1
|
Wen W, Su Y, Yang X, Liang Y, Guo Y, Liu H. Global economic structure transition boosts PM 2.5-related human health impact in Belt and Road Initiative. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170071. [PMID: 38242465 DOI: 10.1016/j.scitotenv.2024.170071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/17/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
The Belt and Road Initiative (BRI) is an open platform for international cooperation proposed by China to promote common global development and prosperity. The BRI can promote the optimal allocation of resources and promote in-depth cooperation in international trade. Meanwhile, it can establish a green supply chain cooperation network to help BRI countries achieve green transformation. BRI has made a notable contribution to the rapid growth of cross-border trade. However, it has also brought environmental impacts. Given that little attention has been paid to the trade-embodied particulate matter 2.5 related human health impacts (PM2.5-HHI) throughout the BRI, this study accounts for and traces the embodied PM2.5-HHI flows between the BRI countries and non-Belt and Road Initiative (non-BRI) countries. Moreover, this study also uncovers the critical socioeconomic drivers of PM2.5-HHI changes in BRI countries during 1990-2015, based on the multi-regional input-output based structural decomposition analysis (MRIO-SDA). Results show that, firstly, BRI countries had significantly increased their economic added value by exporting products to the non-BRI countries. They also have brought PM2.5-HHI to themselves. Secondly, the final demand of BRI countries was the largest potential driving force of PM2.5-HHI of BRI countries. Thirdly, the emission intensity change of BRI is the key socioeconomic factor for reducing PM2.5-HHI. While per capita final demand level change of BRI and production structure change of non-BRI are the key socioeconomic factors for increasing PM2.5-HHI. The study's findings on the one hand can help reduce the PM2.5-HHI and impacts of environmental pollution of BRI countries from a global perspective by providing scientific support. On the other hand, they can help provide relevant policy recommendations for the green transformation of BRI and the construction of green BRI.
Collapse
Affiliation(s)
- Wen Wen
- School of Humanities and Social Sciences, Beijing Institute of Technology, Beijing 100081, China
| | - Yang Su
- School of Information Management, Beijing Information Science & Technology University, Beijing 100010, China
| | - Xuechun Yang
- Institute of Circular Economy, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Yuhan Liang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, Guangdong 510006, China.
| | - Yangyang Guo
- Center for Energy and Environmental Policy Research, Beijing Institute of Technology, Beijing 100081, China
| | - Hongrui Liu
- Unit 32182 of People's Liberation Army, Beijing 100042, China
| |
Collapse
|
2
|
Frost K, Hua I. Regionalized chemical footprint method to identify aquatic ecotoxicity hotspots of hard disk drive rare-earth magnets. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:272-283. [PMID: 35535799 PMCID: PMC10087400 DOI: 10.1002/ieam.4631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/25/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
The chemical footprint (ChF), which combines life cycle assessment (LCA) and quantitative risk assessment principles, shows promise for exploring localized toxicity impacts of manufacturing processes, which is not achievable with LCA alone. An updated ChF method was applied to the global annual production of a hard disk drive (HDD) rare-earth element (REE) magnet assembly, assuming a supply chain in East and Southeast Asia. Existing REE magnet assembly LCA inventories were combined with supplier manufacturing locations to create a cradle-to-gate spatial unit process inventory. Emissions from the electricity grid for each manufacturing site were downscaled to hydrobasins of interest using the Global Power Plant Database. The predicted no effect concentration (PNEC) was chosen as the ecotoxicity pollution boundary to determine the threshold for dilution of each chemical of concern (CoC) and to calculate the ChF. Finally, a high-resolution hydrological database provided volumes of the freshwater river reach draining each hydrobasin and was used to calculate the dilution capacity (DC), that is, the volume required to remain at or below the PNEC for each CoC. The total ChF of annual REE magnet assembly production was 6.91E12 m3 , with hotspots in watersheds in China and Thailand where REEs are processed and steel metalworking takes place. Metals were the primary CoCs, with cadmium and chromium(VI) comprising 77% of total ChF. Dilution factors ranged from 5E-09 to 9E + 03 of the DC of the waterbody, reflecting the spatial variability in both emissions and DC. An advanced ChF method was demonstrated for HDD REE magnets. Scoping is a key step required to reduce model complexity. The use of regionalized fate factors and standardized hydrological data sets improves the comparability of ChFs across hydrobasins. Additional work to combine data sets into readily available tools is needed to increase usability and standardization of the ChF method and promote wider adoption. Integr Environ Assess Manag 2023;19:272-283. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Kali Frost
- The Division of Environmental and Ecological EngineeringPurdue UniversityWest LafayetteIndianaUSA
| | - Inez Hua
- The Division of Environmental and Ecological EngineeringPurdue UniversityWest LafayetteIndianaUSA
- The Lyles School of Civil EngineeringPurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
3
|
Zhang Y, Guo S, Gong Y, Wang L. Potential trade-off between water consumption and water quality: life cycle assessment of nonaqueous solvent dyeing. WATER RESEARCH 2022; 215:118222. [PMID: 35248906 DOI: 10.1016/j.watres.2022.118222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/20/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Fashion industry consumes over 60% of global fibers and attracts increasing attentions due to its environmentally polluting supply chain. In addition to natural fibers cultivation, wet processes of textile manufacturing are also important contributors to water-related impacts due to their large freshwater consumption and the production of chemicals containing wastewater. Despite of efforts made in improving efficiency of water use and wastewater treatment in textile industry, innovative 'water-free' technologies, such as nonaqueous dyeing technology using organic solvent, have been developed and demonstrated to reduce water consumption significantly. However, the potential impact on water quality by organic solvents induced in supply chain of this emerging technology remains unassessed, posing an unknown risk of its promotion. Hence, in the present study, a comprehensive life cycle assessment is applied to evaluate its full environmental impacts, including those on ecosystem and human health caused by decamethylcyclopentasiloxane (D5) as the solvent used. Further, the nonaqueous dyeing system is compared with traditional aqueous dyeing technology from both environmental and economic perspectives. Results indicate that nonaqueous dyeing system is advanced in most of environment categories except for abiotic depletion potential (ADP) and Ecotoxicity. However, scenarios analysis reveal that these findings are influenced by the loss fraction of D5 during the solvent recovery process. It is suggested that the loss fraction should be controlled below 2% o.w.f. for the nonaqueous dyeing technology to be advanced throughout all environmental categories. Nonaqueous D5 dyeing could reduce water consumption by 61.30%-79.95% and greenhouse gas emissions by 43.70% compared to the traditional system, delivering a promising contribution to China's 2060 carbon neutrality ambition. Sensitivity and uncertainty analyses are also conducted to investigate the effects of the key parameters (incl. inventory data and USEtox model inputs) and demonstrate the robustness of our assessment.
