1
|
Potì S, Merico E, Conte M, Unga F, Cesari D, Dinoi A, De Bartolomeo AR, Pennetta A, Bloise E, Deluca G, De Benedetto GE, Ferrera R, Bompadre E, Guascito MR, Contini D. Spatial and seasonal variability of the contribution of sources to PM 2.5, PM 10 and their oxidative potential in different sites in a central Mediterranean area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 976:179283. [PMID: 40188722 DOI: 10.1016/j.scitotenv.2025.179283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/09/2025] [Accepted: 03/27/2025] [Indexed: 04/23/2025]
Abstract
Oxidative potential (OP) is a potential indicator of negative health effects of particulate matter (PM). To address mitigation strategies, there is need of understanding how natural and anthropogenic sources influence OP at different sites. This work investigates spatial and seasonal variabilities of PM2.5 and PM10 concentrations, composition, and oxidative potential (OPDTTV, obtained with DTT assay), simultaneously at 22 sites in a central Mediterranean area in south Italy. Source apportionment using PMF5 allowed to evaluate the contributions of eight sources: traffic, biomass burning (BB), nitrate, sulphate-rich, marine, crustal, carbonates/construction, and industrial (only for PM2.5). Nitrate, traffic, and BB had larger contributions during the cold season and presented spatial variability with exclusion of nitrate. Industrial contributions did not have relevant seasonal or spatial variability. The other sources had an opposite trend with larger values during the warm season but only sulphate-rich had non-negligible spatial variability. OPDTTV had relevant spatial variability only during the cold season. Four sources had statistically significant contributions to OPDTTV: traffic, BB, sulphate-rich, and crustal (in descending order). The use of soluble and insoluble fractions of OC and Ca in PMF5 allowed a better separation between traffic and BB sources and allowed to determine the role of local construction works. The results may have implications in future policies for mitigation strategies of OP targeting specific sources categories.
Collapse
Affiliation(s)
- Serena Potì
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Lecce, Italy; Dipartimento di Ingegneria dell'Innovazione, Università del Salento, Lecce, Italy
| | - Eva Merico
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Lecce, Italy
| | - Marianna Conte
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Roma, Italy
| | - Florin Unga
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Lecce, Italy
| | - Daniela Cesari
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Lecce, Italy
| | - Adelaide Dinoi
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Lecce, Italy
| | - Anna Rita De Bartolomeo
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali DiSTeBA, Università del Salento, Lecce, Italy
| | - Antonio Pennetta
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Lecce, Italy
| | - Ermelinda Bloise
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Lecce, Italy
| | - Giuseppe Deluca
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Lecce, Italy
| | | | | | | | - Maria Rachele Guascito
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Lecce, Italy; Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali DiSTeBA, Università del Salento, Lecce, Italy.
| | - Daniele Contini
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Lecce, Italy.
| |
Collapse
|
2
|
Gao Z, Wang F, Du W, Wang S, Sun Y, Yang W, Wang X, Han B, Bai Z. Elucidating particle number concentrations and unveiling source mechanisms at a prominent national background site on the northeastern Qinghai-Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178928. [PMID: 40020579 DOI: 10.1016/j.scitotenv.2025.178928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/11/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025]
Abstract
Understanding the changes in particle physical and chemical characteristics is critical for investigating the formation mechanisms of particles. This study conducted an observation campaign at the National Background Station on the Qinghai-Tibetan Plateau. We employed a Scanning Mobility Particle Sizer (SMPS) for measuring particle number concentration (PNC), sized from 3.85 to 478.30 nm. The observation was conducted from September 17th to October 14th, 2013, aiming to analyze particle size distributions of new particle formation (NPF) events and non-NPF in an environment free from complex human-induced disturbances, allowing for a more isolated study on the processes of particle formation and growth. We found that the NPF events occurred frequently (about 80 % days of the observation period) in this high-altitude region. Further source analysis identified four factors: nucleation sources, nucleation aging sources, combustion emissions sources, and secondary formation sources. Distinct differences existed in the diurnal variations of these factors between NPF and non-NPF periods. In summary, with the absence of significant human interference, we identified the major drivers of the four sources: 1) nucleation source was primarily driven by gaseous sulfuric acid at low wind speeds; 2) the levels of O3 mainly impacted nucleation aging sources; 3) combustion emissions sources originated from nearby anthropogenic activities, and 4) the boundary layer dynamics greatly influenced secondary aerosols. Results highlighted the significant roles of different atmospheric factors, including aerosol chemical composition and condensation sink efficiency, in influencing NPF.
Collapse
Affiliation(s)
- Zeyu Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Beijing Weather Modification Center, Beijing 100089, China
| | - Wei Du
- Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Shengli Wang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Wen Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xinhua Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
3
|
Garcia-Marlès M, Lara R, Reche C, Pérez N, Tobías A, Savadkoohi M, Beddows D, Salma I, Vörösmarty M, Weidinger T, Hueglin C, Mihalopoulos N, Grivas G, Kalkavouras P, Ondracek J, Zikova N, Niemi JV, Manninen HE, Green DC, Tremper AH, Norman M, Vratolis S, Diapouli E, Eleftheriadis K, Gómez-Moreno FJ, Alonso-Blanco E, Wiedensohler A, Weinhold K, Merkel M, Bastian S, Hoffmann B, Altug H, Petit JE, Acharja P, Favez O, Santos SMD, Putaud JP, Dinoi A, Contini D, Casans A, Casquero-Vera JA, Crumeyrolle S, Bourrianne E, Poppel MV, Dreesen FE, Harni S, Timonen H, Lampilahti J, Petäjä T, Pandolfi M, Hopke PK, Harrison RM, Alastuey A, Querol X. Source apportionment of ultrafine particles in urban Europe. ENVIRONMENT INTERNATIONAL 2024; 194:109149. [PMID: 39566442 DOI: 10.1016/j.envint.2024.109149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/16/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
There is a body of evidence that ultrafine particles (UFP, those with diameters ≤ 100 nm) might have significant impacts on health. Accordingly, identifying sources of UFP is essential to develop abatement policies. This study focuses on urban Europe, and aims at identifying sources and quantifying their contributions to particle number size distribution (PNSD) using receptor modelling (Positive Matrix Factorization, PMF), and evaluating long-term trends of these source contributions using the non-parametric Theil-Sen's method. Datasets evaluated include 14 urban background (UB), 5 traffic (TR), 4 suburban background (SUB), and 1 regional background (RB) sites, covering 18 European and 1 USA cities, over the period, when available, from 2009 to 2019. Ten factors were identified (4 road traffic factors, photonucleation, urban background, domestic heating, 2 regional factors and long-distance transport), with road traffic being the primary contributor at all UB and TR sites (56-95 %), and photonucleation being also significant in many cities. The trends analyses showed a notable decrease in traffic-related UFP ambient concentrations, with statistically significant decreasing trends for the total traffic-related factors of -5.40 and -2.15 % yr-1 for the TR and UB sites, respectively. This abatement is most probably due to the implementation of European emissions standards, particularly after the introduction of diesel particle filters (DPFs) in 2011. However, DPFs do not retain nucleated particles generated during the dilution of diesel exhaust semi-volatile organic compounds (SVOCs). Trends in photonucleation were more diverse, influenced by a reduction in the condensation sink potential facilitating new particle formation (NPF) or by a decrease in the emissions of UFP precursors. The decrease of primary PM emissions and precursors of UFP also contributed to the reduction of urban and regional background sources.
