1
|
Feng X, Luo Y, Zheng M, Sun X, Shen X. Independent and Combined Associations between Metals Exposure and Inflammatory Markers among the General U.S. Adults. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:282-290. [PMID: 40144327 PMCID: PMC11934204 DOI: 10.1021/envhealth.4c00097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/28/2024] [Accepted: 10/22/2024] [Indexed: 03/28/2025]
Abstract
Exposure to metals can trigger a series of diseases by dysregulating the human immune system, but there is still a lack of systematic studies assessing the independent and combined effects of exposure to metals on immune function in the general population, particularly concerning inflammation markers. This cross-sectional study was designed to mainly examine the associations between urinary metal mixtures and inflammatory markers, including white blood cell (WBC), platelet count (PLT), mean platelet volume (MPV), MPV/PLT ratio (MPR), platelet-to-lymphocyte ratio (PLR), and neutrophil-to-lymphocyte ratio (NLR). A total of 3451 participants aged ≥20 years were selected from the 2013-2016 National Health and Nutrition Examination Survey. Generalized linear models were used to investigate the relationships of exposure to single metals on inflammatory markers. Associations between coexposure to multiple metals and inflammatory markers were determined using weighted quantile sum regression and quantile g-computation. Barium, cadmium, lead, thallium, and cobalt showed significant associations with MPV, PLR, and NLR. Metal mixtures showed a negative association with MPV, while they had positive associations with PLR and NLR. Overall, our study highlights the significant effects of multiple metals exposure on inflammation markers, including MPV, PLR, and NLR, among U.S. adults. Thereinto, uranium, cadmium, and cobalt were identified as major contributors. Further prospective studies representative of other countries are warranted to either validate or refute our findings.
Collapse
Affiliation(s)
- Xinrui Feng
- State
Key Laboratory of Environment Health (Incubation), Key Laboratory
of Environment and Health, Ministry of Education, Key Laboratory of
Environment and Health (Wuhan), Ministry of Environmental Protection,
School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Yaoyu Luo
- State
Key Laboratory of Environment Health (Incubation), Key Laboratory
of Environment and Health, Ministry of Education, Key Laboratory of
Environment and Health (Wuhan), Ministry of Environmental Protection,
School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Min Zheng
- State
Key Laboratory of Environment Health (Incubation), Key Laboratory
of Environment and Health, Ministry of Education, Key Laboratory of
Environment and Health (Wuhan), Ministry of Environmental Protection,
School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Xiaojie Sun
- Department
of Environmental Hygiene and Occupational Medicine, School of Public
Health, Wuhan University of Science and
Technology, Wuhan 430065, China
| | - Xiantao Shen
- State
Key Laboratory of Environment Health (Incubation), Key Laboratory
of Environment and Health, Ministry of Education, Key Laboratory of
Environment and Health (Wuhan), Ministry of Environmental Protection,
School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| |
Collapse
|
2
|
Parvez SM, Huda MM, Rahman M, Jahan F, Fujimura M, Hasan SS, Aich N, Hares A, Islam Z, Raqib R, Knibbs LD, Sly PD. Hematological, cardiovascular and oxidative DNA damage markers associated with heavy metal exposure in electronic waste (e-waste) workers of Bangladesh. Toxicology 2024; 509:153978. [PMID: 39461408 DOI: 10.1016/j.tox.2024.153978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
Electronic waste (e-waste) contains hazardous elements such as lead (Pb), cadmium (Cd), mercury (Hg), and other toxic elements that pose significant health risks to the population directly exposed. We recruited 199 e-waste recycling workers and 104 non-exposed workers in Bangladesh and analyzed heavy metals in blood and hair, as well as hematological and cardiovascular parameters including, blood lipids and blood pressure. We fitted quantile regression models at 0.5 quantile to evaluate the impact of blood Pb, Cd, and total hair Hg (THg) on hematological and cardiovascular parameters and the role of oxidative DNA damage (8-OHdG as a biomarker) in mediatin the relationship between exposures and outcomes. Exposed workers had elevated median blood Pb (11.89 vs. 3.63 µg/dL), moderate blood Cd (1.04 vs. 0.99 µg/L), and lower level of THg (0.38 vs. 0.57 ppm) in hair than non-exposed workers. Adjusted estimates showed that Pb was positively associated with red blood cell (RBC), eosinophil count, eosinophil percentage; and negatively associated with mean platelet volume (MPV), platelet large cell ratio (P-LCR) and platelet volume distribution width (PDW) (all p≤0.05). Cd was only associated with 0.57 units increase in red blood cell distribution width (RDW) percentage (95 % CI: 0.18, 0.95). In cardiovascular outcomes, Pb was associated with 1.42 units decrease in triglyceride, 1.58 units increase in low-density lipoprotein (LDL), 0.07 units increase in LDL/HDL and 0.49 units increase in systolic blood pressure (all p≤0.05). No associations were observed between THg and hematological or cardiovascular parameters. Urinary 8-OHdG concentrations were lower, and it did not mediate exposure-outcome relationships (all p≥0.05). Our data imply that e-waste exposure impairs hematological parameters, blood lipids, and blood pressure secondary to elevated Pb levels and poses a threat to exposed individuals. As such, continuous monitoring in longitudinal studies is warranted to assess the dose-response relationship and identify effective control measures.