Collapse
Affiliation(s)
- Yi Zhang
- College of Environment and Resource Science, Zhejiang University, Hangzhou, 310058, PR China; Key Laboratory of Coastal Environment and Resources of Zhejiang Province (KLaCER), School of Engineering, Westlake University, Hangzhou, 310024, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang Province, China
| | - Shengcai Guo
- School of Material Design and Engineering, Beijing Institute of Fashion Technology, Beijing, 100029, China
| | - Yan Gong
- School of Material Design and Engineering, Beijing Institute of Fashion Technology, Beijing, 100029, China.
| | - Lei Wang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province (KLaCER), School of Engineering, Westlake University, Hangzhou, 310024, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang Province, China.
| |
Collapse
|
4
|
Falakdin P, Terzaghi E, Di Guardo A. Spatially resolved environmental fate models: A review. CHEMOSPHERE 2022; 290:133394. [PMID: 34953876 DOI: 10.1016/j.chemosphere.2021.133394] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Spatially resolved environmental models are important tools to introduce and highlight the spatial variability of the real world into modeling. Although various spatial models have been developed so far, yet the development and evaluation of these models remain a challenging task due to several difficulties related to model setup, computational cost, and obtaining high-resolution input data (e.g., monitoring and emission data). For example, atmospheric transport models can be used when high resolution predicted concentrations in atmospheric compartments are required, while spatial multimedia fate models may be preferred for regulatory risk assessment, life cycle impact assessment of chemicals, or when the partitioning of chemical substances in a multimedia environment is considered. The goal of this paper is to review and compare different spatially resolved environmental models, according to their spatial, temporal and chemical domains, with a closer insight into spatial multimedia fate models, to achieve a better understanding of their strengths and limitations. This review also points out several requirements for further improvement of existing models as well as for their integration.
Collapse
Affiliation(s)
- Parisa Falakdin
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100, Como, CO, Italy.
| | - Elisa Terzaghi
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100, Como, CO, Italy.
| | - Antonio Di Guardo
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100, Como, CO, Italy.
| |
Collapse
|
5
|
Persson L, Carney Almroth BM, Collins CD, Cornell S, de Wit CA, Diamond ML, Fantke P, Hassellöv M, MacLeod M, Ryberg MW, Søgaard Jørgensen P, Villarrubia-Gómez P, Wang Z, Hauschild MZ. Outside the Safe Operating Space of the Planetary Boundary for Novel Entities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1510-1521. [PMID: 35038861 PMCID: PMC8811958 DOI: 10.1021/acs.est.1c04158] [Citation(s) in RCA: 324] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 05/04/2023]
Abstract
We submit that the safe operating space of the planetary boundary of novel entities is exceeded since annual production and releases are increasing at a pace that outstrips the global capacity for assessment and monitoring. The novel entities boundary in the planetary boundaries framework refers to entities that are novel in a geological sense and that could have large-scale impacts that threaten the integrity of Earth system processes. We review the scientific literature relevant to quantifying the boundary for novel entities and highlight plastic pollution as a particular aspect of high concern. An impact pathway from production of novel entities to impacts on Earth system processes is presented. We define and apply three criteria for assessment of the suitability of control variables for the boundary: feasibility, relevance, and comprehensiveness. We propose several complementary control variables to capture the complexity of this boundary, while acknowledging major data limitations. We conclude that humanity is currently operating outside the planetary boundary based on the weight-of-evidence for several of these control variables. The increasing rate of production and releases of larger volumes and higher numbers of novel entities with diverse risk potentials exceed societies' ability to conduct safety related assessments and monitoring. We recommend taking urgent action to reduce the harm associated with exceeding the boundary by reducing the production and releases of novel entities, noting that even so, the persistence of many novel entities and/or their associated effects will continue to pose a threat.