Collapse
Affiliation(s)
- Meritxell Garcia-Marlès
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; Department of Applied Physics-Meteorology, University of Barcelona, Barcelona, 08028, Spain.
| | - Rosa Lara
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Cristina Reche
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Noemí Pérez
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Aurelio Tobías
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Marjan Savadkoohi
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; Department of Mining, Industrial and ICT Engineering (EMIT), Manresa School of Engineering (EPSEM), Universitat Politècnica de Catalunya (UPC), Manresa, 08242, Spain
| | - David Beddows
- Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Imre Salma
- Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Máté Vörösmarty
- Hevesy György Ph.D. School of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Tamás Weidinger
- Department of Meteorology, Institute of Geography and Earth Sciences, Eötvös Loránd University, Budapest, Hungary
| | - Christoph Hueglin
- Laboratory for Air Pollution and Environmental Technology, Swiss Federal Laboratories for Materials Science and Technology (Empa), 8600 Duebendorf, Switzerland
| | - Nikos Mihalopoulos
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 71003 Heraklion, Greece; Institute for Environmental Research & Sustainable Development, National Observatory of Athens, 11810 Athens, Greece
| | - Georgios Grivas
- Institute for Environmental Research & Sustainable Development, National Observatory of Athens, 11810 Athens, Greece
| | - Panayiotis Kalkavouras
- Institute for Environmental Research & Sustainable Development, National Observatory of Athens, 11810 Athens, Greece; Department of Environment, University of the Aegean, 81100 Mytilene, Greece
| | - Jakub Ondracek
- Research Group of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals, v.v.i., Academy of Sciences of the Czech Republic, Rozvojova 1, Prague, Czech Republic
| | - Nadezda Zikova
- Research Group of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals, v.v.i., Academy of Sciences of the Czech Republic, Rozvojova 1, Prague, Czech Republic
| | - Jarkko V Niemi
- Helsinki Region Environmental Services Authority (HSY), 00240 Helsinki, Finland
| | - Hanna E Manninen
- Helsinki Region Environmental Services Authority (HSY), 00240 Helsinki, Finland
| | - David C Green
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, United Kingdom; NIHR HPRU in Environmental Exposures and Health, Imperial College London, United Kingdom
| | - Anja H Tremper
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, United Kingdom
| | - Michael Norman
- Environment and Health Administration, SLB-analys, Box 8136, 104 20 Stockholm, Sweden
| | - Stergios Vratolis
- ENRACT, Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 15310 Ag. Paraskevi, Athens, Greece
| | - Evangelia Diapouli
- ENRACT, Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 15310 Ag. Paraskevi, Athens, Greece
| | - Konstantinos Eleftheriadis
- ENRACT, Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 15310 Ag. Paraskevi, Athens, Greece
| | | | | | | | - Kay Weinhold
- Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Maik Merkel
- Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Susanne Bastian
- Saxon State Office for Environment, Agriculture and Geology (LfULG), Dresden, German
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Hicran Altug
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Jean-Eudes Petit
- Laboratoire des Sciences du Climat et de l'Environnement, CEA/Orme des Merisiers, 91191 Gif-sur-Yvette, France
| | - Prodip Acharja
- Laboratoire des Sciences du Climat et de l'Environnement, CEA/Orme des Merisiers, 91191 Gif-sur-Yvette, France
| | - Olivier Favez
- Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique Alata BP2, 60550 Verneuil-en-Halatte, France
| | | | | | - Adelaide Dinoi
- Institute of Atmospheric Sciences and Climate of National Research Council, ISAC-CNR, 73100 Lecce, Italy
| | - Daniele Contini
- Institute of Atmospheric Sciences and Climate of National Research Council, ISAC-CNR, 73100 Lecce, Italy
| | - Andrea Casans
- Andalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Granada, Spain
| | | | - Suzanne Crumeyrolle
- University Lille, CNRS, UMR 8518 Laboratoire d'Optique Atmosphérique (LOA), Lille, France
| | - Eric Bourrianne
- University Lille, CNRS, UMR 8518 Laboratoire d'Optique Atmosphérique (LOA), Lille, France
| | - Martine Van Poppel
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Freja E Dreesen
- Flanders Environment Agency, Dokter De Moorstraat 24-26, 9300, Aalst, Belgium
| | - Sami Harni
- Finnish Meteorological Institute, Atmospheric Composition Research, Helsinki, Finland
| | - Hilkka Timonen
- Finnish Meteorological Institute, Atmospheric Composition Research, Helsinki, Finland
| | - Janne Lampilahti
- Institute for Atmospheric and Earth System Research (INAR), Faculty of Science, University of Helsinki, Finland
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research (INAR), Faculty of Science, University of Helsinki, Finland
| | - Marco Pandolfi
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Roy M Harrison
- Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom; Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Andrés Alastuey
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain.