Collapse
Affiliation(s)
- Sarker Masud Parvez
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, QLD 4101, Australia; Environmental Health and WASH, Health Systems and Population Studies Division, icddr,b, Dhaka 1212, Bangladesh.
| | - M Mamun Huda
- Rural Health Research Institute, Charles Sturt University, Orange, NSW 2800, Australia
| | - Mahbubur Rahman
- Environmental Health and WASH, Health Systems and Population Studies Division, icddr,b, Dhaka 1212, Bangladesh
| | - Farjana Jahan
- Environmental Health and WASH, Health Systems and Population Studies Division, icddr,b, Dhaka 1212, Bangladesh
| | - Masatake Fujimura
- Department of Basic Medical Sciences, National Institute for Minamata Disease, Minamata, Kumamoto 867-0008, Japan
| | - Shaikh Sharif Hasan
- Environmental Health and WASH, Health Systems and Population Studies Division, icddr,b, Dhaka 1212, Bangladesh
| | - Nirupam Aich
- Department of Civil and Environmental Engineering, University of Nebraska - Lincoln, Lincoln, NE 68588, USA
| | - Abul Hares
- Environmental Health and WASH, Health Systems and Population Studies Division, icddr,b, Dhaka 1212, Bangladesh
| | - Zahir Islam
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, QLD 4101, Australia
| | - Rubhana Raqib
- Immunobiology, Nutrition and Toxicology, Nutrition Research Division, icddr,b, Dhaka 1212, Bangladesh
| | - Luke D Knibbs
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia; Public Health Research Analytics and Methods for Evidence, Public Health Unit, Sydney Local Health District, Camperdown, NSW 2050, Australia
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, QLD 4101, Australia
| |
Collapse
|
3
|
Lang C, Tang J, Zhang G, Meng Y, Au WW, Xia ZL, Wang T. Comparison of sensitivity between blood parameters and a genotoxic biomarker at low blood Pb levels: A population-based study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116796. [PMID: 39094451 DOI: 10.1016/j.ecoenv.2024.116796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Previous studies reported that lead (Pb) exposure induced adverse health effects at high exposure concentrations, however, there have been limited data on sensitivity comparisons among different health outcomes at low blood Pb levels. OBJECTIVES To compare sensitivity between blood parameters and a genotoxic biomarker among workers exposed to low blood Pb levels (< 20 µg/dl), and to estimate a benchmark dose (BMD). METHODS Pb-exposed workers were recruited from a lead-acid storage battery plant. Their blood lead levels (BLLs) were measured. Blood parameters and micronuclei (MN) frequencies were determined. Multivariate linear or Poisson regression was used to analyze relationships between blood parameters or MN frequencies with BLLs. Two BMD software were used to calculate BMD and its 95 % lower confidence limit (BMDL) for BLLs. RESULTS The median BLL for 611 workers was 10.44 µg/dl with the 25th and 75th percentile being 7.37 and 14.62 µg/dl among all participants. There were significantly negative correlations between blood parameters and BLLs. However, MN frequencies correlated positively with BLLs (all P<0.05). Results from the two BMD software revealed that the dichotomous model was superior to the continuous model, and the BMDL for BLL derived from red blood cell (RBC) was 15.11 µg/dl, from hemoglobin (HGB) was 8.50 µg/dl, from mean corpuscular hemoglobin (MCH) was 7.87 µg/dl, from mean corpuscular hemoglobin concentration (MCHC) was 3.98 µg/dl, from mean corpuscular volume (MCV) was 11.44 µg/dl, and from hematocrit (HCT) was 6.65 µg/dl. The conservative BMDL obtained from the MN data was 7.52 µg/dl. CONCLUSION Our study shows that low dose Pb exposure caused decrease of blood parameters and increase of MN frequencies. The genotoxic biomarker was more sensitive than most blood parameters. BMDLs for BLL derived from MN frequencies and the red blood cell indicators should be considered as new occupational exposure limits. Our results suggest that MN assay can be considered as a part of occupational health examination items.
Collapse
Affiliation(s)
- Chunyan Lang
- Department of Occupational and Environmental Health, School of Public Health, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Jiachun Tang
- Department of Occupational and Environmental Health, School of Public Health, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Guanghui Zhang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Yu Meng
- Department of Occupational Health and Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - William W Au
- University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania and University of Texas Medical Branch, TX, USA
| | - Zhao-Lin Xia
- Department of Occupational Health and Toxicology, School of Public Health, Shanghai Medical College of Fudan University and School of Public Health, Xinjiang Medical University, Urumqi 830011, China
| | - Tuanwei Wang
- Department of Occupational and Environmental Health, School of Public Health, Shandong Second Medical University, Weifang, Shandong Province, China.