Collapse
Affiliation(s)
- Linn Persson
- Stockholm
Environment Institute, Linnégatan 87D, Box 24218, 104
51 Stockholm, Sweden
| | - Bethanie M. Carney Almroth
- Department
of Biology and Environmental Sciences, University
of Gothenburg, Box 465, 405 30 Gothenburg, Sweden
| | - Christopher D. Collins
- Department
of Geography and Environmental Sciences, University of Reading, PO Box 217, Reading, Berkshire, RG6 6AH, United Kingdom
| | - Sarah Cornell
- Stockholm
Resilience Centre, Stockholm University, 106 91 Stockholm, Sweden
| | - Cynthia A. de Wit
- Department
of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| | - Miriam L. Diamond
- Department
of Earth Sciences; and School of the Environment, University of Toronto, Toronto, Canada M5S 3B1
| | - Peter Fantke
- Quantitative
Sustainability Assessment, Department of Technology, Management and
Economics, Technical University of Denmark, Produktionstorvet 424, 2800, Kgs. Lyngby, Denmark
| | - Martin Hassellöv
- Department
of Marine Sciences, University of Gothenburg, Box 100, 405 30 Gothenburg, Sweden
| | - Matthew MacLeod
- Department
of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| | - Morten W. Ryberg
- Quantitative
Sustainability Assessment, Department of Technology, Management and
Economics, Technical University of Denmark, Produktionstorvet 424, 2800, Kgs. Lyngby, Denmark
| | - Peter Søgaard Jørgensen
- Stockholm
Resilience Centre, Stockholm University, 106 91 Stockholm, Sweden
- Global
Economic Dynamics and the Biosphere, Royal
Swedish Academy of Sciences, Lilla Frescativägen 4A, 104
05 Stockholm, Sweden
| | | | - Zhanyun Wang
- Institute
of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Michael Zwicky Hauschild
- Quantitative
Sustainability Assessment, Department of Technology, Management and
Economics, Technical University of Denmark, Produktionstorvet 424, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Navarro J, Hadjikakou M, Ridoutt B, Parry H, Bryan BA. Pesticide Toxicity Hazard of Agriculture: Regional and Commodity Hotspots in Australia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1290-1300. [PMID: 33404222 DOI: 10.1021/acs.est.0c05717] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
While the need to reduce the impacts of pesticide use on the environment is increasingly acknowledged, the existing data on the use of agricultural chemicals are hardly adequate to support this goal. This study presents a novel, spatially explicit, national-scale baseline analysis of pesticide toxicity hazard (the potential for chemicals to do harm). The results show an uneven contribution of land uses and growing regions toward the national aggregate toxicity hazard. A hectare of horticultural crops generates on average ten times more aquatic ecotoxicity hazard and five times more human toxicity hazard than a hectare of broadacre crops, but the higher yields and incomes in horticulture mean that both sectors are similar in terms of environmental efficiency. Livestock is the sector with the least contribution to overall hazard, even when the indirect hazard associated with feed is considered. Metrics such as pesticide use (kg/ha) or spray frequency (sprays/ha), commonly reported in highly aggregated forms, are not linearly related to toxicity hazard and are therefore less informative in driving reductions in impact. We propose toxicity hazard as a more suitable indicator for real-world risk than quantity of pesticide used, especially because actual risk can often be difficult to quantify. Our results will help broaden the discussion around pathways toward sustainability in the land-use sector and identify targeted priorities for action.
Collapse
Affiliation(s)
- Javier Navarro
- CSIRO Agriculture & Food, 306 Carmody Road, St. Lucia, Queensland 4067, Australia
| | - Michalis Hadjikakou
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | - Bradley Ridoutt
- CSIRO Agriculture & Food, Research Way, Clayton, Victoria 3168, Australia
| | - Hazel Parry
- CSIRO Agriculture & Food, 41 Boggo Road, Dutton Park, Queensland 4102, Australia
| | - Brett A Bryan
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| |
Collapse
|
7
|
Fantke P, McKone TE, Tainio M, Jolliet O, Apte JS, Stylianou KS, Illner N, Marshall JD, Choma EF, Evans JS. Global Effect Factors for Exposure to Fine Particulate Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6855-6868. [PMID: 31132267 PMCID: PMC6613786 DOI: 10.1021/acs.est.9b01800] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 05/21/2023]
Abstract
We evaluate fine particulate matter (PM2.5) exposure-response models to propose a consistent set of global effect factors for product and policy assessments across spatial scales and across urban and rural environments. Relationships among exposure concentrations and PM2.5-attributable health effects largely depend on location, population density, and mortality rates. Existing effect factors build mostly on an essentially linear exposure-response function with coefficients from the American Cancer Society study. In contrast, the Global Burden of Disease analysis offers a nonlinear integrated exposure-response (IER) model with coefficients derived from numerous epidemiological studies covering a wide range of exposure concentrations. We explore the IER, additionally provide a simplified regression as a function of PM2.5 level, mortality rates, and severity, and compare results with effect factors derived from the recently published global exposure mortality model (GEMM). Uncertainty in effect factors is dominated by the exposure-response shape, background mortality, and geographic variability. Our central IER-based effect factor estimates for different regions do not differ substantially from previous estimates. However, IER estimates exhibit significant variability between locations as well as between urban and rural environments, driven primarily by variability in PM2.5 concentrations and mortality rates. Using the IER as the basis for effect factors presents a consistent picture of global PM2.5-related effects for use in product and policy assessment frameworks.