| |
Collapse
|
4
|
Kecorius S, Madueño L, Lovric M, Racic N, Schwarz M, Cyrys J, Casquero-Vera JA, Alados-Arboledas L, Conil S, Sciare J, Ondracek J, Hallar AG, Gómez-Moreno FJ, Ellul R, Kristensson A, Sorribas M, Kalivitis N, Mihalopoulos N, Peters A, Gini M, Eleftheriadis K, Vratolis S, Jeongeun K, Birmili W, Bergmans B, Nikolova N, Dinoi A, Contini D, Marinoni A, Alastuey A, Petäjä T, Rodriguez S, Picard D, Brem B, Priestman M, Green DC, Beddows DCS, Harrison RM, O'Dowd C, Ceburnis D, Hyvärinen A, Henzing B, Crumeyrolle S, Putaud JP, Laj P, Weinhold K, Plauškaitė K, Byčenkienė S. Atmospheric new particle formation identifier using longitudinal global particle number size distribution data. Sci Data 2024; 11:1239. [PMID: 39550387 PMCID: PMC11569151 DOI: 10.1038/s41597-024-04079-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/18/2024] [Indexed: 11/18/2024] Open
Abstract
Atmospheric new particle formation (NPF) is a naturally occurring phenomenon, during which high concentrations of sub-10 nm particles are created through gas to particle conversion. The NPF is observed in multiple environments around the world. Although it has observable influence onto annual total and ultrafine particle number concentrations (PNC and UFP, respectively), only limited epidemiological studies have investigated whether these particles are associated with adverse health effects. One plausible reason for this limitation may be related to the absence of NPF identifiers available in UFP and PNC data sets. Until recently, the regional NPF events were usually identified manually from particle number size distribution contour plots. Identification of NPF across multi-annual and multiple station data sets remained a tedious task. In this work, we introduce a regional NPF identifier, created using an automated, machine learning based algorithm. The regional NPF event tag was created for 65 measurement sites globally, covering the period from 1996 to 2023. The discussed data set can be used in future studies related to regional NPF.
Collapse
Affiliation(s)
- Simonas Kecorius
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.
- Environmental Science Center, University of Augsburg, Augsburg, Germany.
| | - Leizel Madueño
- Experimental Aerosol and Cloud Microphysics, Leibniz Institute for Tropospheric Research, Leipzig, Germany
| | | | - Nikolina Racic
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Maximilian Schwarz
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Josef Cyrys
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Lucas Alados-Arboledas
- Andalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Granada, Spain
| | - Sébastien Conil
- ANDRA - DISTEC-EES, Observatoire Pérenne de l'Environnement, Bure, France
| | - Jean Sciare
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, Cyprus
| | - Jakub Ondracek
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals, CAS, Prague, Czech Republic
| | - Anna Gannet Hallar
- Department of Atmospheric Sciences, University of Utah, Salt Lake City, USA
| | | | - Raymond Ellul
- Department of Physics, University of Malta, Msida, Malta
| | - Adam Kristensson
- Division of Physics, Division of Combustion Physics, Lund University, Lund, Sweden
| | - Mar Sorribas
- El Arenosillo - Atmospheric Sounding Station, Atmospheric Research and Instrumentation Branch, INTA, Mazagón, Huelva, Spain
| | - Nikolaos Kalivitis
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, Greece
| | - Nikolaos Mihalopoulos
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, Greece
- Institute for Environmental Research & Sustainable Development, National Observatory of Athens, I. Metaxa & Vas. Pavlou, Palea Penteli, Greece
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Epidemiology, Institute for Medical Information Processing, Biometry, and Epidemiology, Ludwig-Maximilians-University Munich, Munich, Germany
- Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Maria Gini
- Environmental Radioactivity & Aerosol Tech. for Atmospheric & Climate Impacts, INRaSTES, National Centre of Scientific Research "Demokritos", Paraskevi, Greece
| | - Konstantinos Eleftheriadis
- Environmental Radioactivity & Aerosol Tech. for Atmospheric & Climate Impacts, INRaSTES, National Centre of Scientific Research "Demokritos", Paraskevi, Greece
| | - Stergios Vratolis
- Environmental Radioactivity & Aerosol Tech. for Atmospheric & Climate Impacts, INRaSTES, National Centre of Scientific Research "Demokritos", Paraskevi, Greece
| | - Kim Jeongeun
- Forecast Research Division, National Institute of Meterological Sciences (NIMS), Seogwipo, Korea
| | | | | | - Nina Nikolova
- Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Adelaide Dinoi
- Institute of Atmospheric Sciences and Climate (ISAC-CNR), Lecce, Italy
| | - Daniele Contini
- Institute of Atmospheric Sciences and Climate (ISAC-CNR), Lecce, Italy
| | - Angela Marinoni
- Institute of Atmospheric Sciences and Climate, ISAC, Bologna, Italy
| | - Andres Alastuey
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research (INAR), Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Sergio Rodriguez
- Izaña Atmospheric Research Centre, Agencia Estatal de Meteorología, Santa Cruz de Tenerife, Spain Group of Atmosphere, Aerosols and Climate-AAC, IPNA CSIC, Tenerife, Spain
| | - David Picard
- Laboratoire de Physique de Clermont Auvergne (LPCA), UMR6533, CNRS-UCA, Aubière, France
| | - Benjamin Brem
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Max Priestman
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, London, United Kingdom
| | - David C Green
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, London, United Kingdom
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - David C S Beddows
- National Centre for Atmospheric Science, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Roy M Harrison
- National Centre for Atmospheric Science, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, United Kingdom
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Colin O'Dowd
- School of Natural Sciences, Ryan Institute's Centre for Climate & Air Pollution Studies, University of Galway, Galway, Ireland
| | - Darius Ceburnis
- School of Natural Sciences, Ryan Institute's Centre for Climate & Air Pollution Studies, University of Galway, Galway, Ireland
| | - Antti Hyvärinen
- SIOS Knowledge Centre, Svalbard science centre Longyearbyen, Longyearbyen, Norway
| | - Bas Henzing
- The Netherlands Institute of Applied Scientific Research (TNO), Utrecht, Netherlands
| | - Suzanne Crumeyrolle
- Univ. Lille, CNRS, UMR 8518 Laboratoire d'Optique Atmosphérique (LOA), Lille, France
| | | | - Paolo Laj
- Univ. Grenoble, CNRS, IRD, IGE, Grenoble, France
| | - Kay Weinhold
- Experimental Aerosol and Cloud Microphysics, Leibniz Institute for Tropospheric Research, Leipzig, Germany
| | | | | |
Collapse
|
5
|
