1
|
Yu X, Kleeman MJ, Lin JC, Chow T, Martinez MP, Chen Z, Chen JC, Eckel SP, Schwartz J, Lurmann FW, McConnell R, Xiang AH, Rahman MM. Decomposing the variance: The unique and shared associations of fine and ultrafine particulate matter exposed during pregnancy with child autism spectrum disorder. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176609. [PMID: 39362545 PMCID: PMC11567796 DOI: 10.1016/j.scitotenv.2024.176609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
While fine particulate matter (PM2.5) has been associated with autism spectrum disorder (ASD), few studies focused on ultrafine particles (PM0.1). Given that fine and ultrafine particles can be highly correlated due to shared emission sources, challenges remain to distinguish their health effects. In a retrospective cohort of 318,371 mother-child pairs (4549 ASD cases before age 5) in Southern California, pregnancy average PM2.5 and PM0.1 were estimated using a California-based chemical transport model and assigned to residential addresses. The correlation between PM2.5 and PM0.1 was 0.87. We applied a two-step variance decomposition approach: first, decomposing PM2.5 and PM0.1 into the shared and unique variances using ordinary least squares linear regression (OLS) and Deming regression considering errors in both exposures; then assessing associations between decomposed PM2.5 and PM0.1 and ASD using Cox proportional hazard models adjusted for covariates. Prenatal PM2.5 and PM0.1 each was associated with increased ASD risk. OLS decomposition showed that associations were driven mainly by their shared variance, not by their unique variance. Results from Deming regression considering assumptions of measurement errors were consistent with those from OLS. This decomposition approach has potential to disentangle health effects of correlated exposures, such as PM2.5 and PM0.1 from common emissions sources.
Collapse
Affiliation(s)
- Xin Yu
- Spatial Sciences Institute, University of Southern California, Los Angeles, CA, USA
| | - Michael J Kleeman
- Department of Civil and Environmental Engineering, University of California, Davis, Davis, CA, USA
| | - Jane C Lin
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Ting Chow
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Mayra P Martinez
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sandrah P Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anny H Xiang
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA.
| | - Md Mostafijur Rahman
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Environmental Health Sciences, Tulane University School of Public Health and Tropical Medicine, USA
| |
Collapse
|
2
|
Zhao X, Xu H, Li Y, Liu Y, Guo C, Li Y. Status and frontier analysis of indoor PM 2.5-related health effects: a bibliometric analysis. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:479-498. [PMID: 36976918 DOI: 10.1515/reveh-2022-0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Epidemiological data indicate atmospheric particulate matter, especially fine particulate matter (PM2.5), has many negative effects on human health. Of note, people spend about 90% of their time indoors. More importantly, according to the World Health Organization (WHO) statistics, indoor air pollution causes nearly 1.6 million deaths each year, and it is considered as one of the major health risk factors. In order to obtain a deeper understanding of the harmful effects of indoor PM2.5 on human health, we used bibliometric software to summarize articles in this field. In conclusion, since 2000, the annual publication volume has increased year by year. America topped the list for the number of articles, and Professor Petros Koutrakis and Harvard University were the author and institution with the most published in this research area, respectively. Over the past decade, scholars gradually paid attention to molecular mechanisms, therefore, the toxicity can be better explored. Particularly, apart from timely intervention and treatment for adverse consequences, it is necessary to effectively reduce indoor PM2.5 through technologies. In addition, the trend and keywords analysis are favorable ways to find out future research hotspots. Hopefully, various countries and regions strengthen academic cooperation and integration of multi-disciplinary.
