosis assessment, ophthalmologic examination, brain imaging, GBA2 activity in peripheral blood cells and genetic testing. Their phenotype was consistent with HSP, with notable features like upper gaze palsy and movement disorders. We review demographic, genetic, biochemical and clinical information from all documented cases in the existing literature, focusing on the global distribution of cases, the features of the syndrome, its variable presentation, new potential identifying features and the significance of measuring GBA2 enzyme activity.
Collapse
Affiliation(s)
- Ettore Cioffi
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy.
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy
| | - Olimpia Musumeci
- Department of Experimental and Clinical Medicine, University of Messina, Messina, Italy
| | - Salvatore Gallone
- Department of Neuroscience and Mental Health, Neurologia 1, A.O.U. Città Della Salute E Della Scienza, 10126, Turin, Italy
| | - Gabriella Silvestri
- Dipartimento Di Neuroscienze, Sez. Neurologia, Facoltà Di Medicina E Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento Di Neuroscienze, Organi Di Senso E Torace, UOC Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Salvatore Rossi
- Dipartimento Di Neuroscienze, Sez. Neurologia, Facoltà Di Medicina E Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fiorella Piemonte
- Unit of Muscular and Neurodegenerative Diseases, Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Jessica D'Amico
- Unit of Muscular and Neurodegenerative Diseases, Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Alessandra Tessa
- IRCCS Stella Maris Foundation, Calambrone, Via Dei Giacinti 2, 56128, Pisa, Italy
| | | | - Carlo Casali
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy
| |
Collapse
|
2
|
Cores Bartolomé C, Rubio Nazábal E, Sobrido MJ, Pérez Sousa C. SPG46 spastic paraplegia due to GBA2 variation: description of the first case in Spain. Neurologia 2023:S2173-5808(23)00011-1. [PMID: 37031796 DOI: 10.1016/j.nrleng.2022.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/29/2022] [Indexed: 04/11/2023] Open
Affiliation(s)
- C Cores Bartolomé
- Servicio de Neurología, Complexo Hospitalario Universitario de A Coruña (CHUAC), Coruña, Spain.
| | - E Rubio Nazábal
- Servicio de Neurología, Complexo Hospitalario Universitario de A Coruña (CHUAC), Coruña, Spain
| | - M J Sobrido
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servicio Galego de Saúde, Coruña, Spain
| | - C Pérez Sousa
- Servicio de Neurología, Complexo Hospitalario Universitario de A Coruña (CHUAC), Coruña, Spain
| |
Collapse
|
3
|
Mulkerrin G, França MC, Lope J, Tan EL, Bede P. Neuroimaging in hereditary spastic paraplegias: from qualitative cues to precision biomarkers. Expert Rev Mol Diagn 2022; 22:745-760. [PMID: 36042576 DOI: 10.1080/14737159.2022.2118048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION : Hereditary spastic paraplegias (HSP) include a clinically and genetically heterogeneous group of conditions. Novel imaging modalities have been increasingly applied to HSP cohorts which helps to quantitatively evaluate the integrity of specific anatomical structures and develop monitoring markers for both clinical care and future clinical trials. AREAS COVERED : Advances in HSP imaging are systematically reviewed with a focus on cohort sizes, imaging modalities, study design, clinical correlates, methodological approaches, and key findings. EXPERT OPINION : A wide range of imaging techniques have been recently applied to HSP cohorts. Common shortcomings of existing studies include the evaluation of genetically unconfirmed or admixed cohorts, limited sample sizes, unimodal imaging approaches, lack of postmortem validation, and a limited clinical battery, often exclusively focusing on motor aspects of the condition. A number of innovative methodological approaches have also be identified, such as robust longitudinal study designs, the implementation of multimodal imaging protocols, complementary cognitive assessments, and the comparison of HSP cohorts to MND cohorts. Collaborative multicentre initiatives may overcome sample limitations, and comprehensive clinical profiling with motor, extrapyramidal, cerebellar, and neuropsychological assessments would permit systematic clinico-radiological correlations. Academic achievements in HSP imaging have the potential to be developed into viable clinical applications to expedite the diagnosis and monitor disease progression.
Collapse
Affiliation(s)
| | - Marcondes C França
- Department of Neurology, The State University of Campinas, São Paulo, Brazil
| | - Jasmin Lope
- Computational Neuroimaging Group, Trinity College Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group, Trinity College Dublin, Ireland
| | - Peter Bede
- Department of Neurology, St James's Hospital, Dublin, Ireland.,Computational Neuroimaging Group, Trinity College Dublin, Ireland
| |
Collapse
|
4
|
Paraparesia espástica SPG-46 por mutación de GBA2: a propósito del primer caso descrito en España. Neurologia 2022. [DOI: 10.1016/j.nrl.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
5
|
Hereditary Spastic Paraplegia: An Update. Int J Mol Sci 2022; 23:ijms23031697. [PMID: 35163618 PMCID: PMC8835766 DOI: 10.3390/ijms23031697] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) is a rare neurodegenerative disorder with the predominant clinical manifestation of spasticity in the lower extremities. HSP is categorised based on inheritance, the phenotypic characters, and the mode of molecular pathophysiology, with frequent degeneration in the axon of cervical and thoracic spinal cord’s lateral region, comprising the corticospinal routes. The prevalence ranges from 0.1 to 9.6 subjects per 100,000 reported around the globe. Though modern medical interventions help recognize and manage the disorder, the symptomatic measures remain below satisfaction. The present review assimilates the available data on HSP and lists down the chromosomes involved in its pathophysiology and the mutations observed in the respective genes on the chromosomes. It also sheds light on the treatment available along with the oral/intrathecal medications, physical therapies, and surgical interventions. Finally, we have discussed the related diagnostic techniques as well as the linked pharmacogenomics studies under future perspectives.
Collapse
|
6
|
Gatti M, Magri S, Di Bella D, Sarto E, Taroni F, Mariotti C, Nanetti L. Spastic paraplegia type 46: novel and recurrent GBA2 gene variants in a compound heterozygous Italian patient with spastic ataxia phenotype. Neurol Sci 2021; 42:4741-4745. [PMID: 34251556 DOI: 10.1007/s10072-021-05463-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/03/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Spastic paraplegia type 46 (SPG46) is a rare autosomal recessive hereditary spastic paraplegia, caused by mutations in the non-lysosomal glucosylceramidase β2 (GBA2) gene. Worldwide, approximately twenty SPG46 families have been identified so far. CASE REPORT We describe a compound heterozygous Italian patient carrying a novel (p.Arg879Gln) and a recurrent (p.Arg399 *) GBA2 gene variant. The patient presented unsteady gait at age 2, and progressively manifested spastic-ataxia, scoliosis, mild intellectual decline, and bilateral cataract. DISCUSSION Clinical manifestations associated with GBA2 gene variants encompass a spectrum of overlapping phenotypes including cerebellar ataxia, spastic paraplegia, and Marinesco-Sjogren-like syndrome. We review previously reported cases of SPG46 and discuss possible genetic differential diagnosis.
Collapse
Affiliation(s)
- Marta Gatti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133, Milan, Italy
| | - Stefania Magri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133, Milan, Italy
| | - Daniela Di Bella
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133, Milan, Italy
| | - Elisa Sarto
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133, Milan, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133, Milan, Italy
| | - Caterina Mariotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133, Milan, Italy.
| | - Lorenzo Nanetti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria, 11, 20133, Milan, Italy
| |
Collapse
|