Bousiotis D, Damayanti S, Baruah A, Bigi A, Beddows DCS, Harrison RM, Pope FD. Pinpointing sources of pollution using citizen science and hyperlocal low-cost mobile source apportionment. ENVIRONMENT INTERNATIONAL 2024; 193:109069. [PMID: 39423579 DOI: 10.1016/j.envint.2024.109069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Currently, methodologies for the identification and apportionment of air pollution sources are not widely applied due to their high cost. We present a new approach, combining mobile measurements from multiple sensors collected from the daily walks of citizen scientists, in a high population density area of Birmingham, UK. The methodology successfully pinpoints the different sources affecting the local air quality in the area using only a handful of measurements. It was found that regional sources of pollution were mostly responsible for the PM2.5 and PM1 concentrations. In contrast, PM10 was mostly associated with local sources. The total particle number and the lung deposited surface area of PM were almost solely associated with traffic, while black carbon was associated with both the sources from the urban background and local traffic. Our analysis showed that while the effect of the hyperlocal sources, such as emissions from construction works or traffic, do not exceed the distance of a couple of hundred meters, they can influence the health of thousands of people in densely populated areas. Thus, using this novel approach we illustrate the limitations of the present measurement network paradigm and offer an alternative and versatile approach to understanding the hyperlocal factors that affect urban air quality. Mobile monitoring by citizen scientists is shown to have huge potential to enhance spatiotemporal resolution of air quality data without the need of extensive and expensive campaigns.
Collapse
Affiliation(s)
- Dimitrios Bousiotis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Seny Damayanti
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Arunik Baruah
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Modena, 41125, Italy; University School of Advanced Studies IUSS Pavia, Palazzo Del Brotello, Pavia, 27100, Italy
| | - Alessandro Bigi
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Modena, 41125, Italy
| | - David C S Beddows
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Roy M Harrison
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Francis D Pope
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
6
|
Vallabani NVS, Gruzieva O, Elihn K, Juárez-Facio AT, Steimer SS, Kuhn J, Silvergren S, Portugal J, Piña B, Olofsson U, Johansson C, Karlsson HL. Toxicity and health effects of ultrafine particles: Towards an understanding of the relative impacts of different transport modes. ENVIRONMENTAL RESEARCH 2023; 231:116186. [PMID: 37224945 DOI: 10.1016/j.envres.2023.116186] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Exposure to particulate matter (PM) has been associated with a wide range of adverse health effects, but it is still unclear how particles from various transport modes differ in terms of toxicity and associations with different human health outcomes. This literature review aims to summarize toxicological and epidemiological studies of the effect of ultrafine particles (UFPs), also called nanoparticles (NPs, <100 nm), from different transport modes with a focus on vehicle exhaust (particularly comparing diesel and biodiesel) and non-exhaust as well as particles from shipping (harbor), aviation (airport) and rail (mainly subway/underground). The review includes both particles collected in laboratory tests and the field (intense traffic environments or collected close to harbor, airport, and in subway). In addition, epidemiological studies on UFPs are reviewed with special attention to studies aimed at distinguishing the effects of different transport modes. Results from toxicological studies indicate that both fossil and biodiesel NPs show toxic effects. Several in vivo studies show that inhalation of NPs collected in traffic environments not only impacts the lung, but also triggers cardiovascular effects as well as negative impacts on the brain, although few studies compared NPs from different sources. Few studies were found on aviation (airport) NPs, but the available results suggest similar toxic effects as traffic-related particles. There is still little data related to the toxic effects linked to several sources (shipping, road and tire wear, subway NPs), but in vitro results highlighted the role of metals in the toxicity of subway and brake wear particles. Finally, the epidemiological studies emphasized the current limited knowledge of the health impacts of source-specific UFPs related to different transport modes. This review discusses the necessity of future research for a better understanding of the relative potencies of NPs from different transport modes and their use in health risk assessment.
Collapse
Affiliation(s)
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Karine Elihn
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | | | - Sarah S Steimer
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | - Jana Kuhn
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Sanna Silvergren
- Environment and Health Administration, 104 20, Stockholm, Sweden
| | - José Portugal
- Institute of Environmental Assessment and Water Research, CSIC, 08034, Barcelona, Spain
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, CSIC, 08034, Barcelona, Spain
| | - Ulf Olofsson
- Department of Machine Design, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Christer Johansson
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden; Environment and Health Administration, 104 20, Stockholm, Sweden
| | - Hanna L Karlsson
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
7
|
Savadkoohi M, Pandolfi M, Reche C, Niemi JV, Mooibroek D, Titos G, Green DC, Tremper AH, Hueglin C, Liakakou E, Mihalopoulos N, Stavroulas I, Artiñano B, Coz E, Alados-Arboledas L, Beddows D, Riffault V, De Brito JF, Bastian S, Baudic A, Colombi C, Costabile F, Chazeau B, Marchand N, Gómez-Amo JL, Estellés V, Matos V, van der Gaag E, Gille G, Luoma K, Manninen HE, Norman M, Silvergren S, Petit JE, Putaud JP, Rattigan OV, Timonen H, Tuch T, Merkel M, Weinhold K, Vratolis S, Vasilescu J, Favez O, Harrison RM, Laj P, Wiedensohler A, Hopke PK, Petäjä T, Alastuey A, Querol X. The variability of mass concentrations and source apportionment analysis of equivalent black carbon across urban Europe. ENVIRONMENT INTERNATIONAL 2023; 178:108081. [PMID: 37451041 DOI: 10.1016/j.envint.2023.108081] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
This study analyzed the variability of equivalent black carbon (eBC) mass concentrations and their sources in urban Europe to provide insights into the use of eBC as an advanced air quality (AQ) parameter for AQ standards. This study compiled eBC mass concentration datasets covering the period between 2006 and 2022 from 50 measurement stations, including 23 urban background (UB), 18 traffic (TR), 7 suburban (SUB), and 2 regional background (RB) sites. The results highlighted the need for the harmonization of eBC measurements to allow for direct comparisons between eBC mass concentrations measured across urban Europe. The eBC mass concentrations exhibited a decreasing trend as follows: TR > UB > SUB > RB. Furthermore, a clear decreasing trend in eBC concentrations was observed in the UB sites moving from Southern to Northern Europe. The eBC mass concentrations exhibited significant spatiotemporal heterogeneity, including marked differences in eBC mass concentration and variable contributions of pollution sources to bulk eBC between different cities. Seasonal patterns in eBC concentrations were also evident, with higher winter concentrations observed in a large proportion of cities, especially at UB and SUB sites. The contribution of eBC from fossil fuel combustion, mostly traffic (eBCT) was higher than that of residential and commercial sources (eBCRC) in all European sites studied. Nevertheless, eBCRC still had a substantial contribution to total eBC mass concentrations at a majority of the sites. eBC trend analysis revealed decreasing trends for eBCT over the last decade, while eBCRC remained relatively constant or even increased slightly in some cities.