Collapse
Affiliation(s)
- Xinying Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Hailin Xu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yan Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
| | - Yufan Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Maciel-Ruiz JA, Reynoso-Noverón N, Rodríguez-Moreno DA, Petrosyan P, Limón-Pacheco JH, Nepomuceno-Hernández AE, Ayala-Yañez R, Robles-Morales R, Osorio-Yáñez C, García-Cuellar CM, Gonsebatt ME. Geographical approach analysis of the impact of air pollution on newborn intrauterine growth and cord blood DNA damage in Mexico City. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:907-916. [PMID: 38086972 PMCID: PMC11446826 DOI: 10.1038/s41370-023-00618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 10/04/2024]
Abstract
BACKGROUND Few epidemiologic studies have focused on the specific source of ambient air pollution and adverse health effects in early life. Here, we investigated whether air pollutants from different emission sources were associated with decreased birth anthropometry parameters and increased DNA adduct formation in mother-child pairs residing in the Mexico City Metropolitan Area (MCMA). METHODS This cross-sectional study included 190 pregnant women recruited during their last trimester of pregnancy from two hospitals at MCMA, and a Modeling Emissions Inventory (MEI) to calculate exposure to ambient air pollutants from different emissions sources (area, point, mobile, and natural) for two geographical buffers 250 and 750 m radii around the participants households. RESULTS Contaminants were positively correlated with umbilical cord blood (UCB) adducts, but not with maternal blood (MB) adducts. PM10 emissions (area and point sources, overall emissions), PM2.5 (point sources), volatile organic compounds (VOC), total organic compounds (TOC) from point sources were positively correlated with UCB adducts. Air pollutants emitted from natural sources were correlated with a decrease in MB and UCB adducts. PM10 and PM2.5 were correlated (p < 0.05) with a decrease in birth weight (BW), birth length (BL) and gestational age at term (GA). In multivariate analyses adjusted for potential confounders, PM10 was associated with an increase in UCB adducts. PM10 and PM2.5 from overall emissions were associated with a decrease in BW, BL and GA at term. IMPACT Results suggested higher susceptibility of newborns compared to mothers to damage related to ambient air pollution. PMs are associated with birth anthropometry parameters and DNA damage in adjusted models, highlighting the need for more strict regulation of PM emissions.
Collapse
Affiliation(s)
- Jorge A Maciel-Ruiz
- Laboratorio de Carcinogénesis y Medio Ambiente, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, México
| | - Nancy Reynoso-Noverón
- Centro de Investigación en Prevención, Instituto Nacional de Cancerología-Universidad Nacional Autónoma de México, México City, México
| | - David A Rodríguez-Moreno
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autonóma de México, Ciudad de México, México
| | - Pavel Petrosyan
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autonóma de México, Ciudad de México, México
| | - Jorge H Limón-Pacheco
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Andrés E Nepomuceno-Hernández
- Centro de Investigación Materno Infantil del Grupo de Estudios al Nacimiento, Asociación Hispano Mexicana, Ciudad de México, México
| | - Rodrigo Ayala-Yañez
- Centro de Investigación Materno Infantil del Grupo de Estudios al Nacimiento, Asociación Hispano Mexicana, Ciudad de México, México
| | - Rogelio Robles-Morales
- División de Investigación de la Unidad Médica de Alta Especialidad, Hospital de Gineco-Obstetricia 3 "Dr. Víctor Manuel Espinosa de los Reyes Sánchez", Centro Médico Nacional "La Raza", Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Citlalli Osorio-Yáñez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autonóma de México, Ciudad de México, México
- Laboratorio de Fisiología y Transplante Renal, Unidad de Investigación en Medicina Traslacional, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cardiología Ignacio Chávez, México City, 14080, México
| | - Claudia María García-Cuellar
- Laboratorio de Carcinogénesis y Medio Ambiente, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, México
| | - María E Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autonóma de México, Ciudad de México, México.