Collapse
Affiliation(s)
- Peter Fantke
- Quantitative
Sustainability Assessment, Department of Technology, Management and
Economics, Technical University of Denmark, Produktionstorvet 424, 2800 Kongens Lyngby, Denmark
| | - Thomas E. McKone
- School
of Public Health, University of California, Berkeley, California 94720, United States
- Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Marko Tainio
- UKCRC
Centre for Diet and Activity Research, University
of Cambridge, Cambridge, United Kingdom
- Systems
Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Olivier Jolliet
- School of
Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joshua S. Apte
- Department
of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Katerina S. Stylianou
- School of
Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nicole Illner
- Quantitative
Sustainability Assessment, Department of Technology, Management and
Economics, Technical University of Denmark, Produktionstorvet 424, 2800 Kongens Lyngby, Denmark
| | - Julian D. Marshall
- Department
of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98122, United States
| | - Ernani F. Choma
- Department
of Environmental Health, Harvard Chan School
of Public Health, Boston, Massachusetts 02115, United States
| | - John S. Evans
- Department
of Environmental Health, Harvard Chan School
of Public Health, Boston, Massachusetts 02115, United States
| |
Collapse
|
8
|
Mutel C, Liao X, Patouillard L, Bare J, Fantke P, Frischknecht R, Hauschild M, Jolliet O, de Souza DM, Laurent A, Pfister S, Verones F. Overview and recommendations for regionalized life cycle impact assessment. THE INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT 2019; 24:856-865. [PMID: 33122880 PMCID: PMC7592718 DOI: 10.1007/s11367-018-1539-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/05/2018] [Indexed: 05/05/2023]
Abstract
PURPOSE Regionalized life cycle impact assessment (LCIA) has rapidly developed in the past decade, though its widespread application, robustness, and validity still faces multiple challenges. Under the umbrella of UNEP/SETAC Life Cycle Initiative, a dedicated cross-cutting working group on regionalized LCIA aims to provides an overview of the status of regionalization in LCIA methods. We give guidance and recommendations to harmonize and support regionalization in LCIA for developers of LCIA methods, LCI databases, and LCA software. METHOD A survey of current practice among regionalized LCIA method developers was conducted. The survey included questions on chosen method spatial resolution and scale, the spatial resolution of input parameters, choice of native spatial resolution and limitations, operationalization and alignment with life cycle inventory data, methods for spatial aggregation, the assessment of uncertainty from input parameters and model structure, and variability due to spatial aggregation. Recommendations are formulated based on the survey results and extensive discussion by the authors. RESULTS AND DISCUSSION Survey results indicate that majority of regionalized LCIA models have global coverage. Native spatial resolutions are generally chosen based on the availability of global input data. Annual modelled or measured elementary flow quantities are mostly used for aggregating characterization factors (CFs) to larger spatial scales, although some use proxies, such as population counts. Aggregated CFs are mostly available at the country level. Although uncertainty due to input parameter, model structure, and spatial aggregation are available for some LCIA methods, they are rarely implemented for LCA studies. So far, there is no agreement if a finer native spatial resolution is the best way to reduce overall uncertainty. When spatially differentiated models CFs are not easily available, archetype models are sometimes developed. CONCLUSIONS Regionalized LCIA methods should be provided as a transparent and consistent set of data and metadata using standardized data formats. Regionalized CFs should include both uncertainty and variability. In addition to the native-scale CFs, aggregated CFs should always be provided, and should be calculated as the weighted averages of constituent CFs using annual flow quantities as weights whenever available. This paper is an important step forward for increasing transparency, consistency and robustness in the development and application of regionalized LCIA methods.
