1
|
Bhatia S, Maswanganye TN, Jeje O, Winston D, Lamssali M, Deng D, Blakley I, Fodor AA, Jeffers-Francis L. Wastewater Speaks: Evaluating SARS-CoV-2 Surveillance, Sampling Methods, and Seasonal Infection Trends on a University Campus. Microorganisms 2025; 13:924. [PMID: 40284761 PMCID: PMC12029416 DOI: 10.3390/microorganisms13040924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Wastewater surveillance has emerged as a cost-effective and equitable approach for tracking the spread of SARS-CoV-2. In this study, we monitored the prevalence of SARS-CoV-2 on a university campus over three years (2021-2023) using wastewater-based epidemiology (WBE). Wastewater samples were collected from 11 manholes on campus, each draining wastewater from a corresponding dormitory building, and viral RNA concentrations were measured using reverse transcription-quantitative PCR (RT-qPCR). Weekly clinical case data were also obtained from the university health center. A strong positive and significant correlation was observed between Grab and Composite sampling methods, supporting their robustness as equally effective approaches for sample collection. Specifically, a strong correlation was observed between Aggie Village 4 Grab and Aggie Village 4 Composite samples (R2 = 0.84, p = 0.00) and between Barbee Grab and Barbee Composite samples (R2 = 0.80, p = 0.00). Additionally, higher viral RNA copies of SARS-CoV-2 (N1 gene) were detected during the Spring semester compared to the Fall and Summer semesters. Notably, elevations in raw N1 concentrations were observed shortly after the return of college students to campus, suggesting that these increases were predominantly associated with students returning at the beginning of the Fall and Spring semesters (January and August). To account for variations in fecal loading, SARS-CoV-2 RNA concentrations were normalized using Pepper Mild Mottle Virus (PMMoV), a widely used viral fecal biomarker. However, normalization using PMMoV did not improve correlations between SARS-CoV-2 RNA levels and clinical case data. Despite these findings, our study did not establish WBE as a consistently reliable complement to clinical testing in a university campus setting, contrary to many retrospective studies. One key limitation was that numerous off-campus students did not contribute to the campus wastewater system corresponding to the monitored dormitories. However, some off-campus students were still subjected to clinical testing at the university health center under mandated protocols. Moreover, the university health center discontinued reporting cases per dormitory after 2021, making direct comparisons more challenging. Nevertheless, this study highlights the continued value of WBE as a surveillance tool for monitoring infectious diseases and provides critical insights into its application in campus environments.
Collapse
Affiliation(s)
- Shilpi Bhatia
- Biology Department, College of Science and Technology, North Carolina A&T State University, 1601 E. Market Street, Greensboro, NC 27411, USA; (S.B.); (O.J.); (D.W.)
| | - Tinyiko Nicole Maswanganye
- Biology Department, College of Science and Technology, North Carolina A&T State University, 1601 E. Market Street, Greensboro, NC 27411, USA; (S.B.); (O.J.); (D.W.)
| | - Olusola Jeje
- Biology Department, College of Science and Technology, North Carolina A&T State University, 1601 E. Market Street, Greensboro, NC 27411, USA; (S.B.); (O.J.); (D.W.)
| | - Danielle Winston
- Biology Department, College of Science and Technology, North Carolina A&T State University, 1601 E. Market Street, Greensboro, NC 27411, USA; (S.B.); (O.J.); (D.W.)
| | - Mehdi Lamssali
- Built Environment Department, College of Science and Technology, North Carolina A&T State University, 1601 E. Market Street, Greensboro, NC 27411, USA; (M.L.); (D.D.)
| | - Dongyang Deng
- Built Environment Department, College of Science and Technology, North Carolina A&T State University, 1601 E. Market Street, Greensboro, NC 27411, USA; (M.L.); (D.D.)
| | - Ivory Blakley
- College of Computing and Informatics, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA (A.A.F.)
| | - Anthony A. Fodor
- College of Computing and Informatics, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA (A.A.F.)
| | - Liesl Jeffers-Francis
- Biology Department, College of Science and Technology, North Carolina A&T State University, 1601 E. Market Street, Greensboro, NC 27411, USA; (S.B.); (O.J.); (D.W.)