| |
Collapse
|
4
|
Williams LA, Haynes D, Sample JM, Lu Z, Hossaini A, McGuinn LA, Hoang TT, Lupo PJ, Scheurer ME. PM2.5, vegetation density, and childhood cancer: a case-control registry-based study from Texas 1995-2011. J Natl Cancer Inst 2024; 116:876-884. [PMID: 38366656 DOI: 10.1093/jnci/djae035] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/05/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Air pollution is positively associated with some childhood cancers, whereas greenness is inversely associated with some adult cancers. The interplay between air pollution and greenness in childhood cancer etiology is unclear. We estimated the association between early-life air pollution and greenness exposure and childhood cancer in Texas (1995 to 2011). METHODS We included 6101 cancer cases and 109 762 controls (aged 0 to 16 years). We linked residential birth address to census tract annual average fine particulate matter <2.5 µg/m³ (PM2.5) and Normalized Difference Vegetation Index (NDVI). We estimated odds ratios (ORs) and 95% confidence intervals (CIs) between PM2.5/NDVI interquartile range increases and cancer. We assessed statistical interaction between PM2.5 and NDVI (likelihood ratio tests). RESULTS Increasing residential early-life PM2.5 exposure was associated with all childhood cancers (OR = 1.10, 95% CI = 1.06 to 1.15), lymphoid leukemias (OR = 1.15, 95% CI = 1.07 to 1.23), Hodgkin lymphomas (OR = 1.27, 95% CI = 1.02 to 1.58), non-Hodgkin lymphomas (OR = 1.24, 95% CI = 1.02 to 1.51), ependymoma (OR = 1.27, 95% CI = 1.01 to 1.60), and others. Increasing NDVI exposure was inversely associated with ependymoma (0- to 4-year-old OR = 0.75, 95% CI = 0.58 to 0.97) and medulloblastoma (OR = 0.75, 95% CI = 0.62 to 0.91) but positively associated with malignant melanoma (OR = 1.75, 95% CI = 1.23 to 2.47) and Langerhans cell histiocytosis (OR = 1.56, 95% CI = 1.07 to 2.28). There was evidence of statistical interaction between NDVI and PM2.5 (P < .04) for all cancers. CONCLUSION Increasing early-life exposure to PM2.5 increased the risk of childhood cancers. NDVI decreased the risk of 2 cancers yet increased the risk of others. These findings highlight the complexity between PM2.5 and NDVI in cancer etiology.
Collapse
Affiliation(s)
- Lindsay A Williams
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Brain Tumor Program, University of Minnesota, Minneapolis, MN, USA
| | - David Haynes
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Jeannette M Sample
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Zhanni Lu
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Ali Hossaini
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Laura A McGuinn
- Department of Family Medicine, University of Chicago, Chicago, IL, USA
| | - Thanh T Hoang
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Cancer and Hematology Center, Texas Children's Hospital, Houston, TX, USA
| | - Philip J Lupo
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Cancer and Hematology Center, Texas Children's Hospital, Houston, TX, USA
| | - Michael E Scheurer
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Cancer and Hematology Center, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
5
|
Navarrete-Meneses MDP, Salas-Labadía C, Gómez-Chávez F, Pérez-Vera P. Environmental Pollution and Risk of Childhood Cancer: A Scoping Review of Evidence from the Last Decade. Int J Mol Sci 2024; 25:3284. [PMID: 38542255 PMCID: PMC10970446 DOI: 10.3390/ijms25063284] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/24/2024] [Accepted: 03/05/2024] [Indexed: 01/31/2025] Open
Abstract
The long-term effects of environmental pollution have been of concern as several pollutants are carcinogenic, potentially inducing a variety of cancers, including childhood cancer, which is a leading cause of death around the world and, thus, is a public health issue. The present scoping review aimed to update and summarize the available literature to detect specific environmental pollutants and their association with certain types of childhood cancer. Studies published from 2013 to 2023 regarding environmental pollution and childhood cancer were retrieved from the PubMed database. A total of 174 studies were eligible for this review and were analyzed. Our search strategy brought up most of the articles that evaluated air pollution (29%) and pesticides (28%). Indoor exposure to chemicals (11%), alcohol and tobacco use during pregnancy (16%), electromagnetic fields (12%), and radon (4%) were the subjects of less research. We found a particularly high percentage of positive associations between prenatal and postnatal exposure to indoor (84%) and outdoor (79%) air pollution, as well as to pesticides (82%), and childhood cancer. Positive associations were found between leukemia and pesticides and air pollution (33% and 27%); CNS tumors and neuroblastoma and pesticides (53% and 43%); and Wilms tumor and other rare cancers were found in association with air pollution (50%). Indoor air pollution was mostly reported in studies assessing several types of cancer (26%). Further studies are needed to investigate the mechanisms underlying the potential associations between indoor/outdoor air pollution and pesticide exposure with childhood cancer risk as more preventable measures could be taken.