Collapse
Affiliation(s)
- Chris Mutel
- Paul Scherrer Institute, 5232 PSI Villigen, Switzerland
| | - Xun Liao
- Industrial Process and Energy Systems Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL Valais Wallis, Rue de l'Industrie 17, CH-1951 Sion, Switzerland
- Quantis, EPFL Innovation Park (EIP-D), Lausanne, Switzerland
| | - Laure Patouillard
- CIRAIG, Polytechnique Montréal, P.O. Box 6079, Montréal, Québec H3C 3A7, Canada
- IFP Energies nouvelles, 1-4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France
- UMR 0210 INRA-AgroParisTech Economie publique, INRA, Thiverval-Grignon, France
| | - Jane Bare
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Peter Fantke
- Quantitative Sustainability Assessment Division, Department of Management Engineering, Technical University of Denmark, Bygningstorvet 116B, 2800 Kgs. Lyngby, Denmark
| | | | - Michael Hauschild
- Quantitative Sustainability Assessment Division, Department of Management Engineering, Technical University of Denmark, Bygningstorvet 116B, 2800 Kgs. Lyngby, Denmark
| | - Olivier Jolliet
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Danielle Maia de Souza
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, AB, Canada
- Département de Stratégie, Responsabilité Sociale et Environnementale, Université du Québec à Montréal, Montreal, H3C 3P8, QC, Canada
| | - Alexis Laurent
- Quantitative Sustainability Assessment Division, Department of Management Engineering, Technical University of Denmark, Bygningstorvet 116B, 2800 Kgs. Lyngby, Denmark
| | - Stephan Pfister
- Institute of Environmental Engineering, ETH Zurich, Switzerland
| | - Francesca Verones
- Industrial Ecology Programme, Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
9
|
Douziech M, Oldenkamp R, van Zelm R, King H, Hendriks AJ, Ficheux AS, Huijbregts MAJ. Confronting variability with uncertainty in the ecotoxicological impact assessment of down-the-drain products. ENVIRONMENT INTERNATIONAL 2019; 126:37-45. [PMID: 30776748 DOI: 10.1016/j.envint.2019.01.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/24/2019] [Accepted: 01/29/2019] [Indexed: 05/07/2023]
Abstract
The use of down-the-drain products and the resultant release of chemicals may lead to pressures on the freshwater environment. Ecotoxicological impact assessment is a commonly used approach to assess chemical products but is still influenced by several uncertainty and variability sources. As a result, the robustness and reliability of such assessments can be questioned. A comprehensive and systematic assessment of these sources is, therefore, needed to increase their utility and credibility. In this study, we present a method to systematically analyse the uncertainty and variability of the potential ecotoxicological impact (PEI) of chemicals using a portfolio of 54 shampoo products. We separately quantified the influence of the statistical uncertainty in the prediction of physicochemical properties and freshwater toxicity as predicted from Quantitative Structure-Property Relationships (QSPRs) and Quantitative Structure-Activity Relationships (QSARs) respectively, and of various sources of spatial and technological variability as well as variability in consumer habits via 2D Monte Carlo simulations. Overall, the variation in the PEIs of shampoo use was mainly the result of uncertainty due to the use of toxicity data from three species only. All uncertainty sources combined resulted in PEIs ranging on average over seven orders of magnitude (ratio of the 90th to the 10th percentile) so that an absolute quantification of the ecological risk would not be meaningful. In comparison, variation in shampoo composition was the most influential source of variability, although less than compared to uncertainty, leading to PEIs ranging over three orders of magnitude. Increasing the number of toxicity data by increasing the number of species, either through additional measurements or ecotoxicological modelling (e.g. using Interspecies Correlation Equations), should get priority to improve the reliability of PEIs. These conclusions are not limited to shampoos but are applicable more generally to the down-the-drain products since they all have similar data limitations and associated uncertainties relating to the availability of ecotoxicity data and variability in consumer habits and use.
Collapse
Affiliation(s)
- Mélanie Douziech
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, P.O. Box 9010, 6500, GL, Nijmegen, the Netherlands.
| | - Rik Oldenkamp
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, P.O. Box 9010, 6500, GL, Nijmegen, the Netherlands; Environment Department, University of York, York, United Kingdom
| | - Rosalie van Zelm
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, P.O. Box 9010, 6500, GL, Nijmegen, the Netherlands
| | - Henry King
- Safety & Environmental Assurance Centre, Unilever, Colworth Science Park, Bedfordshire MK441LQ, United Kingdom
| | - A Jan Hendriks
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, P.O. Box 9010, 6500, GL, Nijmegen, the Netherlands
| | - Anne-Sophie Ficheux
- Laboratoire d'Evaluation du Risque Chimique pour le Consommateur (LERCCo), Université Européenne de Bretagne e Université de Bretagne Occidentale (UEB-UBO), UFR Sciences et Techniques, 6 Av. Victor Le Gorgeu, CS93837, 29238 Brest Cedex 3, France
| | - Mark A J Huijbregts
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, P.O. Box 9010, 6500, GL, Nijmegen, the Netherlands
| |
Collapse
|
10
|
Fantke P, Aylward L, Bare J, Chiu WA, Dodson R, Dwyer R, Ernstoff A, Howard B, Jantunen M, Jolliet O, Judson R, Kirchhübel N, Li D, Miller A, Paoli G, Price P, Rhomberg L, Shen B, Shin HM, Teeguarden J, Vallero D, Wambaugh J, Wetmore BA, Zaleski R, McKone TE. Advancements in Life Cycle Human Exposure and Toxicity Characterization. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:125001. [PMID: 30540492 PMCID: PMC6371687 DOI: 10.1289/ehp3871] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND The Life Cycle Initiative, hosted at the United Nations Environment Programme, selected human toxicity impacts from exposure to chemical substances as an impact category that requires global guidance to overcome current assessment challenges. The initiative leadership established the Human Toxicity Task Force to develop guidance on assessing human exposure and toxicity impacts. Based on input gathered at three workshops addressing the main current scientific challenges and questions, the task force built a roadmap for advancing human toxicity characterization, primarily for use in life cycle impact assessment (LCIA). OBJECTIVES The present paper aims at reporting on the outcomes of the task force workshops along with interpretation of how these outcomes will impact the practice and reliability of toxicity characterization. The task force thereby focuses on two major issues that emerged from the workshops, namely considering near-field exposures and improving dose–response modeling. DISCUSSION The task force recommended approaches to improve the assessment of human exposure, including capturing missing exposure settings and human receptor pathways by coupling additional fate and exposure processes in consumer and occupational environments (near field) with existing processes in outdoor environments (far field). To quantify overall aggregate exposure, the task force suggested that environments be coupled using a consistent set of quantified chemical mass fractions transferred among environmental compartments. With respect to dose–response, the task force was concerned about the way LCIA currently characterizes human toxicity effects, and discussed several potential solutions. A specific concern is the use of a (linear) dose–response extrapolation to zero. Another concern addresses the challenge of identifying a metric for human toxicity impacts that is aligned with the spatiotemporal resolution of present LCIA methodology, yet is adequate to indicate health impact potential. CONCLUSIONS Further research efforts are required based on our proposed set of recommendations for improving the characterization of human exposure and toxicity impacts in LCIA and other comparative assessment frameworks. https://doi.org/10.1289/EHP3871.