Collapse
Affiliation(s)
- Marjan Savadkoohi
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain; Department of Mining, Industrial and ICT Engineering (EMIT), Manresa School of Engineering (EPSEM), Universitat Politècnica de Catalunya (UPC), 08242, Manresa, Spain.
| | - Marco Pandolfi
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain.
| | - Cristina Reche
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Jarkko V Niemi
- Helsinki Region Environmental Services Authority (HSY), Helsinki, Finland
| | - Dennis Mooibroek
- Centre for Environmental Monitoring, National Institute for Public Health and the Environment (RIVM), the Netherlands
| | - Gloria Titos
- Andalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Granada, Spain
| | - David C Green
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, UK; NIHR HPRU in Environmental Exposures and Health, Imperial College London, UK
| | - Anja H Tremper
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, UK
| | - Christoph Hueglin
- Laboratory for Air Pollution and Environmental Technology, Swiss Federal Laboratories for Materials Science and Technology (Empa), Duebendorf, Switzerland
| | - Eleni Liakakou
- Institute for Environmental Research & Sustainable Development, National Observatory of Athens, Athens, Greece
| | - Nikos Mihalopoulos
- Institute for Environmental Research & Sustainable Development, National Observatory of Athens, Athens, Greece
| | - Iasonas Stavroulas
- Institute for Environmental Research & Sustainable Development, National Observatory of Athens, Athens, Greece
| | - Begoña Artiñano
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Department of Environment, CIEMAT, Madrid, Spain
| | - Esther Coz
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Department of Environment, CIEMAT, Madrid, Spain
| | - Lucas Alados-Arboledas
- Andalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Granada, Spain
| | - David Beddows
- Division of Environmental Health & Risk Management, School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Véronique Riffault
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, Lille, France
| | - Joel F De Brito
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, Lille, France
| | - Susanne Bastian
- Saxon State Office for Environment, Agriculture and Geology/Saxon State Department for Agricultural and Environmental Operations, Dresden, Germany
| | - Alexia Baudic
- AIRPARIF (Ile de France Air Quality Monitoring network), Paris, France
| | - Cristina Colombi
- Arpa Lombardia, Settore Monitoraggi Ambientali, Unità Operativa Qualità dell'Aria, Milano, Italy
| | - Francesca Costabile
- Institute of Atmospheric Sciences and Climate-National Research Council, Rome, Italy
| | - Benjamin Chazeau
- Aix Marseille Univ., CNRS, LCE, Marseille, France; Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | | | - José Luis Gómez-Amo
- Solar Radiation Group. Dept. Earth Physics and Thermodynamics, University of Valencia, Burjassot, Spain
| | - Víctor Estellés
- Solar Radiation Group. Dept. Earth Physics and Thermodynamics, University of Valencia, Burjassot, Spain
| | - Violeta Matos
- Solar Radiation Group. Dept. Earth Physics and Thermodynamics, University of Valencia, Burjassot, Spain
| | - Ed van der Gaag
- DCMR Environmental Protection Agency, Department Air and Energy, Rotterdam, the Netherlands
| | - Grégory Gille
- AtmoSud, Regional Network for Air Quality Monitoring of Provence-Alpes-Cote-d'Azur, Marseille, France
| | - Krista Luoma
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Hanna E Manninen
- Helsinki Region Environmental Services Authority (HSY), Helsinki, Finland
| | - Michael Norman
- Environment and Health Administration, SLB-analysis, Stockholm, Sweden
| | - Sanna Silvergren
- Environment and Health Administration, SLB-analysis, Stockholm, Sweden
| | - Jean-Eudes Petit
- Laboratoire des Sciences du Climat et de l'Environnement, CEA/Orme des Merisiers, Gif-sur-Yvette, France
| | | | - Oliver V Rattigan
- Division of Air Resources, New York State Dept of Environmental Conservation, NY, USA
| | - Hilkka Timonen
- Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki, Finland
| | - Thomas Tuch
- Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Maik Merkel
- Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Kay Weinhold
- Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Stergios Vratolis
- Environmental Radioactivity Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, N.C.S.R. "Demokritos", Athens, Greece
| | - Jeni Vasilescu
- National Institute of Research and Development for Optoelectronics INOE 2000, Magurele, Romania
| | - Olivier Favez
- Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France
| | - Roy M Harrison
- Division of Environmental Health & Risk Management, School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK; Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Paolo Laj
- Univ. Grenoble, CNRS, IRD, IGE, 38000 Grenoble, France; Institute for Atmospheric and Earth System Research/Physics (INAR), Faculty of Science, University of Helsinki, Helsinki, Finland
| | | | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research/Physics (INAR), Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Andrés Alastuey
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| |
Collapse
|
8
|
Guascito MR, Lionetto MG, Mazzotta F, Conte M, Giordano ME, Caricato R, De Bartolomeo AR, Dinoi A, Cesari D, Merico E, Mazzotta L, Contini D. Characterisation of the correlations between oxidative potential and in vitro biological effects of PM 10 at three sites in the central Mediterranean. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130872. [PMID: 36716558 DOI: 10.1016/j.jhazmat.2023.130872] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/09/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Atmospheric particulate matter (PM) is one of the major risks for global health. The exact mechanisms of toxicity are still not completely understood leading to contrasting results when different toxicity metrics are compared. In this work, PM10 was collected at three sites for the determination of acellular oxidative potential (OP), intracellular oxidative stress (OSGC), cytotoxicity (MTT assay), and genotoxicity (Comet assay). The in vitro tests were done on the A549 cell line. The objective was to investigate the correlations among acellular and intracellular toxicity indicators, the variability among the sites, and how these correlations were influenced by the main sources by using PMF receptor model coupled with MLR. The OPDTTV, OSGCV, and cytotoxicity were strongly influenced by combustion sources. Advection of African dust led to lower-than-average intrinsic toxicity indicators. OPDTTV and OSGCV showed site-dependent correlations suggesting that acellular OP may not be fully representative of the intracellular oxidative stress at all sites and conditions. Cytotoxicity correlated with both OPDTTV and OSGCV at two sites out of three and the strength of the correlation was larger with OSGCV. Genotoxicity was correlated with cytotoxicity at all sites and correlated with both, OPDTTV and OSGCV, at two sites out of three. Results suggest that several toxicity indicators are useful to gain a global picture of the potential health effects of PM.