| |
Collapse
|
4
|
Carsi Kuhangana T, Cheyns K, Muta Musambo T, Banza Lubaba Nkulu C, Smolders E, Hoet P, Van Loco J, Nemery B, Demaegdt H. Cottage industry as a source of high exposure to lead: A biomonitoring study among people involved in manufacturing cookware from scrap metal. ENVIRONMENTAL RESEARCH 2024; 250:118493. [PMID: 38378125 DOI: 10.1016/j.envres.2024.118493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
In low-income countries, a widespread but poorly studied type of cottage industry consists of melting scrap metal for making cookware. We assessed the exposure to lead (Pb) among artisanal workers, and their families, involved in manufacturing cookware from scrap metal. In a cross-sectional survey, we compared artisanal cookware manufacturing foundries with carpentry workshops (negative controls) and car battery repair workshops (positive controls), all located in residential areas, in Lubumbashi (DR Congo). We collected surface dust in the workspaces, and blood and urine samples among workers, as well as residents living in the cookware workshops. Trace elements were quantified in the samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). In surface dust, median Pb concentrations were higher in cookware foundries (347 mg/kg) than in carpentries (234 mg/kg) but lower than in battery repair workshops (22,000 mg/kg). In workers making the cookware (n = 24), geometric mean (GM) Pb blood cencentration was 118 μg/L [interquartile range (IQR) 78.4-204], i.e. nearly twice as high as among carpenters [60.2 μg/L (44.4-84.7), n = 33], and half the concentration of battery repair workers [255 μg/L (197-362), n = 23]. Resident children from the cookware foundries, had higher urinary Pb [6.2 μg/g creatinine (2.3-19.3), n = 6] than adults [2.3 (2.2-2.5), n = 3]. Our investigation confirms the high Pb hazard linked to car battery repair and reveals a high exposure to Pb among artisanal cookware manufacturers and their families, especially children, in residential areas of a city in a low-income country.
Collapse
Affiliation(s)
- Trésor Carsi Kuhangana
- Ecole de Santé Publique, Université de Kolwezi, Kolwezi, DR Congo; Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium; Unit of Toxicology and Environment, School of Public Health, University of Lubumbashi, DR Congo.
| | - Karlien Cheyns
- Service of Trace Elements and Nanomaterials, Physical and Chemical Health Risks, Sciensano, Tervuren, Belgium
| | - Taty Muta Musambo
- Unit of Toxicology and Environment, School of Public Health, University of Lubumbashi, DR Congo
| | | | - Erik Smolders
- Division of Soil and Water Management, Faculty of Bioscience engineering, KU Leuven, Leuven, Belgium
| | - Peter Hoet
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Joris Van Loco
- Division of Soil and Water Management, Faculty of Bioscience engineering, KU Leuven, Leuven, Belgium; Clinical and Experimental Endocrinology, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
| | - Benoit Nemery
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Heidi Demaegdt
- Division of Soil and Water Management, Faculty of Bioscience engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Yang JH, Liu WZ, Sun Y, Zhao QK, Zhang XT, Xia ZL, Au W, Sun P. An exploration of biomarkers for noise exposure: mitochondrial DNA copy number and micronucleus frequencies in Chinese workers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2430-2440. [PMID: 37669754 DOI: 10.1080/09603123.2023.2253739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/26/2023] [Indexed: 09/07/2023]
Abstract
Few studies have been conducted that use biomarkers as early warning signals for noise-associated health hazards. To explore potentially effective biomarkers for noise-exposed populations, we recruited 218 noise-exposed male workers in China. We calculated cumulative noise exposure (CNE) through noise intensity and noise-exposed duration. When the model was fully adjusted, ln-transformed relative mitochondrial DNA copy number (mtDNAcn) decreased by 0.014 (95% confidence interval (CI): -0.026, -0.003) units with each 1 dB(A)∙year increase in CNE levels. CNE was further included in the model as a grouping variable, and the results showed a negative dose-effect relationship between relative mtDNAcn and CNE (P-trend = 0.045). However, we did not find a correlation between CNE and micronucleus (MN) frequencies. Our findings suggest that CNE in workers was associated with a decrease in relative mtDNAcn which may provide a potential biomarker for noise and for certain health risk but not with MN frequencies.