Collapse
Affiliation(s)
| | - Consuelo Salas-Labadía
- Laboratorio de Genética y Cáncer, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (M.d.P.N.-M.); (C.S.-L.)
| | - Fernando Gómez-Chávez
- Laboratorio de Microbiología Molecular, Instituto Politécnico Nacional—ENMyH, Mexico City 07738, Mexico;
| | - Patricia Pérez-Vera
- Laboratorio de Genética y Cáncer, Instituto Nacional de Pediatría, Mexico City 04530, Mexico; (M.d.P.N.-M.); (C.S.-L.)
| |
Collapse
|
6
|
Christian WJ, Walker CJ, McDowell J, Huang B, Tucker TC, Villano J, Durbin EB. Geographic and temporal trends in pediatric and young adult brain tumors in Kentucky, 1995-2019. Cancer Epidemiol 2024; 88:102499. [PMID: 38056245 PMCID: PMC10842684 DOI: 10.1016/j.canep.2023.102499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023]
Abstract
INTRODUCTION Pediatric and young adult brain tumors (PYBT) account for a large share of cancer-related morbidity and mortality among children in the United States, but their etiology is not well understood. Previous research suggests the Appalachian region of Kentucky has high rates of PYBT. This study explored PYBT incidence over 25 years in Kentucky to identify geographic and temporal trends and generate hypotheses for future research. METHODS The Kentucky Cancer Registry contributed data on all PYBT diagnosed among those aged 0-29 during years 1995-2019. Age- and sex-adjusted spatio-temporal scan statistics-one for each type of PYBT, and one for all types-comprised the primary analysis. These results were mapped along with environmental and occupational data. RESULTS Findings indicated that north-central Kentucky and the Appalachian region experienced higher rates of some PYBT. High rates of astrocytomas were clustered in a north-south strip of central Kentucky toward the end of the study period, while high rates of other specified types of intracranial and intraspinal neoplasms were significantly clustered in eastern Kentucky. The area where these clusters overlapped, in north-central Kentucky, had significantly higher rates of PYBT generally. DISCUSSION This study demonstrates north-central Kentucky and the Appalachian region experienced higher PYBT risk than the rest of the state. These regions are home to some of Kentucky's signature industries, which should be examined in further research. Future population-based and individual-level studies of genetic factors are needed to explore how the occupations of parents, as well as prenatal and childhood exposures to pesticides and air pollutants, impact PYBT incidence.
Collapse
Affiliation(s)
- W J Christian
- Dept. of Epidemiology & Environmental Health, College of Public Health, University of Kentucky, USA; Markey Cancer Center, University of Kentucky, USA.