| |
Collapse
|
2
|
Spiteri S, Salamon I, Girolamini L, Pascale MR, Marino F, Derelitto C, Caligaris L, Paghera S, Ferracin M, Cristino S. Surfaces environmental monitoring of SARS-CoV-2: Loop mediated isothermal amplification (LAMP) and droplet digital PCR (ddPCR) in comparison with standard Reverse-Transcription quantitative polymerase chain reaction (RT-qPCR) techniques. PLoS One 2025; 20:e0317228. [PMID: 39899502 PMCID: PMC11790120 DOI: 10.1371/journal.pone.0317228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/24/2024] [Indexed: 02/05/2025] Open
Abstract
The persistence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) on substrates, and the impact of fomites on Coronavirus Disease 19 (COVID-19) transmission, is until now, widely discussed. Consequently, further investigations are required for a correct risk assessment in high-risk facilities such as hospitals, healthcare facilities (HCFs), and long-term care facilities (LTCFs). Therefore, appropriate surveillance and disinfection programs represent the best approach to guarantee the safety of these communities. This study proposes an environmental SARS-CoV-2 surfaces routine monitoring approach in HCF and communities' settings, to provide rapid and effective evaluation of surface hygienic conditions and the effectiveness of applied sanitization measures. Surfaces samples (n = 118) were collected using the SRK® kit (Copan Italia) from 2020 to 2023. Three molecular techniques were compared: Reverse Transcription Loop mediated isothermal AMPlification (RT-LAMP, Enbiotech), Reverse-Transcription quantitative polymerase chain reaction (RT-qPCR) (RT-qPCR, Seegene) and droplet digital PCR (ddPCR, Bio-Rad). For ddPCR, two RNA extraction methods were compared: TRIzol LS (Invitrogen) versus QIAmp Viral Mini kit (QIAGEN), showing how the latter is more suitable for surfaces. Regarding the quantitative ddPCR results, the ROC analysis allowed to reduce the manufacturer cut-off for droplets number (from 3 to 1) for the positive samples. Moreover, a new cut-off for the viral RNA copies' number/μL for each target (N1 and N2) on environmental monitoring was fixed at 2,82. The results obtained using the QIAmp kit, suggested that the N2 target is more stable in the environment and could be most suitable for the virus environmental detection. The percentage of positive samples was similar among the techniques (26% for RT-LAMP, 36% for ddPCR and 23% for RT-qPCR). Using RT-qPCR as reference method, a sensitivity (SE) of 30% for RT-LAMP and 41% for ddPCR was observed. By contrast, specificity (SP) was higher for RT-LAMP (75%) respect to ddPCR (66%). Comparing the faster RT-LAMP with the sensitive ddPCR the 26% and 74% of SE and SP for RT-LAMP, were reported. The low sensitivity for RT-LAMP and ddPCR could be explained with the use of clinical rather than environmental kits, other than the changing in the virus prevalence during the sampling campaign. Although the RT-LAMP requires improvements in term of SE and SP, this research presents an innovative environmental monitoring and prevention method for SARS-CoV-2, that could be extended to other pathogens that are under environmental surveillance.
Collapse
Affiliation(s)
- Simona Spiteri
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Irene Salamon
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Luna Girolamini
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Maria Rosaria Pascale
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Federica Marino
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Carlo Derelitto
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Laura Caligaris
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | | | - Manuela Ferracin
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Sandra Cristino
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Kranjec N, Steyer A, Cerar Kišek T, Koritnik T, Janko T, Bolješić M, Vedlin V, Mioč V, Lasecky B, Jurša T, Gonçalves J, Oberacher H, Trop Skaza A, Fafangel M, Galičič A. Wastewater Surveillance of SARS-CoV-2 in Slovenia: Key Public Health Tool in Endemic Time of COVID-19. Microorganisms 2024; 12:2174. [PMID: 39597564 PMCID: PMC11596113 DOI: 10.3390/microorganisms12112174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
With the reclassification of COVID-19 as an endemic disease and the relaxation of measures, Slovenia needed a complementary system for monitoring SARS-CoV-2 infections. This article provides an overview of the epidemiological situation of SARS-CoV-2 in Slovenia using a wastewater surveillance system, demonstrating its usefulness as a complementary tool in epidemiological surveillance. This study found that estimated SARS-CoV-2 infections in Slovenia peaked in September 2022 and showed a declining trend with subsequent lower peaks in March-April and December 2023, mirroring the trends observed from clinical data. Based on both surveillance systems, the most prevalent variant in 2022 was BA.5. By 2023, BQ.1 and other Omicron variants increased in prevalence. By the end of 2023, XBB sublineages and the BA.2.86 variant had become predominant, demonstrating consistent dynamic shifts in variant distribution across both monitoring methods. This study found that wastewater surveillance at wastewater treatment plants in Slovenia effectively tracked SARS-CoV-2 infection trends, showing a moderate to strong correlation with clinical data and providing early indications of changes in infection trends and variant emergence. Despite limitations during periods of low virus concentration, the system proved significant in providing early warnings of infection trends and variant emergence, thus enhancing public health response capabilities.