Collapse
Affiliation(s)
- Jia-Hao Yang
- Department of Occupational Health & Toxicology, School of Public Health, Fudan University, Shanghai, China
| | - Wu-Zhong Liu
- Occupational Health, Shanghai Institute of Occupational Disease for Chemical Industry (Shanghai Institute of Occupational Safety & Health), Shanghai, China
| | - Yuan Sun
- Occupational Health, Shanghai Institute of Occupational Disease for Chemical Industry (Shanghai Institute of Occupational Safety & Health), Shanghai, China
| | - Qian-Kui Zhao
- Occupational Health, Shanghai Institute of Occupational Disease for Chemical Industry (Shanghai Institute of Occupational Safety & Health), Shanghai, China
| | - Xue-Tao Zhang
- Occupational Health, Shanghai Institute of Occupational Disease for Chemical Industry (Shanghai Institute of Occupational Safety & Health), Shanghai, China
| | - Zhao-Lin Xia
- Department of Occupational Health & Toxicology, School of Public Health, Fudan University, Shanghai, China
| | - William Au
- Pharmacy, Science and Technology, University of Medicine, Targu Mures, Romania
- Occupational Health, University of Texas Medical Branch, Galveston, TX, USA
| | - Pin Sun
- Department of Occupational Health & Toxicology, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Zhao L, Wei Y, Liu Q, Cai J, Mo X, Tang X, Wang X, Qin L, Liang Y, Cao J, Huang C, Lu Y, Zhang T, Luo L, Rong J, Wu S, Jin W, Guan Q, Teng K, Li Y, Qin J, Zhang Z. Association between multiple-heavy-metal exposures and systemic immune inflammation in a middle-aged and elderly Chinese general population. BMC Public Health 2024; 24:1192. [PMID: 38679723 PMCID: PMC11057124 DOI: 10.1186/s12889-024-18638-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Exposure to heavy metals alone or in combination can promote systemic inflammation. The aim of this study was to investigate potential associations between multiple plasma heavy metals and markers of systemic immune inflammation. METHODS Using a cross-sectional study, routine blood tests were performed on 3355 participants in Guangxi, China. Eight heavy metal elements in plasma were determined by inductively coupled plasma mass spectrometry. Immunoinflammatory markers were calculated based on peripheral blood WBC and its subtype counts. A generalised linear regression model was used to analyse the association of each metal with the immunoinflammatory markers, and the association of the metal mixtures with the immunoinflammatory markers was further assessed using weighted quantile sum (WQS) regression. RESULTS In the single-metal model, plasma metal Fe (log10) was significantly negatively correlated with the levels of immune-inflammatory markers SII, NLR and PLR, and plasma metal Cu (log10) was significantly positively correlated with the levels of immune-inflammatory markers SII and PLR. In addition, plasma metal Mn (log10 conversion) was positively correlated with the levels of immune inflammatory markers NLR and PLR. The above associations remained after multiple corrections. In the mixed-metal model, after WQS regression analysis, plasma metal Cu was found to have the greatest weight in the positive effects of metal mixtures on SII and PLR, while plasma metals Mn and Fe had the greatest weight in the positive effects of metal mixtures on NLR and LMR, respectively. In addition, blood Fe had the greatest weight in the negative effects of the metal mixtures for SII, PLR and NLR. CONCLUSION Plasma metals Cu and Mn were positively correlated with immunoinflammatory markers SII, NLR and PLR. While plasma metal Fe was negatively correlated with immunoinflammatory markers SII, NLR, and PLR.
Collapse
Affiliation(s)
- Linhai Zhao
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yanfei Wei
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, Guangdong, China
| | - Qiumei Liu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jiansheng Cai
- School of Public Health, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, China
| | - Xiaoting Mo
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xu Tang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xuexiu Wang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Lidong Qin
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yujian Liang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jiejing Cao
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Chuwu Huang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yufu Lu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Tiantian Zhang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Lei Luo
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jiahui Rong
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Songju Wu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Wenjia Jin
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Qinyi Guan
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Kaisheng Teng
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - You Li
- School of Public Health, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, China
| | - Jian Qin
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
| | - Zhiyong Zhang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
- School of Public Health, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, China.
- Guangxi Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
7
|
Harshitha P, Bose K, Dsouza HS. Influence of lead-induced toxicity on the inflammatory cytokines. Toxicology 2024; 503:153771. [PMID: 38452865 DOI: 10.1016/j.tox.2024.153771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Lead (Pb2+) is a hazardous heavy metal that is pervasive in the human environment as a result of anthropogenic activity, and poses serious health risks, particularly in children. Due to its innumerable unique physical and chemical properties, it has various applications; therefore, it has become a common environmental pollutant. Lead may cause oxidative stress, and accumulating evidence indicates that oxidative stress influences the pathophysiology of lead poisoning, also called plumbism. The immune system is continually exposed to various environmental pathogens and xenobiotics, including heavy metals such as lead, and appears to be one of the most vulnerable targets. After being exposed to lead, cells are subjected to oxidative stress as a result of reactive oxygen species (ROS) production. When the generation and consumption of ROS are out of equilibrium, various cell structures, particularly phospholipids are disrupted leading to lipid peroxidation. Various inflammatory signalling pathways are activated as a consequence, along with reduced disease resistance, inflammation, autoimmunity, sensitization and disruption of the cell-mediated and humoral immune systems. Lead negatively affects the metabolism of cytokines, including the interleukins IL-2, IL-1b, IL-6, IL-4, IL-8, tumor necrosis factor-alpha (TNF-α), and interferon-gamma (IFN), as well as the expression and functioning of inflammatory enzymes such as cyclooxygenases. However, the cause of toxicity depends on the kind of lead, dosage, route of entry, exposure period, age, host and genetic predisposition.