| | - C J Walker
- Dept. of Behavioral Science, College of Medicine, University of Kentucky, USA
| | - J McDowell
- Dept. of Epidemiology & Environmental Health, College of Public Health, University of Kentucky, USA; Kentucky Cancer Registry, USA
| | - B Huang
- Kentucky Cancer Registry, USA; Markey Cancer Center, University of Kentucky, USA; Div. of Cancer Biostatistics, Dept. of Internal Medicine, College of Medicine, University of Kentucky, USA
| | - T C Tucker
- Dept. of Epidemiology & Environmental Health, College of Public Health, University of Kentucky, USA; Kentucky Cancer Registry, USA; Markey Cancer Center, University of Kentucky, USA
| | - J Villano
- Markey Cancer Center, University of Kentucky, USA; Dept. of Internal Medicine, College of Medicine, University of Kentucky, USA
| | - E B Durbin
- Div. of Biomedical Informatics, Dept. of Internal Medicine, College of Medicine, University of Kentucky, USA; Kentucky Cancer Registry, USA; Markey Cancer Center, University of Kentucky, USA
| |
Collapse
|
7
|
Burdon J, Budnik LT, Baur X, Hageman G, Howard CV, Roig J, Coxon L, Furlong CE, Gee D, Loraine T, Terry AV, Midavaine J, Petersen H, Bron D, Soskolne CL, Michaelis S. Health consequences of exposure to aircraft contaminated air and fume events: a narrative review and medical protocol for the investigation of exposed aircrew and passengers. Environ Health 2023; 22:43. [PMID: 37194087 PMCID: PMC10186727 DOI: 10.1186/s12940-023-00987-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/31/2023] [Indexed: 05/18/2023]
Abstract
Thermally degraded engine oil and hydraulic fluid fumes contaminating aircraft cabin air conditioning systems have been well documented since the 1950s. Whilst organophosphates have been the main subject of interest, oil and hydraulic fumes in the air supply also contain ultrafine particles, numerous volatile organic hydrocarbons and thermally degraded products. We review the literature on the effects of fume events on aircrew health. Inhalation of these potentially toxic fumes is increasingly recognised to cause acute and long-term neurological, respiratory, cardiological and other symptoms. Cumulative exposure to regular small doses of toxic fumes is potentially damaging to health and may be exacerbated by a single higher-level exposure. Assessment is complex because of the limitations of considering the toxicity of individual substances in complex heated mixtures.There is a need for a systematic and consistent approach to diagnosis and treatment of persons who have been exposed to toxic fumes in aircraft cabins. The medical protocol presented in this paper has been written by internationally recognised experts and presents a consensus approach to the recognition, investigation and management of persons suffering from the toxic effects of inhaling thermally degraded engine oil and other fluids contaminating the air conditioning systems in aircraft, and includes actions and investigations for in-flight, immediately post-flight and late subsequent follow up.
Collapse
Affiliation(s)
- Jonathan Burdon
- Respiratory Physician, St Vincent's Private Hospital, East Melbourne, Australia
| | - Lygia Therese Budnik
- Institute for Occupational and Maritime Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Xaver Baur
- European Society for Environmental and Occupational Medicine, Berlin, Germany
- University of Hamburg, Hamburg, Germany
| | - Gerard Hageman
- Department of Neurology, Medisch Spectrum Twente, Hospital Enschede, Enschede, The Netherlands
| | - C Vyvyan Howard
- Centre for Molecular Biosciences, University of Ulster, Coleraine, Northern Ireland, UK
| | - Jordi Roig
- Department of Pulmonary Medicine, Clínica Creu Blanca, Barcelona, Spain
| | - Leonie Coxon
- Clinical and Forensic Psychologist, Mount Pleasant Psychology, Perth, Australia
| | - Clement E Furlong
- Departments of Medicine (Div. Medical Genetics) and Genome Sciences, University of Washington, Seattle, USA
| | - David Gee
- Centre for Pollution Research and Policy, Visiting Fellow, Brunel University, London, UK
| | - Tristan Loraine
- Technical Consultant, Spokesperson for the Global Cabin Air Quality Executive, London, UK
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, USA
| | | | - Hannes Petersen
- Faculty of Medicine, University of Iceland, Akureyri Hospital, Akureyri, Iceland
| | - Denis Bron
- Federal Department of Defence, Civil Protection and Sport (DDPS), Aeromedical Institute (FAI)/AeMC, Air Force, Dübendorf, Switzerland
| | - Colin L Soskolne
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Susan Michaelis
- Occupational and Environmental Health Research Group, Honorary Senior Research Fellow, University of Stirling, Scotland / Michaelis Aviation Consulting, West Sussex, England.