Collapse
Affiliation(s)
- Natalija Kranjec
- National Institute of Public Health, Trubarjeva ulica 2, 1000 Ljubljana, Slovenia
| | - Andrej Steyer
- National Laboratory for Health, Environment and Food, Prvomajska ulica 1, 2000 Maribor, Slovenia
| | - Tjaša Cerar Kišek
- National Laboratory for Health, Environment and Food, Prvomajska ulica 1, 2000 Maribor, Slovenia
| | - Tom Koritnik
- National Laboratory for Health, Environment and Food, Prvomajska ulica 1, 2000 Maribor, Slovenia
| | - Tea Janko
- National Laboratory for Health, Environment and Food, Prvomajska ulica 1, 2000 Maribor, Slovenia
| | - Maja Bolješić
- National Laboratory for Health, Environment and Food, Prvomajska ulica 1, 2000 Maribor, Slovenia
| | - Vid Vedlin
- National Laboratory for Health, Environment and Food, Prvomajska ulica 1, 2000 Maribor, Slovenia
| | - Verica Mioč
- National Laboratory for Health, Environment and Food, Prvomajska ulica 1, 2000 Maribor, Slovenia
| | - Barbara Lasecky
- National Laboratory for Health, Environment and Food, Prvomajska ulica 1, 2000 Maribor, Slovenia
| | - Tatjana Jurša
- National Laboratory for Health, Environment and Food, Prvomajska ulica 1, 2000 Maribor, Slovenia
| | - José Gonçalves
- Marine and Environmental Sciences Centre, Aquatic Research Network Associate Laboratory, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Muellerstrasse 44, 6020 Innsbruck, Austria
| | - Alenka Trop Skaza
- National Institute of Public Health, Trubarjeva ulica 2, 1000 Ljubljana, Slovenia
| | - Mario Fafangel
- National Institute of Public Health, Trubarjeva ulica 2, 1000 Ljubljana, Slovenia
| | - An Galičič
- National Institute of Public Health, Trubarjeva ulica 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Nema RK, Singh S, Singh AK, Sarma DK, Diwan V, Tiwari RR, Mondal RK, Mishra PK. Protocol for detection of pathogenic enteric RNA viruses by regular monitoring of environmental samples from wastewater treatment plants using droplet digital PCR. SCIENCE IN ONE HEALTH 2024; 3:100080. [PMID: 39525942 PMCID: PMC11546125 DOI: 10.1016/j.soh.2024.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The present comprehensive protocol is focused on the detection of pathogenic enteric RNA viruses, explicitly focusing on norovirus genogroup Ⅱ (GⅡ), astrovirus, rotavirus, Aichi virus, sapovirus, hepatitis A and E viruses in wastewater treatment plants through droplet digital PCR (ddPCR). Enteric viruses are of significant public health concern, as they are the leading cause of diseases like gastroenteritis. Regular monitoring of environmental samples, particularly from wastewater treatment plants, is crucial for early detection and control of these viruses. This research aims to improve the understanding of the prevalence and dynamics of enteric viruses in urban India and will serve as a model for similar studies in other regions. Our protocol's objective is to establish a novel ddPCR-based methodology for the detection and molecular characterization of enteric viruses present in wastewater samples sourced from Bhopal, India. Our assay is capable of accurately quantifying virus concentrations without standard curves, minimizing extensive optimization, and enhancing sensitivity and precision, especially for low-abundance targets. METHODS The study involves fortnightly collecting and analyzing samples from nine wastewater treatment plants over two years, ensuring comprehensive coverage and consistent data. Our study innovatively applies ddPCR to simultaneously detect and quantify enteric viruses in wastewater, a more advanced technique. Additionally, we will employ next-generation sequencing for detailed viral genome identification in samples tested positive for pathogenic viruses. CONCLUSION This study will aid in understanding these viruses' genetic diversity and mutation rates, which is crucial for developing tailored intervention strategies. The findings will be instrumental in shaping public health responses and improving epidemiological surveillance, especially in localities heaving sewage networks.