Collapse
Affiliation(s)
- P Harshitha
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Kalpita Bose
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Herman Sunil Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
8
|
Nong Q, Chen B, Huang Y, Li Y, Wang Y, Liu L, He B, Luan T, Hu L, Jiang G. Identification of lead-binding proteins as carriers and potential molecular targets associated with systolic blood pressure. CHEMOSPHERE 2023; 341:140138. [PMID: 37696478 DOI: 10.1016/j.chemosphere.2023.140138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Lead (Pb) exposure is well recognized as a significant environmental factor associated with the high incidence of cardiovascular diseases. However, the carriers and molecular targets of Pb in human blood remain to be understood, especially for a real Pb exposure scenario. In this study, a total of 350 blood samples were collected from the smelting workers and systematically analyzed using metallomics and metalloproteomics approaches. The results showed that the majority of Pb (∼99.4%) could be presented in the blood cells. Pb in the cytoplasm of blood cells accounted for approximately 83.1% of the total blood Pb, with nearly half of Pb being bound to proteins. Pb-binding proteins in the blood of workers were identified as hemoglobin, catalase, haptoglobin, δ-aminolevulinic acid dehydratase, and peroxiredoxin-2. Multiple linear regression analysis demonstrated that higher levels of Pb bound to proteins (Mix-bound Pb and Protein-bound Pb) were positively associated with higher systolic blood pressure (p < 0.05). However, the association between blood lead level, Pb levels in the blood cells and systolic blood pressure was not observed (p > 0.05). This study suggested that Pb bound to proteins could be a suitable biomarker for indicating the potential risk of occupational hypertension.
Collapse
Affiliation(s)
- Qiying Nong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Lab of Bioresource and Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China
| | - Yongshun Huang
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, China
| | - Yiling Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yuanyuan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lihong Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Tiangang Luan
- State Key Lab of Bioresource and Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, China; Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
9
|
Zhao ZM, Mei S, Zheng QY, Wang J, Yin YR, Zhang JJ, Wang XZ. Melatonin or vitamin C attenuates lead acetate-induced testicular oxidative and inflammatory damage in mice by inhibiting oxidative stress mediated NF-κB signaling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115481. [PMID: 37716076 DOI: 10.1016/j.ecoenv.2023.115481] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/17/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023]
Abstract
Lead (Pb) acts as an environmental endocrine disruptor and has negative effects in animals; excessive accumulation of lead causes reproductive dysfunction in male animals. Oxidative stress plays a vital role in Pb-induced injury. However, the mechanisms underlying chronic testicular toxicity of Pb remain unclear. In this study, we aimed to determine the effects of lead acetate on reproductive function in male mice, identify the underlying mechanisms, and test counter measures to alleviate the toxic effects. Male mice were dosed with lead acetate (500 mg/L) in free drinking water for 12 weeks, and administered melatonin (5 mg/kg) or vitamin C (500 mg/kg) by intraperitoneal injection. Blood from the eyeball, testicles, and sperm from the caudal epididymis were collected after 12 weeks and analyzed. Pb exposure reduced sperm count and motility, increased sperm malformation (P < 0.01), disrupted testicular morphology and structure, and decreased the expression of steroid hormone synthesis-related enzymes and serum testosterone concentration (P < 0.01). Pb also increased the number of inflammatory cells and the levels of the pro-inflammatory cytokines TNF-α and IL-6 (P < 0.01), and activated NF-κB signaling. Furthermore, the ROS yield and oxidation indicators LPO and MDA were significantly increased (P < 0.01), and the antioxidant indicators T-AOC, SOD, and GSH were significantly reduced (P < 0.01). Treatment with melatonin or vitamin C reversed the effects of lead acetate; vitamin C was more effective in restoring SOD activity (P < 0.01) and enhancing ZO-1 protein levels (P < 0.01). Thus, long-term exposure to lead acetate at low concentrations could adversely affect sperm quality and induce inflammatory damage by oxidative stress mediated NF-κB signaling. Vitamin C could act as a protective agent and improve reproductive dysfunction in male animals after lead accumulation.
Collapse
Affiliation(s)
- Ze-Min Zhao
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest, University, Beibei, Chongqing 400715, PR China
| | - Su Mei
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest, University, Beibei, Chongqing 400715, PR China
| | - Qi-Yue Zheng
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest, University, Beibei, Chongqing 400715, PR China
| | - Jiao Wang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest, University, Beibei, Chongqing 400715, PR China
| | - Yi-Ru Yin
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest, University, Beibei, Chongqing 400715, PR China
| | - Jiao-Jiao Zhang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest, University, Beibei, Chongqing 400715, PR China
| | - Xian-Zhong Wang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest, University, Beibei, Chongqing 400715, PR China.