| |
Collapse
|
8
|
Matthews JC, Chompoobut C, Navasumrit P, Khan MAH, Wright MD, Ruchirawat M, Shallcross DE. Particle Number Concentration Measurements on Public Transport in Bangkok, Thailand. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5316. [PMID: 37047932 PMCID: PMC10094290 DOI: 10.3390/ijerph20075316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Traffic is a major source of particulate pollution in large cities, and particulate matter (PM) level in Bangkok often exceeds the World Health Organisation limits. While PM2.5 and PM10 are both measured in Bangkok regularly, the sub-micron range of PM, of specific interest in regard to possible adverse health effects, is very limited. In the study, particle number concentration (PNC) was measured on public transport in Bangkok. A travel route through Bangkok using the state railway, the mass rapid transport underground system, the Bangkok Mass Transit System (BTS) Skytrain and public buses on the road network, with walking routes between, was taken whilst measuring particle levels with a hand-held concentration particle counter. The route was repeated 19 times covering different seasons during either morning or evening rush hours. The highest particle concentrations were found on the state railway, followed by the bus, the BTS Skytrain and the MRT underground with measured peaks of 350,000, 330,000, 33,000 and 9000 cm-3, respectively, though particle numbers over 100,000 cm-3 may be an underestimation due to undercounting in the instrument. Inside each form of public transport, particle numbers would peak when stopping to collect passengers (doors opening) and decay with a half-life between 2 and 3 min. There was a weak correlation between particle concentration on bus, train and BTS and Skytrain with carbon monoxide concentration, as measured at a fixed location in the city.
Collapse
Affiliation(s)
- James C. Matthews
- Atmospheric Chemistry Research Group, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Chalida Chompoobut
- Chulabhorn Research Institute, 54 Kamphaeng-Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Panida Navasumrit
- Chulabhorn Research Institute, 54 Kamphaeng-Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - M. Anwar H. Khan
- Atmospheric Chemistry Research Group, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Matthew D. Wright
- Atmospheric Chemistry Research Group, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Mathuros Ruchirawat
- Chulabhorn Research Institute, 54 Kamphaeng-Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Dudley E. Shallcross
- Atmospheric Chemistry Research Group, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
- Department of Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville 7375, South Africa
| |
Collapse
|
9
|
Mahasakpan N, Chaisongkaew P, Inerb M, Nim N, Phairuang W, Tekasakul S, Furuuchi M, Hata M, Kaosol T, Tekasakul P, Dejchanchaiwong R. Fine and ultrafine particle- and gas-polycyclic aromatic hydrocarbons affecting southern Thailand air quality during transboundary haze and potential health effects. J Environ Sci (China) 2023; 124:253-267. [PMID: 36182135 DOI: 10.1016/j.jes.2021.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/09/2021] [Accepted: 11/02/2021] [Indexed: 06/16/2023]
Abstract
Distribution of PM0.1, PM1 and PM2.5 particle- and gas-polycyclic aromatic hydrocarbons (PAHs) during the 2019 normal, partial and strong haze periods at a background location in southern Thailand were investigated to understand the behaviors and carcinogenic risks. PM1 was the predominant component, during partial and strong haze periods, accounting for 45.1% and 52.9% of total suspended particulate matter, respectively, while during normal period the contribution was only 34.0%. PM0.1 concentrations, during the strong haze period, were approximately 2 times higher than those during the normal period. Substantially increased levels of particle-PAHs for PM0.1, PM1 and PM2.5 were observed during strong haze period, about 3, 5 and 6 times higher than those during normal period. Gas-PAH concentrations were 10 to 36 times higher than those of particle-PAHs for PM2.5. Average total Benzo[a]Pyrene Toxic Equivalency Quotients (BaP-TEQ) in PM0.1, PM1 and PM2.5 during haze periods were about 2-6 times higher than in the normal period. The total accumulated Incremental Lifetime Cancer Risks (ILCRs) in PM0.1, PM1 and PM2.5 for all the age-specific groups during the haze effected scenario were approximately 1.5 times higher than those in non-haze scenario, indicating a higher potential carcinogenic risk. These observations suggest PM0.1, PM1 and PM2.5 were the significant sources of carcinogenic aerosols and were significantly affected by transboundary haze from peatland fires. This leads to an increase in the volume of smoke aerosol, exerting a significant impact on air quality in southern Thailand, as well as many other countries in lower southeast Asia.