Collapse
Affiliation(s)
- Peter Fantke
- Quantitative Sustainability Assessment Division, Department of Management Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lesa Aylward
- National Centre for Environmental Toxicology, University of Queensland, Brisbane, Australia
| | - Jane Bare
- U.S. EPA (Environmental Protection Agency), Cincinnati, Ohio, USA
| | - Weihsueh A Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Robin Dodson
- Silent Spring Institute, Newton, Massachusetts, USA
| | - Robert Dwyer
- International Copper Association, New York, New York, USA
| | | | | | - Matti Jantunen
- Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland
| | - Olivier Jolliet
- School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Nienke Kirchhübel
- Quantitative Sustainability Assessment Division, Department of Management Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Dingsheng Li
- School of Community Health Sciences, University of Nevada, Reno, Nevada, USA
| | - Aubrey Miller
- National Institute of Environmental Health Sciences, Bethesda, Maryland, USA
| | - Greg Paoli
- Risk Sciences International, Ottawa, Ontario, Canada
| | - Paul Price
- U.S. EPA, Research Triangle Park, North Carolina, USA
| | | | - Beverly Shen
- School of Public Health, University of California, Berkeley, California, USA
| | | | - Justin Teeguarden
- Health Effects and Exposure Science, Pacific Northwest National Laboratory, Richland, Washington, USA
| | | | - John Wambaugh
- U.S. EPA, Research Triangle Park, North Carolina, USA
| | | | - Rosemary Zaleski
- ExxonMobil Biomedical Sciences, Inc., Annandale, New Jersey, USA
| | - Thomas E McKone
- School of Public Health, University of California, Berkeley, California, USA
| |
Collapse
|
11
|
Fantke P, Jolliet O, Apte JS, Hodas N, Evans J, Weschler CJ, Stylianou KS, Jantunen M, McKone TE. Characterizing Aggregated Exposure to Primary Particulate Matter: Recommended Intake Fractions for Indoor and Outdoor Sources. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9089-9100. [PMID: 28682605 DOI: 10.1021/acs.est.7b02589] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Exposure to fine particulate matter (PM2.5) from indoor and outdoor sources is a leading environmental contributor to global disease burden. In response, we established under the auspices of the UNEP/SETAC Life Cycle Initiative a coupled indoor-outdoor emission-to-exposure framework to provide a set of consistent primary PM2.5 aggregated exposure factors. We followed a matrix-based mass balance approach for quantifying exposure from indoor and ground-level urban and rural outdoor sources using an effective indoor-outdoor population intake fraction and a system of archetypes to represent different levels of spatial detail. Emission-to-exposure archetypes range from global indoor and outdoor averages, via archetypal urban and indoor settings, to 3646 real-world cities in 16 parametrized subcontinental regions. Population intake fractions from urban and rural outdoor sources are lowest in Northern regions and Oceania and highest in Southeast Asia with population-weighted means across 3646 cities and 16 subcontinental regions of, respectively, 39 ppm (95% confidence interval: 4.3-160 ppm) and 2 ppm (95% confidence interval: 0.2-6.3 ppm). Intake fractions from residential and occupational indoor sources range from 470 ppm to 62 000 ppm, mainly as a function of air exchange rate and occupancy. Indoor exposure typically contributes 80-90% to overall exposure from outdoor sources. Our framework facilitates improvements in air pollution reduction strategies and life cycle impact assessments.
Collapse
Affiliation(s)
- Peter Fantke
- Quantitative Sustainability Assessment Division, Department of Management Engineering, Technical University of Denmark , Bygningstorvet 116B, 2800 Kgs. Lyngby, Denmark
| | - Olivier Jolliet
- School of Public Health, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Joshua S Apte
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| | - Natasha Hodas
- Division of Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - John Evans
- Department of Environmental Health, Harvard School of Public Health , Boston, Massachusetts 02115, United States
- Cyprus International Institute for Environment and Public Health, Cyprus University of Technology , 3041 Limassol, Cyprus
| | - Charles J Weschler
- Environmental and Occupational Health Sciences Institute, Rutgers University , Piscataway, New Jersey 08854, United States
- International Centre for Indoor Environment and Energy, Technical University of Denmark , 2800 Kgs. Lyngby, Denmark
| | - Katerina S Stylianou
- School of Public Health, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Matti Jantunen
- Department of Environmental Health, National Institute for Health and Welfare , 70701 Kuopio, Finland
| | - Thomas E McKone
- School of Public Health, University of California , Berkeley, California 94720, United States
- Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| |
Collapse
|
12
|
Pu Y, Tang F, Adam PM, Laratte B, Ionescu RE. Fate and Characterization Factors of Nanoparticles in Seventeen Subcontinental Freshwaters: A Case Study on Copper Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:9370-9379. [PMID: 27472045 DOI: 10.1021/acs.est.5b06300] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The lack of characterization factors (CFs) for engineered nanoparticles (ENPs) hampers the application of life cycle assessment (LCA) methodology in evaluating the potential environmental impacts of nanomaterials. Here, the framework of the USEtox model has been selected to solve this problem. On the basis of colloid science, a fate model for ENPs has been developed to calculate the freshwater fate factor (FF) of ENPs. We also give the recommendations for using the hydrological data from the USEtox model. The functionality of our fate model is proved by comparing our computed results with the reported scenarios in North America, Switzerland, and Europe. As a case study, a literature survey of the nano-Cu toxicology values has been performed to calculate the effect factor (EF). Seventeen freshwater CFs of nano-Cu are proposed as recommended values for subcontinental regions. Depending on the regions and the properties of the ENPs, the region most likely to be affected by nano-Cu is Africa (CF of 11.11 × 10(3) CTUe, comparative toxic units) and the least likely is north Australia (CF of 3.87 × 10(3) CTUe). Furthermore, from the sensitivity analysis of the fate model, 13 input parameters (such as depth of freshwater, radius of ENPs) show vastly different degrees of influence on the outcomes. The characterization of suspended particles in freshwater and the dissolution rate of ENPs are two significant factors.