| |
Collapse
|
10
|
Xu T, Lin K, Cao M, Miao X, Guo H, Rui D, Hu Y, Yan Y. Patterns of global burden of 13 diseases attributable to lead exposure, 1990-2019. BMC Public Health 2023; 23:1121. [PMID: 37308890 DOI: 10.1186/s12889-023-15874-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/11/2023] [Indexed: 06/14/2023] Open
Abstract
OBJECTIVES Understanding the spatio-temporal patterns of the global burden of various diseases resulting from lead exposure is critical for controlling lead pollution and disease prevention. METHODS Based on the 2019 Global Burden of Disease (GBD) framework and methodology, the global, regional, and national burden of 13 level-three diseases attributable to lead exposure were analyzed by disease type, patient age and sex, and year of occurrence. Population attributable fraction (PAF), deaths and disability-adjusted life years (DALYs), age-standardized mortality rate (ASMR) and age-standardized DALYs rate (ASDR) obtained from the GBD 2019 database were used as descriptive indicators, and the average annual percentage change (AAPC) was estimated by a log-linear regression model to reflect the time trend. RESULTS AND CONCLUSIONS From 1990 to 2019, the number of deaths and DALYs resulting from lead exposure increased by 70.19% and 35.26%, respectively; however, the ASMR and ASDR decreased by 20.66% and 29.23%, respectively. Ischemic heart disease (IHD), stroke, and hypertensive heart disease (HHD) showed the highest increases in deaths; IHD, stroke, and diabetes and kidney disease (DKD) had the fastest-growing DALYs. The fastest decline in ASMR and ASDR was seen in stroke, with AAPCs of -1.25 (95% CI [95% confidence interval]: -1.36, -1.14) and -1.66 (95% CI: -1.76, -1.57), respectively. High PAFs occurred mainly in South Asia, East Asia, the Middle East, and North Africa. Age-specific PAFs of DKD resulting from lead exposure were positively correlated with age, whereas the opposite was true for mental disorders (MD), with the burden of lead-induced MD concentrated in children aged 0-6 years. The AAPCs of ASMR and ASDR showed a strong negative correlation with the socio-demographic index. Our findings showed that the global impact of lead exposure and its burden increased from 1990 to 2019 and varied significantly according to age, sex, region, and resulting disease. Effective public health measures and policies should be adopted to prevent and control lead exposure.
Collapse
Affiliation(s)
- Tongtong Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, No. 59, North 2nd Rd, Hong-Shan District, Shihezi, 832003, Xinjiang, China
| | - Kangqian Lin
- Department of Preventive Medicine, School of Medicine, Shihezi University, No. 59, North 2nd Rd, Hong-Shan District, Shihezi, 832003, Xinjiang, China
| | - Miao Cao
- Department of Preventive Medicine, School of Medicine, Shihezi University, No. 59, North 2nd Rd, Hong-Shan District, Shihezi, 832003, Xinjiang, China
| | - Xinlu Miao
- Department of Preventive Medicine, School of Medicine, Shihezi University, No. 59, North 2nd Rd, Hong-Shan District, Shihezi, 832003, Xinjiang, China
| | - Heng Guo
- Department of Preventive Medicine, School of Medicine, Shihezi University, No. 59, North 2nd Rd, Hong-Shan District, Shihezi, 832003, Xinjiang, China
- Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Prevention and Control of Crucial Emerging Infectious Diseases and Public, Health Security of The Xinjiang Production and Construction Corps, Shihezi, Xinjiang, China
| | - Dongsheng Rui
- Department of Preventive Medicine, School of Medicine, Shihezi University, No. 59, North 2nd Rd, Hong-Shan District, Shihezi, 832003, Xinjiang, China
- Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Prevention and Control of Crucial Emerging Infectious Diseases and Public, Health Security of The Xinjiang Production and Construction Corps, Shihezi, Xinjiang, China
| | - Yunhua Hu
- Department of Preventive Medicine, School of Medicine, Shihezi University, No. 59, North 2nd Rd, Hong-Shan District, Shihezi, 832003, Xinjiang, China.
- Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, China.
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, China.
- Key Laboratory for Prevention and Control of Crucial Emerging Infectious Diseases and Public, Health Security of The Xinjiang Production and Construction Corps, Shihezi, Xinjiang, China.
| | - Yizhong Yan
- Department of Preventive Medicine, School of Medicine, Shihezi University, No. 59, North 2nd Rd, Hong-Shan District, Shihezi, 832003, Xinjiang, China.
- Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, China.
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, China.
- Key Laboratory for Prevention and Control of Crucial Emerging Infectious Diseases and Public, Health Security of The Xinjiang Production and Construction Corps, Shihezi, Xinjiang, China.