Collapse
Affiliation(s)
- Maria Rachele Guascito
- Department of Environmental and Biological Sciences and Technologies (DISTEBA), University of Salento, Lecce 73100, Italy; Institute of Atmospheric Sciences and Climate, ISAC-CNR, Str. Prv. Lecce-Monteroni km 1.2, 73100 Lecce, Italy
| | - Maria Giulia Lionetto
- Department of Environmental and Biological Sciences and Technologies (DISTEBA), University of Salento, Lecce 73100, Italy
| | - Franco Mazzotta
- Studio Effemme Chimica Applicata, s.r.l. Via Pio XII, 73018 Squinzano, Italy
| | - Marianna Conte
- Laboratory for Observations and Analyses of Earth and Climate, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Roma, Italy
| | - Maria Elena Giordano
- Department of Environmental and Biological Sciences and Technologies (DISTEBA), University of Salento, Lecce 73100, Italy
| | - Roberto Caricato
- Department of Environmental and Biological Sciences and Technologies (DISTEBA), University of Salento, Lecce 73100, Italy
| | - Anna Rita De Bartolomeo
- Department of Environmental and Biological Sciences and Technologies (DISTEBA), University of Salento, Lecce 73100, Italy
| | - Adelaide Dinoi
- Institute of Atmospheric Sciences and Climate, ISAC-CNR, Str. Prv. Lecce-Monteroni km 1.2, 73100 Lecce, Italy
| | - Daniela Cesari
- Institute of Atmospheric Sciences and Climate, ISAC-CNR, Str. Prv. Lecce-Monteroni km 1.2, 73100 Lecce, Italy
| | - Eva Merico
- Institute of Atmospheric Sciences and Climate, ISAC-CNR, Str. Prv. Lecce-Monteroni km 1.2, 73100 Lecce, Italy
| | - Laura Mazzotta
- Studio Effemme Chimica Applicata, s.r.l. Via Pio XII, 73018 Squinzano, Italy
| | - Daniele Contini
- Institute of Atmospheric Sciences and Climate, ISAC-CNR, Str. Prv. Lecce-Monteroni km 1.2, 73100 Lecce, Italy.
| |
Collapse
|
9
|
Zhang S, Hu J, Xiao G, Chen S, Wang H. Urban particulate air pollution linked to dyslipidemia by modification innate immune cells. CHEMOSPHERE 2023; 319:138040. [PMID: 36739990 DOI: 10.1016/j.chemosphere.2023.138040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Air particulate matter (PM) is an essential risk factor for lipid metabolism disorders. However, the underlying mechanism remains unclear. In this cross-sectional study, 216 healthcare workers were recruited to estimate the associations among the daily exposure dose (DED) of air PM, innate immune cells, and plasma lipid levels. All participants were divided into two groups according to the air particulate combined DED (DED-PMC). The peripheral white blood cell counts, lymphocyte counts, and monocyte counts and percentages were higher in the higher-exposure group (HEG) than in the lower-exposure group (LEG), whereas the percentage of natural-killer cells was lower in the HEG than in the LEG. The plasma concentrations of the total cholesterol, triglycerides, LDL-C, and apolipoprotein B were higher in the HEG than in the LEG, whereas the HDL-C and apolipoprotein A1 were lower in the HEG than in the LEG. A dose-effect analysis indicated that when the DED of the air PM increased, there were increased peripheral monocyte counts and percentages, a decreased NK cell percentage, elevated plasma concentrations of total cholesterol, triglycerides, LDL-C, and apolipoprotein B, and reduced plasma levels of HDL-C and apolipoprotein A1. In addition, the modification of the innate immune cells was accompanied by alterations in the plasma lipid levels in a dose-dependent manner. Mediation effect analysis suggested innate immune cells were the potential mediators for the associations among air PM exposure on abnormal lipid metabolism. These results indicated that chronic exposure to air PM may disturb lipid metabolism by altering the distribution of innate immune cells in the peripheral blood, ultimately advancing cardiovascular disease risk.