Collapse
Affiliation(s)
- Napawan Mahasakpan
- Air Pollution and Health Effect Research Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Energy Technology Program, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Phatsarakorn Chaisongkaew
- Air Pollution and Health Effect Research Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Energy Technology Program, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Muanfun Inerb
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Nobchonnee Nim
- Air Pollution and Health Effect Research Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Energy Technology Program, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Worradorn Phairuang
- Department of Geography, Faculty of Social Sciences, Chiang Mai University, Muang, Chiang Mai 50200, Thailand
| | - Surajit Tekasakul
- Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Masami Furuuchi
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Faculty of Geoscience and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Mitsuhiko Hata
- Faculty of Geoscience and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Thaniya Kaosol
- Air Pollution and Health Effect Research Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Perapong Tekasakul
- Air Pollution and Health Effect Research Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Department of Mechanical and Mechatronics Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Racha Dejchanchaiwong
- Air Pollution and Health Effect Research Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Department of Chemical Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
10
|
Abdillah SFI, Wang YF. Ambient ultrafine particle (PM 0.1): Sources, characteristics, measurements and exposure implications on human health. ENVIRONMENTAL RESEARCH 2023; 218:115061. [PMID: 36525995 DOI: 10.1016/j.envres.2022.115061] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/28/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The problem of ultrafine particles (UFPs; PM0.1) has been prevalent since the past decades. In addition to become easily inhaled by human respiratory system due to their ultrafine diameter (<100 nm), ambient UFPs possess various physicochemical properties which make it more toxic. These properties vary based on the emission source profile. The current development of UFPs studies is hindered by the problem of expensive instruments and the inexistence of standardized measurement method. This review provides detailed insights on ambient UFPs sources, physicochemical properties, measurements, and estimation models development. Implications on health impacts due to short-term and long-term exposure of ambient UFPs are also presented alongside the development progress of potentially low-cost UFPs sensors which can be used for future UFPs studies references. Current challenge and future outlook of ambient UFPs research are also discussed in this review. Based on the review results, ambient UFPs may originate from primary and secondary sources which include anthropogenic and natural activities. In addition to that, it is confirmed from various chemical content analysis that UFPs carry heavy metals, PAHs, BCs which are toxic in its nature. Measurement of ambient UFPs may be performed through stationary and mobile methods for environmental profiling and exposure assessment purposes. UFPs PNC estimation model (LUR) developed from measurement data could be deployed to support future epidemiological study of ambient UFPs. Low-cost sensors such as bipolar ion and ionization sensor from common smoke detector device may be further developed as affordable instrument to monitor ambient UFPs. Recent studies indicate that short-term exposure of UFPs can be associated with HRV change and increased cardiopulmonary effects. On the other hand, long-term UFPs exposure have positive association with COPD, CVD, CHF, pre-term birth, asthma, and also acute myocardial infarction cases.
Collapse
Affiliation(s)
- Sultan F I Abdillah
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan
| | - Ya-Fen Wang
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan.