| |
Collapse
|
11
|
Dai H, Zhang H, Wang H, Niu J, Luo B, Yan J, Li X. The Effect of Smoking Habits on Blood Cadmium and Lead Levels in Residents Living Near a Mining and Smelting Area in Northwest China: a Cross-Sectional Study. Biol Trace Elem Res 2023; 201:1101-1111. [PMID: 35499801 DOI: 10.1007/s12011-022-03248-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023]
Abstract
Few studies have focused on environmental cadmium (Cd) and lead (Pb) exposure while exploring the effect of smoking on blood Cd (BCd) and blood Pb (BPb) levels. Moreover, essential trace elements affect the absorption, accumulation, and toxicity of Cd and Pb. To investigate the effect of smoking on BCd and BPb levels under high Cd and Pb exposure and the influence of essential trace elements on the effect, 301 residents living near a mining and smelting area in Northwest China were included in our study. After collecting health information and measuring BCd, BPb, serum iron, magnesium, and total calcium levels, we analyzed the association between smoking and BCd and BPb levels and the influence of the essential trace elements on the association. The results showed that BCd and BPb levels in smokers were significantly higher than those in non-smokers. There was a dose-response association between pack-years and the odds ratios (ORs) of high BCd and BPb levels in all participants compared with non-smokers. Serum iron, magnesium, and calcium had a negative effect on the elevations of the ORs of high BCd and BPb levels. In addition, smoking-related elevations of BCd and BPb levels vary by sex, age, BMI, and age of smoking initiation. Our findings present evidence for the effect of smoking on BCd and BPb levels under high Cd and Pb exposure and may provide guidance for the prevention and control of BCd and BPb elevations in residents living in Cd- and Pb-polluted areas.
Collapse
Affiliation(s)
- Hui Dai
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Honglong Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Haiping Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
- Department of General Surgery, The First Hospital of Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, People's Republic of China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jingping Niu
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Bin Luo
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jun Yan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
- Department of General Surgery, The First Hospital of Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, People's Republic of China.
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China.
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
- Department of General Surgery, The First Hospital of Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, People's Republic of China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China
| |
Collapse
|
12
|
Chronic lead exposure exacerbates hepatic glucolipid metabolism disorder and gut microbiota dysbiosis in high-fat-diet mice. Food Chem Toxicol 2022; 170:113451. [PMID: 36198340 DOI: 10.1016/j.fct.2022.113451] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022]
Abstract
Lead (Pb) and obesity are co-occurring risk factors for metabolic disorders. However, there is still a lack of study on the combined effects of both stressors on metabolism. C57BL/6J mice were exposed to 200 mg/L Pb or/and HFD for 24 weeks and were used to investigate the effects and underlying mechanisms of chronic Pb exposure on obese mice. The results showed that Pb significantly increased body weight, visceral obesity, fasting blood glucose levels, and insulin resistance, and aggravated liver damage, hepatic lipid accumulation and steatosis in HFD-fed mice. Further analysis showed that Pb significantly inhibited insulin signaling pathway PI3K/AKT and fatty acid β-oxidation, and accelerated fatty acid synthesis. Moreover, Pb exacerbated HFD-induced disruption of gut microbiota homeostasis, manifested by increased proportions of pathogenic genera such as Desulfovibrio, Alistipes and Helicobacter, and decreased proportions of beneficial microbes Akkermansia and Barnesiella, which were negatively associated with obesity. These results indicated that Pb exposure exacerbated the disruption of liver glucolipid metabolism in HFD mice possibly by disrupting gut microbiota.
Collapse
|
13
|
Nagaraju R, Kalahasthi R, Balachandar R, Bagepally BS. Association between lead exposure and DNA damage (genotoxicity): systematic review and meta-analysis. Arch Toxicol 2022; 96:2899-2911. [PMID: 35930012 DOI: 10.1007/s00204-022-03352-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 12/29/2022]
Abstract
Studies suggest that chronic lead (Pb) exposure may induce deoxyribonucleic acid (DNA) damage. However, there is no synthesised evidence in this regard. We systematically reviewed existing literature and synthesised evidence on the association between chronic Pb exposure and markers of genotoxicity. Observational studies reporting biomarkers of DNA damage among occupationally Pb-exposed and unexposed controls were systematically searched from PubMed, Scopus and Embase databases from inception to January 2022. The markers included were micronucleus frequency (MN), chromosomal aberrations, comet assay, and 8-hydroxy-deoxyguanosine. During the execution of this review, we followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Mean differences in the biological markers of DNA damage between Pb-exposed and control groups were pooled using the random-effects model. The heterogeneity was assessed using the Cochran-Q test and I2 statistic. The review included forty-five studies comparing markers of DNA damage between Pb-exposed and unexposed. The primary studies utilised buccal and/or peripheral leukocytes for evaluating the DNA damage. The pooled quantitative results revealed significantly higher DNA damage characterised by increased levels of MN and SCE frequency, chromosomal aberrations, and oxidative DNA damage (comet assay and 8-OHdG) among Pb-exposed than the unexposed. However, studies included in the review exhibited high levels of heterogeneity among the studies. Chronic Pb exposure is associated with DNA damage. However, high-quality, multicentred studies are required to strengthen present observations and further understand the Pb's role in inducing DNA damage. CRD42022286810.