Collapse
Affiliation(s)
- Shaocheng Zhang
- Department of Clinical Laboratory Medicine, Suining Central Hospital, Suining, 629000, Sichuan, China
| | - Juan Hu
- Department of Clinical Laboratory Medicine, Suining Central Hospital, Suining, 629000, Sichuan, China
| | - Guangjun Xiao
- Department of Clinical Laboratory Medicine, Suining Central Hospital, Suining, 629000, Sichuan, China
| | - Shu Chen
- Department of Clinical Laboratory Medicine, Suining Central Hospital, Suining, 629000, Sichuan, China
| | - Huanhuan Wang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, Sichuan, China.
| |
Collapse
|
10
|
Trechera P, Garcia-Marlès M, Liu X, Reche C, Pérez N, Savadkoohi M, Beddows D, Salma I, Vörösmarty M, Casans A, Casquero-Vera JA, Hueglin C, Marchand N, Chazeau B, Gille G, Kalkavouras P, Mihalopoulos N, Ondracek J, Zikova N, Niemi JV, Manninen HE, Green DC, Tremper AH, Norman M, Vratolis S, Eleftheriadis K, Gómez-Moreno FJ, Alonso-Blanco E, Gerwig H, Wiedensohler A, Weinhold K, Merkel M, Bastian S, Petit JE, Favez O, Crumeyrolle S, Ferlay N, Martins Dos Santos S, Putaud JP, Timonen H, Lampilahti J, Asbach C, Wolf C, Kaminski H, Altug H, Hoffmann B, Rich DQ, Pandolfi M, Harrison RM, Hopke PK, Petäjä T, Alastuey A, Querol X. Phenomenology of ultrafine particle concentrations and size distribution across urban Europe. ENVIRONMENT INTERNATIONAL 2023; 172:107744. [PMID: 36696793 DOI: 10.1016/j.envint.2023.107744] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/30/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
The 2017-2019 hourly particle number size distributions (PNSD) from 26 sites in Europe and 1 in the US were evaluated focusing on 16 urban background (UB) and 6 traffic (TR) sites in the framework of Research Infrastructures services reinforcing air quality monitoring capacities in European URBAN & industrial areaS (RI-URBANS) project. The main objective was to describe the phenomenology of urban ultrafine particles (UFP) in Europe with a significant air quality focus. The varying lower size detection limits made it difficult to compare PN concentrations (PNC), particularly PN10-25, from different cities. PNCs follow a TR > UB > Suburban (SUB) order. PNC and Black Carbon (BC) progressively increase from Northern Europe to Southern Europe and from Western to Eastern Europe. At the UB sites, typical traffic rush hour PNC peaks are evident, many also showing midday-morning PNC peaks anti-correlated with BC. These peaks result from increased PN10-25, suggesting significant PNC contributions from nucleation, fumigation and shipping. Site types to be identified by daily and seasonal PNC and BC patterns are: (i) PNC mainly driven by traffic emissions, with marked correlations with BC on different time scales; (ii) marked midday/morning PNC peaks and a seasonal anti-correlation with PNC/BC; (iii) both traffic peaks and midday peaks without marked seasonal patterns. Groups (ii) and (iii) included cities with high insolation. PNC, especially PN25-800, was positively correlated with BC, NO2, CO and PM for several sites. The variable correlation of PNSD with different urban pollutants demonstrates that these do not reflect the variability of UFP in urban environments. Specific monitoring of PNSD is needed if nanoparticles and their associated health impacts are to be assessed. Implementation of the CEN-ACTRIS recommendations for PNSD measurements would provide comparable measurements, and measurements of <10 nm PNC are needed for full evaluation of the health effects of this size fraction.
Collapse
Affiliation(s)
- Pedro Trechera
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain.
| | - Meritxell Garcia-Marlès
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain; Department of Applied Physics-Meteorology, University of Barcelona, Barcelona, Spain.
| | - Xiansheng Liu
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Cristina Reche
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Noemí Pérez
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Marjan Savadkoohi
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain; Department of Natural Resources & Environment, Industrial & TIC Engineering (EMIT-UPC), Manresa, Spain
| | - David Beddows
- Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Imre Salma
- Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Máté Vörösmarty
- Hevesy György Ph.D. School of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Andrea Casans
- Andalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Granada, Spain
| | | | - Christoph Hueglin
- Laboratory for Air Pollution and Environmental Technology, Swiss Federal Laboratories for Materials Science and Technology (Empa), Duebendorf, Switzerland
| | | | - Benjamin Chazeau
- Aix Marseille Univ., CNRS, LCE, Marseille, France; Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Grégory Gille
- AtmoSud, Regional Network for Air Quality Monitoring of Provence-Alpes-Côte-d'Azur, Marseille, France
| | - Panayiotis Kalkavouras
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, Greece; Institute for Environmental Research & Sustainable Development, National Observatory of Athens, Athens, Greece
| | - Nikos Mihalopoulos
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, Greece; Institute for Environmental Research & Sustainable Development, National Observatory of Athens, Athens, Greece
| | - Jakub Ondracek
- Laboratory of Aerosols Chemistry and Physics, Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, Rozvojova, Prague, Czech Republic
| | - Nadia Zikova
- Laboratory of Aerosols Chemistry and Physics, Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, Rozvojova, Prague, Czech Republic
| | - Jarkko V Niemi
- Helsinki Region Environmental Services Authority (HSY), Helsinki, Finland
| | - Hanna E Manninen
- Helsinki Region Environmental Services Authority (HSY), Helsinki, Finland
| | - David C Green
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, UK; NIHR HPRU in Environmental Exposures and Health, Imperial College London, UK
| | - Anja H Tremper
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, UK
| | - Michael Norman
- Environment and Health Administration, SLB-analys, Stockholm, Sweden
| | - Stergios Vratolis
- ENRACT, Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 1Athens, Greece
| | - Konstantinos Eleftheriadis
- ENRACT, Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 1Athens, Greece
| | | | | | - Holger Gerwig
- German Environment Agency (UBA), Dessau-Roßlau, Germany
| | | | - Kay Weinhold
- Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Maik Merkel
- Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Susanne Bastian
- Saxon State Office for Environment, Agriculture and Geology (LfULG), Dresden, Germany
| | - Jean-Eudes Petit
- Laboratoire des Sciences du Climat et de l'Environnement, CEA/Orme des Merisiers, Gif-sur-Yvette, France
| | - Olivier Favez
- Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France
| | - Suzanne Crumeyrolle
- University Lille, CNRS, UMR 8518 Laboratoire d'Optique Atmosphérique (LOA), Lille, France
| | - Nicolas Ferlay
- University Lille, CNRS, UMR 8518 Laboratoire d'Optique Atmosphérique (LOA), Lille, France
| | | | | | - Hilkka Timonen
- Finnish Meteorological Institute, Atmospheric Composition Research, Helsinki, Finland
| | - Janne Lampilahti
- Institute for Atmospheric and Earth System Research (INAR), Faculty of Science, University of Helsinki, Finland
| | - Christof Asbach
- Air Quality & Sustainable Nanotechnology to Filtration & Aerosol Research, Institute of Energy and Environmental technology e.V. (IUTA), Duisburg, Germany
| | - Carmen Wolf
- Air Quality & Sustainable Nanotechnology to Filtration & Aerosol Research, Institute of Energy and Environmental technology e.V. (IUTA), Duisburg, Germany
| | - Heinz Kaminski
- Air Quality & Sustainable Nanotechnology to Filtration & Aerosol Research, Institute of Energy and Environmental technology e.V. (IUTA), Duisburg, Germany
| | - Hicran Altug
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - David Q Rich
- Department of Public Health Sciences, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - Marco Pandolfi
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Roy M Harrison
- Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences University of Birmingham, Edgbaston, Birmingham, United Kingdom; Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research (INAR), Faculty of Science, University of Helsinki, Finland
| | - Andrés Alastuey
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain.