| |
Collapse
|
11
|
Pond ZA, Saha PK, Coleman CJ, Presto AA, Robinson AL, Arden Pope Iii C. Mortality risk and long-term exposure to ultrafine particles and primary fine particle components in a national U.S. Cohort. ENVIRONMENT INTERNATIONAL 2022; 167:107439. [PMID: 35933844 DOI: 10.1016/j.envint.2022.107439] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
The objective of this study was to estimate all-cause, cardiopulmonary, and cancer mortality associations for long-term exposure to ultrafine particles (UFP) and primary PM2.5 components. We utilized high-resolution, national-scale exposure estimates for UFP (measured as particle number concentration; PNC) and three primary PM2.5 components, namely black carbon (BC), traffic-emitted organic PM2.5 (hereafter, hydrocarbon-like organic aerosols; HOA), and cooking-emitted organic PM2.5 (cooking organic aerosols; COA). Two analytic cohorts were constructed from a nationally representative U.S. health survey. The larger cohort consisted of 617,997 adults with information on a broad set of individual-level risk factors; the smaller cohort was further restricted to those with information on physical activity (n = 396,470). In single-pollutant models, PNC was significantly associated with all-cause (larger cohort HR = 1.03, 95% CI [1.02, 1.04]; smaller cohort HR = 1.02, 95% CI [1.00, 1.04]) and cancer mortality (larger cohort HR = 1.05, 95% CI [1.02, 1.08]; smaller cohort HR = 1.06, 95% CI [1.02, 1.10]). In two-pollutant models, mortality associations varied based on co-pollutant adjustment; PNC mortality associations were generally robust to controlling for PM10-2.5 and SO2, but not PM2.5. In contrast, we found some evidence that the HOA and COA mortality associations are independent of total PM2.5 mass exposure. Nevertheless, PM2.5 mass was the most robust predictor of air pollution related mortality, providing some support for current regulatory policies.
Collapse
Affiliation(s)
- Zachari A Pond
- Department of Agricultural and Resource Economics, University of California Berkeley, Berkeley, CA 94720, USA; Department of Economics, Brigham Young University, Provo, UT 84602, USA
| | - Provat K Saha
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Carver J Coleman
- Department of Economics, Brigham Young University, Provo, UT 84602, USA
| | - Albert A Presto
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Allen L Robinson
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - C Arden Pope Iii
- Department of Economics, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
12
|
Bruckner TA, Catalano R, Das A, Lu Y. Cohort Selection In Utero against Male Twins and Childhood Cancers: A Population-Based Register Study. Cancer Epidemiol Biomarkers Prev 2021; 30:1834-1840. [PMID: 34272267 PMCID: PMC8974355 DOI: 10.1158/1055-9965.epi-21-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/28/2021] [Accepted: 06/15/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Cancer ranks as the second leading cause of death among children ages 1 to 14 years in the United States. Previous research finds that strong cohort selection in utero against males precedes a reduction in live-born males considered frail. We examine whether such cohort selection in utero may similarly affect the frequency of childhood cancers among male live births. METHODS We examined 1,368 childhood cancers among males born in Sweden over 144 months, from January 1990 to December 2001, and followed to age 15 in the Swedish Cancer Registry. We retrieved the count of male twins by birth month from the Swedish Birth Registry. We applied autoregressive, integrated, moving average time-series methods to identify and control for temporal patterns in monthly childhood cancers and to evaluate robustness of results. RESULTS Fewer childhood cancers occur among monthly male birth cohorts with elevated selection in utero (i.e., a low count of live-born male twins). This association appears in the concurrent month (coef = 0.04; 95% CI, 0.001-0.079) as well as in the following month in which most births from the twin's conception cohort are "scheduled" to be born (coef = 0.055; 95% CI, 0.017-0.094). CONCLUSIONS Elevated cohort selection in utero may reduce the number of frail male gestations that would otherwise have survived to birth and received a cancer diagnosis during childhood. IMPACT This novel result warrants further investigation of prenatal exposures, including those at the population level, that may induce cohort selection in utero for some cancer types but not others.
Collapse
Affiliation(s)
- Tim A Bruckner
- Program in Public Health, University of California, Irvine, Irvine, California.
- Center for Population, Inequality, and Policy, University of California, Irvine, Irvine, California
| | - Ralph Catalano
- School of Public Health, University of California, Berkeley, Berkeley, California
| | - Abhery Das
- Program in Public Health, University of California, Irvine, Irvine, California
| | - Yunxia Lu
- Program in Public Health, University of California, Irvine, Irvine, California
| |
Collapse
|