Collapse
Affiliation(s)
- Raju Nagaraju
- Biochemistry, Regional Occupational Health Centre (Southern), ICMR-National Institute of Occupational Health, Bengaluru, Karnataka, India
| | - Ravibabu Kalahasthi
- Biochemistry, Regional Occupational Health Centre (Southern), ICMR-National Institute of Occupational Health, Bengaluru, Karnataka, India
| | - Rakesh Balachandar
- Division of Health Sciences, ICMR-National Institute of Occupational Health, Ahmedabad, Gujarat, India
| | | |
Collapse
|
14
|
Meng Y, Zhou M, Wang T, Zhang G, Tu Y, Gong S, Zhang Y, Christiani DC, Au W, Liu Y, Xia ZL. Occupational lead exposure on genome-wide DNA methylation and DNA damage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119252. [PMID: 35385786 DOI: 10.1016/j.envpol.2022.119252] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/17/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023]
Abstract
Lead (Pb) exposure can induce DNA damage and alter DNA methylation but their inter-relationships have not been adequately determined. Our overall aims were to explore such relationships and to evaluate underlying epigenetic mechanisms of Pb-induced genotoxicity in Chinese workers. Blood Pb levels (BLLs) were determined and used as individual's Pb-exposure dose and the Comet assay (i.e., % tail DNA) was conducted to evaluate DNA damage. In the screening assay, 850 K BeadChip sequencing was performed on peripheral blood from 10 controls (BLLs ≤100 μg/L) and 20 exposed workers (i.e., 10 DNA-damaged and 10 DNA-undamaged workers). Using the technique, differentially methylated positions (DMPs) between the controls and the exposed workers were identified. In addition, DMPs were identified between the DNA-undamaged and DNA-damaged workers (% tail DNA >2.14%). In our validation assay, methylation levels of four candidate genes were measured by pyrosequencing in an independent sample set (n = 305), including RRAGC (Ras related GTP binding C), USP1 (Ubiquitin specific protease 1), COPS7B (COP9 signalosome subunit 7 B) and CHEK1 (Checkpoint kinase 1). The result of comparisons between the controls and the Pb-exposed workers show that DMPs were significantly enriched in genes related to nerve conduction and cell cycle. Between DNA-damaged group and DNA-undamaged group, differentially methylated genes were enriched in the pathways related to cell cycle and DNA integrity checkpoints. Additionally, methylation levels of RRAGC and USP1 were negatively associated with BLLs (P < 0.05), and the former mediated 19.40% of the effect of Pb on the % tail DNA. These findings collectively indicated that Pb-induced DNA damage was closely related to methylation of genes in cell cycle regulation, and methylation levels of RRAGC were involved in Pb-induced genotoxicity.
Collapse
Affiliation(s)
- Yu Meng
- Department of Occupational Health & Toxicology, School of Public Health, Fudan University, Shanghai, China
| | - Mengyu Zhou
- The MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tuanwei Wang
- Department of Occupational Health & Toxicology, School of Public Health, Fudan University, Shanghai, China
| | - Guanghui Zhang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University, Chongqing, China; Department of Occupational & Environmental Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Yuting Tu
- Department of Occupational Health & Toxicology, School of Public Health, Fudan University, Shanghai, China
| | - Shiyang Gong
- Department of Occupational Health & Toxicology, School of Public Health, Fudan University, Shanghai, China
| | - Yunxia Zhang
- Department of Occupational Health & Toxicology, School of Public Health, Fudan University, Shanghai, China
| | - David C Christiani
- Environmental Medicine and Epidemiology Program, Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - William Au
- University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania, and Shantou University Medical College, Shantou, China
| | - Yun Liu
- The MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhao-Lin Xia
- Department of Occupational Health & Toxicology, School of Public Health, Fudan University, Shanghai, China; School of Public Health, Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
15
|
Cai P, Zhu Q, Cao Q, Bai Y, Zou H, Gu J, Yuan Y, Liu X, Liu Z, Bian J. Quercetin and Allicin Can Alleviate the Hepatotoxicity of Lead (Pb) through the PI3K Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9451-9460. [PMID: 34372660 DOI: 10.1021/acs.jafc.1c03794] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lead (Pb) is a common toxic heavy metal pollutant in the environment that seriously endangers the health of animals. The liver is a key target organ affected by Pb toxicity. Plant extracts allicin and quercetin have a strong antioxidant capacity that can promote the excretion of heavy metals by improving the body's antioxidant defense and chelating heavy metal ions. To explore the preventive and therapeutic effects of allicin and quercetin on Pb poisoning in chickens, 96 chickens were randomly divided into eight groups: control, Pb, allicin, quercetin, allicin + quercetin, Pb + allicin, Pb + quercetin, and Pb + allicin + quercetin groups. The chickens were given feed containing the above treatments for 90 days. The results indicated that Pb can affect the growth and development of the liver, damage the circulatory system, destroy the structure of mitochondria and nuclei in liver cells, cause an imbalance in the oxidation system, inhibit PI3K protein, and activate the mitochondrial apoptotic pathway. Allicin and quercetin, alone or in combination, can improve the antioxidant capacity of the liver and alleviate liver tissue damage caused by Pb. In summary, allicin and quercetin could alleviate oxidative damage and apoptosis in the Pb-poisoned chicken liver through the PI3K signaling pathway, with stronger effects achieved by their combination.
Collapse
Affiliation(s)
- Peirong Cai
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Qihang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Qianying Cao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Yuni Bai
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| |
Collapse
|