Collapse
Affiliation(s)
- Yubing Pu
- Laboratoire de Nanotechnologie et d'Instrumentation Optique, Institute Charles Delaunay, Université de Technologie de Troyes, UMR CNRS 6281 , 12 Rue Marie-Curie CS 42060, 10004 Cedex Troyes, France
- Centre de Recherches et d'Etudes Interdisciplinaires sur le Développement Durable, Institute Charles Delaunay, Université de Technologie de Troyes, UMR CNRS 6281 , 12 Rue Marie-Curie CS 42060, 10004 Cedex Troyes, France
| | - Feng Tang
- Laboratoire de Nanotechnologie et d'Instrumentation Optique, Institute Charles Delaunay, Université de Technologie de Troyes, UMR CNRS 6281 , 12 Rue Marie-Curie CS 42060, 10004 Cedex Troyes, France
| | - Pierre-Michel Adam
- Laboratoire de Nanotechnologie et d'Instrumentation Optique, Institute Charles Delaunay, Université de Technologie de Troyes, UMR CNRS 6281 , 12 Rue Marie-Curie CS 42060, 10004 Cedex Troyes, France
| | - Bertrand Laratte
- Centre de Recherches et d'Etudes Interdisciplinaires sur le Développement Durable, Institute Charles Delaunay, Université de Technologie de Troyes, UMR CNRS 6281 , 12 Rue Marie-Curie CS 42060, 10004 Cedex Troyes, France
| | - Rodica Elena Ionescu
- Laboratoire de Nanotechnologie et d'Instrumentation Optique, Institute Charles Delaunay, Université de Technologie de Troyes, UMR CNRS 6281 , 12 Rue Marie-Curie CS 42060, 10004 Cedex Troyes, France
| |
Collapse
|
13
|
Nijhof COP, Huijbregts MAJ, Golsteijn L, van Zelm R. Spatial variability versus parameter uncertainty in freshwater fate and exposure factors of chemicals. CHEMOSPHERE 2016; 149:101-107. [PMID: 26855212 DOI: 10.1016/j.chemosphere.2016.01.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 01/11/2016] [Accepted: 01/19/2016] [Indexed: 06/05/2023]
Abstract
We compared the influence of spatial variability in environmental characteristics and the uncertainty in measured substance properties of seven chemicals on freshwater fate factors (FFs), representing the residence time in the freshwater environment, and on exposure factors (XFs), representing the dissolved fraction of a chemical. The influence of spatial variability was quantified using the SimpleBox model in which Europe was divided in 100 × 100 km regions, nested in a regional (300 × 300 km) and supra-regional (500 × 500 km) scale. Uncertainty in substance properties was quantified by means of probabilistic modelling. Spatial variability and parameter uncertainty were expressed by the ratio k of the 95%ile and 5%ile of the FF and XF. Our analysis shows that spatial variability ranges in FFs of persistent chemicals that partition predominantly into one environmental compartment was up to 2 orders of magnitude larger compared to uncertainty. For the other (less persistent) chemicals, uncertainty in the FF was up to 1 order of magnitude larger than spatial variability. Variability and uncertainty in freshwater XFs of the seven chemicals was negligible (k < 1.5). We found that, depending on the chemical and emission scenario, accounting for region-specific environmental characteristics in multimedia fate modelling, as well as accounting for parameter uncertainty, can have a significant influence on freshwater fate factor predictions. Therefore, we conclude that it is important that fate factors should not only account for parameter uncertainty, but for spatial variability as well, as this further increases the reliability of ecotoxicological impacts in LCA.
