1
|
Wang Q, van Hees P, Karlsson P, Jiao E, Filipovic M, Lam PKS, Yeung LWY. Extractable Organofluorine Mass Balance Analysis of Aqueous Film-Forming Foam-Impacted Soils: Sample Pretreatment and a Combination of Target Analysis and Suspect Screening. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7624-7633. [PMID: 40193213 PMCID: PMC12020414 DOI: 10.1021/acs.est.4c11909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/23/2025]
Abstract
The application of aqueous film-forming foams (AFFFs) has caused considerable per- and polyfluoroalkyl substances (PFAS) pollution in the environment. Soil serves as a long-term source of PFAS for the adjacent groundwater and surface water, but the lack of extractable organofluorine (EOF) mass balance data in the AFFF-impacted soils may lead to an underestimation of PFAS contamination. This study analyzed ten surface soil samples from three AFFF-impacted sites in Sweden, using alkaline extraction followed by acidic extraction. The alkaline and acidic fractions were subjected to further cleanup and analyzed separately for target, suspect screening, and EOF analysis to evaluate the extraction efficiencies of different PFAS in the soil samples and reveal PFAS remaining unknown in the AFFF-impacted soils. Total target PFAS concentrations ranged from 33.0 to 2.40 × 104 ng/g dry weight. Thirty-six PFAS were identified using suspect screening. Considerable amounts of zwitterionic and cationic PFAS (up to 58%) were identified in the acidic extraction fraction, while >95% of anionic PFAS were found in the alkaline extraction fraction. EOF mass balance analysis was conducted on AFFF-impacted soils for the first time. The high proportion of unexplained organofluorine (up to 65%) indicated the necessity for future investigation of the unknown PFAS in AFFF-impacted soils to comprehensively understand their fate and risk.
Collapse
Affiliation(s)
- Qi Wang
- State
Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Man-Technology-Environment
(MTM) Research Centre, School of Science and Technology, Örebro University, Örebro 701 82, Sweden
| | - Patrick van Hees
- Man-Technology-Environment
(MTM) Research Centre, School of Science and Technology, Örebro University, Örebro 701 82, Sweden
- Eurofins
Food & Feed Testing Sweden AB, Lidköping 531 40, Sweden
| | - Patrik Karlsson
- Eurofins
Food & Feed Testing Sweden AB, Lidköping 531 40, Sweden
| | - Enmiao Jiao
- Man-Technology-Environment
(MTM) Research Centre, School of Science and Technology, Örebro University, Örebro 701 82, Sweden
- Key
Laboratory of Yangtze River Water Environment, College of Environmental
Science and Engineering, Tongji University, Shanghai 200092, China
| | - Marko Filipovic
- Niras
Sweden AB, Hantverkargatan
11B, Stockholm 112 21, Sweden
| | - Paul K. S. Lam
- State
Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Department
of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR 999077, China
| | - Leo W. Y. Yeung
- Man-Technology-Environment
(MTM) Research Centre, School of Science and Technology, Örebro University, Örebro 701 82, Sweden
| |
Collapse
|
2
|
Zhao X, Zhang S, Hu Z, Ren Z, Wang T, Zhu B, An L, Wang H, Liu J. Research on the PFAS release and migration behavior of multi-layer outdoor jacket fabrics. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137218. [PMID: 39823880 DOI: 10.1016/j.jhazmat.2025.137218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/19/2024] [Accepted: 01/12/2025] [Indexed: 01/20/2025]
Abstract
Perfluoroalkyl and poly-fluoroalkyl substances (PFAS) release from textiles is a source of human exposure, but the mechanisms behind this release remain insufficiently studied. This research investigates the release and transport mechanisms of PFAS in outdoor jacket fabrics treated with a short side-chain fluorinated polymers (C6F13-SFPs) for durable water repellency (DWR). PA-based and PET-based fabrics were exposed to outdoor conditions and subjected to accelerated aging, followed by abrasion, washing, and drying experiments to simulate wear and degradation. The fabrics were analyzed for total fluorine (TF) content, PFAS composition, and microplastic fibers (MFs) release. Photocatalytic oxidation was applied to fabric extracts to assess the transformation of PFAS precursors. The results show that aging causes a reduction in TF content and an increase in PFAS migration to inner fabric layers, particularly perfluoroalkyl acid (PFAA) and n:2 fluorotelomer alcohol (FTOH). Extended washing cycles further elevated fluorine release and MF shedding, with significant fluorine detected in the wash effluents and MFs. In summary, PFAS in outdoor jackets after use exceed regulatory limits and are hazardous to the environment. Therefore, setting limits for only a few PFAS is inadequate to assess release hazards. Future efforts should revise regulations based on release pathways, assess toxicity, and develop better prevention technologies.