| |
Collapse
|
11
|
Rohra H, Pipal AS, Satsangi PG, Taneja A. Revisiting the atmospheric particles: Connecting lines and changing paradigms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156676. [PMID: 35700785 DOI: 10.1016/j.scitotenv.2022.156676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Historically, the atmospheric particles constitute the most primitive and recent class of air pollutants. The science of atmospheric particles erupted more than a century ago covering more than four decades of size, with past few years experiencing major advancements on both theoretic and data-based observational grounds. More recently, the plausible recognition between particulate matter (PM) and the diffusion of the COVID-19 pandemic has led to the accretion of interest in particle science. With motivation from diverse particle research interests, this paper is an 'old engineer's survey' beginning with the evolution of atmospheric particles and identifies along the way many of the global instances signaling the 'size concept' of PM. A theme that runs through the narrative is a 'previously known' generational evolution of particle science to the 'newly procured' portfolio of knowledge, with important gains on the application of unmet concepts and future approaches to PM exposure and epidemiological research.
Collapse
Affiliation(s)
- Himanshi Rohra
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Atar Singh Pipal
- Centre for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taishan, New Taipei 243089, Taiwan
| | - P G Satsangi
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Ajay Taneja
- Department of Chemistry, Dr. Bhimrao Ambedkar University, Agra 282002, India.
| |
Collapse
|
12
|
Zhou L, Tao Y, Su X, Chen X, Li L, Fu Q, Xie J, Chen R. Short-Term Associations between Size-Fractioned Particles and Cardiopulmonary Function in COPD Patients: A Panel Study in Shanghai, China, during 2014-2021. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12473. [PMID: 36231774 PMCID: PMC9566564 DOI: 10.3390/ijerph191912473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
It remains unknown which size fractions dominate the adverse cardiopulmonary effects of particulate matter (PM). Therefore, this study aimed to explore the differential associations between size-fractioned particle number concentrations (PNCs) and cardiopulmonary function measures, including the forced expiratory volume in one second (FEV1), the forced vital capacity (FVC), and the left ventricular ejection fraction (LVEF). We conducted a panel study among 211 patients with chronic obstructive pulmonary disease (COPD) in Shanghai, China, between January 2014 and December 2021. We applied linear mixed-effect models to determine the associations between cardiopulmonary function measures and PNCs ranging from 0.01 to 10 μm in diameter. Generally, only particles <1 μm showed significant associations, i.e., ultrafine particles (UFPs, <0.1 μm) for FVC and particles ranging from 0.1 to 1 µm for FEV1 and LVEF. An interquartile range (IQR) increment in UFP was associated with decreases of 78.4 mL in FVC. PNC0.1-0.3 and PNC0.3-1 corresponded to the strongest effects on FEV1 (119.5 mL) and LVEF (1.5%) per IQR increment. Particles <1 µm might dominate the cardiopulmonary toxicity of PM, but UFPs might not always have the strongest effect. Tailored regulations towards particles <1 µm should be intensified to reduce PM pollution and protect vulnerable populations.
Collapse
Affiliation(s)
- Lu Zhou
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yingmin Tao
- Division of General Practice, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China
- Center of Community-Based Health Research, Fudan University, Shanghai 200240, China
| | - Xiaozhen Su
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xiyin Chen
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Liang Li
- Division of General Practice, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China
- Center of Community-Based Health Research, Fudan University, Shanghai 200240, China
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Juan Xie
- Division of General Practice, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China
- Center of Community-Based Health Research, Fudan University, Shanghai 200240, China
| | - Renjie Chen
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
13
|
Particle Number Concentration: A Case Study for Air Quality Monitoring. ATMOSPHERE 2022. [DOI: 10.3390/atmos13040570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Particle matter is one of the criteria air pollutants which have the most considerable effect on human health in cities. Its legislation and regulation are mostly based on mass. We showed here that the total number of particles and the particle number concentrations in different size fractions seem to be efficient quantities for air quality monitoring in urbanized areas. Particle number concentration (N) measurements were realized in Budapest, Hungary, for nine full measurements years between 2008 and 2021. The datasets were complemented by meteorological data and concentrations of criteria air pollutants. The annual medians of N were approximately 9 × 103 cm−3. Their time trends and diurnal variations were similar to other large continental European cities. The main sources of N are vehicle road traffic and atmospheric new aerosol particle formation (NPF) and consecutive growth events. The latter process is usually regional, so it appears to be better assessible for contribution quantification than mass concentration. It is demonstrated that the relative occurrence frequency of NPF was considerable, and its annual mean was around 20%. NPF events increased the contribution of ultrafine (UF < 100 nm) particles with respect to the regional particle numbers by 12% and 37% in the city center and in the near-city background, respectively. The pre-existing UF concentrations were doubled on the NPF event days.
Collapse
|