Collapse
Affiliation(s)
- Carl O P Nijhof
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, P.O. Box 9010, 6500, GL, Nijmegen, The Netherlands
| | - Mark A J Huijbregts
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, P.O. Box 9010, 6500, GL, Nijmegen, The Netherlands
| | - Laura Golsteijn
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, P.O. Box 9010, 6500, GL, Nijmegen, The Netherlands
| | - Rosalie van Zelm
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, P.O. Box 9010, 6500, GL, Nijmegen, The Netherlands.
| |
Collapse
|
14
|
Harder R, Holmquist H, Molander S, Svanström M, Peters GM. Review of Environmental Assessment Case Studies Blending Elements of Risk Assessment and Life Cycle Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:13083-93. [PMID: 26542458 DOI: 10.1021/acs.est.5b03302] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Risk assessment (RA) and life cycle assessment (LCA) are two analytical tools used to support decision making in environmental management. This study reviewed 30 environmental assessment case studies that claimed an integration, combination, hybridization, or complementary use of RA and LCA. The focus of the analysis was on how the respective case studies evaluated emissions of chemical pollutants and pathogens. The analysis revealed three clusters of similar case studies. Yet, there seemed to be little consensus as to what should be referred to as RA and LCA, and when to speak of combination, integration, hybridization, or complementary use of RA and LCA. This paper provides clear recommendations toward a more stringent and consistent use of terminology. Blending elements of RA and LCA offers multifaceted opportunities to adapt a given environmental assessment case study to a specific decision making context, but also requires awareness of several implications and potential pitfalls, of which six are discussed in this paper. To facilitate a better understanding and more transparent communication of the nature of a given case study, this paper proposes a "design space" (i.e., identification framework) for environmental assessment case studies blending elements of RA and LCA. Thinking in terms of a common design space, we postulate, can increase clarity and transparency when communicating the design and results of a given assessment together with its potential strengths and weaknesses.
Collapse
Affiliation(s)
- Robin Harder
- Chemical Environmental Science, Department of Chemistry and Chemical Engineering, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| | - Hanna Holmquist
- Chemical Environmental Science, Department of Chemistry and Chemical Engineering, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| | - Sverker Molander
- Environmental Systems Analysis, Department of Energy and Environment, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| | - Magdalena Svanström
- Chemical Environmental Science, Department of Chemistry and Chemical Engineering, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| | - Gregory M Peters
- Chemical Environmental Science, Department of Chemistry and Chemical Engineering, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| |
Collapse
|
15
|
|
16
|
Bjørn A, Diamond M, Birkved M, Hauschild MZ. Chemical footprint method for improved communication of freshwater ecotoxicity impacts in the context of ecological limits. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:13253-62. [PMID: 25347848 DOI: 10.1021/es503797d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The ecological footprint method has been successful in communicating environmental impacts of anthropogenic activities in the context of ecological limits. We introduce a chemical footprint method that expresses ecotoxicity impacts from anthropogenic chemical emissions as the dilution needed to avoid freshwater ecosystem damage. The indicator is based on USEtox characterization factors with a modified toxicity reference point. Chemical footprint results can be compared to the actual dilution capacity within the geographic vicinity receiving the emissions to estimate whether its ecological limit has been exceeded and hence whether emissions can be expected to be environmentally sustainable. The footprint method was illustrated using two case studies. The first was all inventoried emissions from European countries and selected metropolitan areas in 2004, which indicated that the dilution capacity was likely exceeded for most European countries and all landlocked metropolitan areas. The second case study indicated that peak application of pesticides alone was likely to exceed Denmark's freshwater dilution capacity in 1999-2011. The uncertainty assessment showed that better spatially differentiated fate factors would be useful and pointed out other major sources of uncertainty and some opportunities to reduce these.
Collapse
Affiliation(s)
- Anders Bjørn
- DTU Management Engineering, Quantitative Sustainability Assessment, Technical University of Denmark , Produktionstorvet, Building 424, 2800 Kgs. Lyngby, Denmark
| | | | | | | |
Collapse
|
17
|
Nordborg M, Cederberg C, Berndes G. Modeling potential freshwater ecotoxicity impacts due to pesticide use in biofuel feedstock production: the cases of maize, rapeseed, salix, soybean, sugar cane, and wheat. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:11379-11388. [PMID: 25207789 DOI: 10.1021/es502497p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The inclusion of ecotoxicity impacts of pesticides in environmental assessments of biobased products has long been hampered by methodological challenges. We expanded the pesticide database and the regional coverage of the pesticide emission model PestLCI v.2.0, combined it with the impact assessment model USEtox, and assessed potential freshwater ecotoxicity impacts (PFEIs) of pesticide use in selected biofuel feedstock production cases, namely: maize (Iowa, US, two cases), rapeseed (Schleswig-Holstein, Germany), Salix (South Central Sweden), soybean (Mato Grosso, Brazil, two cases), sugar cane (São Paulo, Brazil), and wheat (Schleswig-Holstein, Germany). We found that PFEIs caused by pesticide use in feedstock production varied greatly, up to 3 orders of magnitude. Salix has the lowest PFEI per unit of energy output and per unit of cultivated area. Impacts per biofuel unit were 30, 750, and 1000 times greater, respectively, for the sugar cane, wheat and rapeseed cases than for Salix. For maize genetically engineered (GE) to resist glyphosate herbicides and to produce its own insecticidal toxin, maize GE to resist glyphosate, soybeans GE to resist glyphosate and conventional soybeans, the impacts were 110, 270, 305, and 310 times greater than for Salix, respectively. The significance of field and site-specific conditions are discussed, as well as options for reducing negative impacts in biofuel feedstock production.
Collapse
Affiliation(s)
- Maria Nordborg
- Department of Energy and Environment, Division of Physical Resource Theory, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| | | | | |
Collapse
|