Collapse
Affiliation(s)
- Ram Kumar Nema
- Division of Environmental Biotechnology Genetics and Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Surya Singh
- Division of Environmental Monitoring and Exposure Assessment (Water & Soil), ICMR-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Ashutosh Kumar Singh
- Division of Environmental Biotechnology Genetics and Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Devojit Kumar Sarma
- Division of Environmental Biotechnology Genetics and Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Vishal Diwan
- Division of Environmental Monitoring and Exposure Assessment (Water & Soil), ICMR-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Rajnarayan R. Tiwari
- ICMR - National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Rajesh Kumar Mondal
- Division of Microbiology, Immunology & Pathology, ICMR-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Pradyumna Kumar Mishra
- Division of Environmental Biotechnology Genetics and Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal 462030, India
| |
Collapse
|
5
|
Starke JC, Bell NS, Martinez CM, Friberg IK, Lawley C, Sriskantharajah V, Hirschberg DL. Measuring SARS-CoV-2 RNA concentrations in neighborhood wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172021. [PMID: 38552966 DOI: 10.1016/j.scitotenv.2024.172021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Longitudinal wastewater sampling during the COVID-19 pandemic was an important aspect of disease surveillance, adding to a more complete understanding of infection dynamics and providing important data for community public health monitoring and intervention planning. This was largely accomplished by testing SARS-CoV-2 RNA concentrations in samples from municipal wastewater treatment plants (WWTPs). We evaluated the utility of testing for virus levels upstream from WWTP within the residential neighborhoods that feed into the WWTP. We propose that monitoring virus dynamics across residential neighborhoods could reveal important public health-relevant information about community sub-group heterogeneity in virus concentrations. PRINCIPAL RESULTS: Virus concentration patterns display heterogeneity within neighborhoods and between neighborhoods over time. Sewage SARS-CoV-2 RNA concentrations as measured by RT-qPCR also corresponded closely to verified COVID-19 infection counts within individual neighborhoods. More importantly, our data suggest the loss of disease-relevant public health information when sampling occurs only at the level of WWTP instead of upstream in neighborhoods. Spikes in SARS-CoV-2 RNA concentrations in neighborhoods are often masked by dilution from other neighborhoods in the WWTP samples. MAJOR CONCLUSIONS: Wastewater-based epidemiology (WBE) employed at WWTP reliably detects SARS-CoV-2 in a city-sized population but provides less actionable public health information about neighborhoods experiencing greater viral infection and disease. Neighborhood sewershed sampling reveals important population-based information about local virus dynamics and improves opportunities for public health intervention. Longitudinally employed, neighborhood sewershed surveillance may provide a 3-6 day early warning of SARS-CoV-2 infection spikes and, importantly, highly specific information on subpopulations in a community particularly at higher risk at different points in time. Sampling in neighborhoods may thus provide timely and cost-saving information for targeted interventions within communities.
Collapse
Affiliation(s)
| | - Nicole S Bell
- RAIN Incubator, Tacoma, WA, USA; Squally Creek, LLC, Tacoma, WA, USA
| | - Chloe Mae Martinez
- RAIN Incubator, Tacoma, WA, USA; University of Washington-Tacoma, Tacoma, WA, USA
| | | | | | | | - David L Hirschberg
- RAIN Incubator, Tacoma, WA, USA; School of Engineering and Technology, University of Washington-Tacoma, Tacoma, WA, USA
| |
Collapse
|
6
|
Majumdar R, Taye B, Bjornberg C, Giljork M, Lynch D, Farah F, Abdullah I, Osiecki K, Yousaf I, Luckstein A, Turri W, Sampathkumar P, Moyer AM, Kipp BR, Cattaneo R, Sussman CR, Navaratnarajah CK. From pandemic to endemic: Divergence of COVID-19 positive-tests and hospitalization numbers from SARS-CoV-2 RNA levels in wastewater of Rochester, Minnesota. Heliyon 2024; 10:e27974. [PMID: 38515669 PMCID: PMC10955309 DOI: 10.1016/j.heliyon.2024.e27974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
Traditionally, public health surveillance relied on individual-level data but recently wastewater-based epidemiology (WBE) for the detection of infectious diseases including COVID-19 became a valuable tool in the public health arsenal. Here, we use WBE to follow the course of the COVID-19 pandemic in Rochester, Minnesota (population 121,395 at the 2020 census), from February 2021 to December 2022. We monitored the impact of SARS-CoV-2 infections on public health by comparing three sets of data: quantitative measurements of viral RNA in wastewater as an unbiased reporter of virus level in the community, positive results of viral RNA or antigen tests from nasal swabs reflecting community reporting, and hospitalization data. From February 2021 to August 2022 viral RNA levels in wastewater were closely correlated with the oscillating course of COVID-19 case and hospitalization numbers. However, from September 2022 cases remained low and hospitalization numbers dropped, whereas viral RNA levels in wastewater continued to oscillate. The low reported cases may reflect virulence reduction combined with abated inclination to report, and the divergence of virus levels in wastewater from reported cases may reflect COVID-19 shifting from pandemic to endemic. WBE, which also detects asymptomatic infections, can provide an early warning of impending cases, and offers crucial insights during pandemic waves and in the transition to the endemic phase.
Collapse
Affiliation(s)
| | - Biruhalem Taye
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | - Iris Yousaf
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | - Priya Sampathkumar
- Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ann M. Moyer
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Benjamin R. Kipp
- Advanced Diagnostics Laboratory, Mayo Clinic, Rochester, MN, USA
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Caroline R. Sussman
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
7
|
Rezaeitavabe F, Rezaie M, Modayil M, Pham T, Ice G, Riefler G, Coschigano KT. Beyond linear regression: Modeling COVID-19 clinical cases with wastewater surveillance of SARS-CoV-2 for the city of Athens and Ohio University campus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169028. [PMID: 38061656 DOI: 10.1016/j.scitotenv.2023.169028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 01/18/2024]
Abstract
Wastewater-based surveillance has emerged as a detection tool for population-wide infectious diseases, including coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Infected individuals shed the virus, which can be detected in wastewater using molecular techniques such as reverse transcription-digital polymerase chain reaction (RT-dPCR). This study examined the association between the number of clinical cases and the concentration of SARS-CoV-2 in wastewater beyond linear regression and for various normalizations of viral loads. Viral loads were measured in a total of 446 wastewater samples during the period from August 2021 to April 2022. These samples were collected from nine different locations, with 220 samples taken from four specific sites within the city of Athens and 226 samples from five sites within Ohio University. The correlation between COVID-19 cases and wastewater viral concentrations, which was estimated using the Pearson correlation coefficient, was statistically significant and ranged from 0.6 to 0.9. In addition, time-lagged cross correlation was applied to identify the lag time between clinical and wastewater data, estimated 4 to 7 days. While we also explored the effect on the correlation coefficients of various normalizations of viral loads accounting for procedural loss or amount of fecal material and of estimated lag times, these alternative specifications did not change our substantive conclusions. Additionally, several linear and non-linear regression models were applied to predict the COVID-19 cases given wastewater data as input. The non-linear approach was found to yield the highest R-squared and Pearson correlation and lowest Mean Absolute Error values between the predicted and actual number of COVID-19 cases for both aggregated OHIO Campus and city data. Our results provide support for previous studies on correlation and time lag and new evidence that non-linear models, approximated with artificial neural networks, should be implemented for WBS of contagious diseases.
Collapse
Affiliation(s)
- Fatemeh Rezaeitavabe
- Ohio University, Russ College of Engineering, Department of Civil and Environmental Engineering, Athens, OH 45701, USA
| | - Mehdi Rezaie
- Kansas State University, Department of Physics, Manhattan, KS 66506, USA
| | - Maria Modayil
- Ohio University, Division of Diversity and Inclusion, Athens, OH 45701, USA; Ohio University, College of Health Sciences and Professions, Department of Interdisciplinary Health Studies, Athens, OH 45701, USA
| | - Tuyen Pham
- Ohio University, Voinovich School of Leadership and Public Service, Athens, OH 45701, USA
| | - Gillian Ice
- Ohio University, College of Health Sciences and Professions, Department of Interdisciplinary Health Studies, Athens, OH 45701, USA; Ohio University, Heritage College of Osteopathic Medicine, Department of Social Medicine, Athens, OH 45701, USA
| | - Guy Riefler
- Ohio University, Russ College of Engineering, Department of Civil and Environmental Engineering, Athens, OH 45701, USA
| | - Karen T Coschigano
- Ohio University, Heritage College of Osteopathic Medicine, Department of Biomedical Sciences, Athens, OH 45701, USA.
| |
Collapse
|
8
|
Kumar M, Joshi M, Jiang G, Yamada R, Honda R, Srivastava V, Mahlknecht J, Barcelo D, Chidambram S, Khursheed A, Graham DW, Goswami R, Kuroda K, Tiwari A, Joshi C. Response of wastewater-based epidemiology predictor for the second wave of COVID-19 in Ahmedabad, India: A long-term data Perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122471. [PMID: 37652227 DOI: 10.1016/j.envpol.2023.122471] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/30/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
In this work, we present an eight-month longitudinal study of wastewater-based epidemiology (WBE) in Ahmedabad, India, where wastewater surveillance was introduced in September 2020 after the successful containment of the first wave of COVID-19 to predict the resurge of the infection during the second wave of the pandemic. The study aims to elucidate the weekly resolution of the SARS-CoV-2 RNA data for eight months in wastewater samples to predict the COVID-19 situation and identify hotspots in Ahmedabad. A total of 287 samples were analyzed for SARS-CoV-2 RNA using RT-PCR, and Spearman's rank correlation was applied to depict the early warning potential of WBE. During September 2020 to April 2021, the increasing number of positive wastewater influent samples correlated with the growing number of confirmed clinical cases. It also showed clear evidence of early detection of the second wave of COVID-19 in Ahmedabad (March 2021). 258 out of a total 287 samples were detected positive with at least two out of three SARS-CoV-2 genes (N, ORF- 1 ab, and S). Monthly variation represented a significant decline in all three gene copies in October compared to September 2020, followed by an abrupt increase in November 2020. A similar increment in the gene copies was observed in March and April 2021, which would be an indicator of the second wave of COVID-19. A lead time of 1-2 weeks was observed in the change of gene concentrations compared with clinically confirmed cases. Measured wastewater ORF- 1 ab gene copies ranged from 6.1 x 102 (October 2020) to 1.4 x 104 (November 2020) copies/mL, and wastewater gene levels typically lead to confirmed cases by one to two weeks. The study highlights the value of WBE as a monitoring tool to predict waves within a pandemic, identify local disease hotspots within a city, and guide rapid management interventions.
Collapse
Affiliation(s)
- Manish Kumar
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand, 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, 64849, Nuevo Leon, Mexico.
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, 248007, India
| | - Guangming Jiang
- School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Australia
| | - Rintaro Yamada
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, 920-1192, Japan; Yachiyo Engineering Co., Ltd. Tokyo, 111-8648, Japan
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Vaibhav Srivastava
- Department of Botany, Faculty of Science, University of Allahabad, Prayagraj, 211002, India
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Damia Barcelo
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand, 248007, India; Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18-26, 08034, Barcelona, Spain; Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnol'ogic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H2O, 17003, Girona, Spain
| | | | - Anwar Khursheed
- Department of Civil Engineering, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia
| | - David W Graham
- Department of Civil and Environmental Engineering, Newcastle University, Newcastle, UK
| | - Ritusmita Goswami
- Centre for Ecology, Environment and Sustainable Development, Tata Institute of Social Sciences, Guwahati, India
| | - Keisuke Kuroda
- Department of Environmental and Civil Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, 939-0398, Japan
| | - Ananda Tiwari
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, 70701 Kuopio, Finland
| | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, 248007, India
| |
Collapse
|