Collapse
Affiliation(s)
- Xu Zhao
- School of Textile Science and Engineering, Jiangnan University, Wuxi 214021, China
| | - Sen Zhang
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA
| | | | - Zehua Ren
- School of Textile Science and Engineering, Jiangnan University, Wuxi 214021, China
| | - Tingxia Wang
- School of Textile Science and Engineering, Jiangnan University, Wuxi 214021, China
| | - Bo Zhu
- School of Textile Science and Engineering, Jiangnan University, Wuxi 214021, China
| | - Lihui An
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hongbo Wang
- School of Textile Science and Engineering, Jiangnan University, Wuxi 214021, China.
| | - Jianli Liu
- School of Textile Science and Engineering, Jiangnan University, Wuxi 214021, China.
| |
Collapse
|
3
|
Idowu IG, Ekpe OD, Megson D, Bruce-Vanderpuije P, Sandau CD. A systematic review of methods for the analysis of total per- and polyfluoroalkyl substances (PFAS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178644. [PMID: 39946899 DOI: 10.1016/j.scitotenv.2025.178644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 03/05/2025]
Abstract
This manuscript systematically reviews 156 peer-reviewed articles on methods for estimating total per- and polyfluoroalkyl substances (PFAS), following preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. Direct and indirect methods of estimating total PFAS include targeted analysis, total fluorine (TF), total organic fluorine (TOF), extractable organic fluorine (EOF), absorbable organic fluorine (AOF), and total oxidizable precursor (TOP) assay. Combustion ion chromatography (CIC) was the most utilized method (>50%), followed by particle-induced gamma-ray emission (PIGE, 9%) and high-resolution-continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS, 6%). Techniques like instrumental neutron activation analysis (INAA) and nuclear magnetic resonance (NMR) were less common. A geographic bias was evident, with 69% of studies from the US (33%), Sweden (12%), China (12%), and Germany (11%). Most research targeted environmental samples (water, soil, sediments), while significant data gaps were noted in South America, Africa, and atmospheric PFAS. Challenges in inter-laboratory comparisons arise from inconsistent reporting units (e.g., mg/L, μg/m3, %, etc.). About 75% of studies involved pre-treatment (e.g., solvent extraction, sorbents), while 25% did not. PFAS detection limit and observed concentrations varied widely, from low concentrations in water (ng/L) to higher levels in soil, biota, and products (mg/L). Limitations of total PFAS methods include contradictory results when complementary techniques are applied to the same sample, potentially leading to over- or under-estimation. Across studies, a substantial fraction of TF remains unaccounted for, highlighting the need for non-targeted screening (NTS) to identify unknown PFAS (UPFAS or UOPFAS). Bridging these gaps is critical for advancing PFAS research and environmental risk assessment.
Collapse
Affiliation(s)
| | - Okon Dominic Ekpe
- Chemistry Matters, Calgary, Canada; Centre for Air and Aquatic Resources Engineering and Science, Clarkson University, Potsdam, NY 13699, USA
| | - David Megson
- Chemistry Matters, Calgary, Canada; Manchester Metropolitan University, Manchester, UK.
| | - Pennante Bruce-Vanderpuije
- Chemistry Matters, Calgary, Canada; Council for Scientific and Industrial Research, Water Research Institute, Accra, Ghana
| | - Courtney D Sandau
- Chemistry Matters, Calgary, Canada; Mount Royal University, Calgary, Canada
| |
Collapse
|
4
|
Aguilar JMN, Wijayahena MK, Running LS, Phatthanawiwat K, Choodum A, Wallace JS, Aga DS. Comprehensive Evaluation of the Analytical Efficiency of Combustion Ion Chromatography for Per- and Polyfluoroalkyl Substances in Biological and Environmental Matrices. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3218-3228. [PMID: 39913527 DOI: 10.1021/acs.est.4c12443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
Combustion ion chromatography (CIC) has emerged as a valuable tool for determining fluorine content attributable to per- and polyfluoroalkyl substances (PFAS) in biological and environmental samples. The total organofluorine (TOF) data from CIC complement information obtained by targeted analyses using liquid chromatography-tandem mass spectrometry (LC-MS/MS) because TOF includes PFAS that may not be captured by targeted techniques. However, the effect of different PFAS types (chain lengths, head groups, etc.) and matrices on combustion efficiency has not been systematically evaluated. Comparison of C4-C12 PFAS using equimolar quantities of fluorine (5.27 nmol F) demonstrated statistically equivalent CIC responses, indicating uniform combustion across chain lengths. Further, signals resulting from combustion times ranging from 7.5 to 15 min were statistically equivalent. However, fluorotelomer alcohols (FTOHs) exhibited losses due to volatility, requiring the use of an activated carbon sorbent to improve analytical signals. Matrix variations exhibited no change in PFAS combustion efficiency across chain lengths in water, blood, and biosolids. Total fluorine results from CIC analysis of real blood and biosolid samples were compared to targeted LC-MS/MS results. This study highlights the strengths and limitations of CIC as an important complement to targeted PFAS analysis and provide guidance for optimizing application-specific conditions and interpreting CIC results.
Collapse
Affiliation(s)
- John Michael N Aguilar
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Mindula K Wijayahena
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Logan S Running
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Kharittha Phatthanawiwat
- Integrated Science and Technology Research Center, Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu, Phuket 83120, Thailand
| | - Aree Choodum
- Integrated Science and Technology Research Center, Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu, Phuket 83120, Thailand
| | - Joshua S Wallace
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Research and Education in Energy, Environment and Water (RENEW) Institute, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Diana S Aga
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Research and Education in Energy, Environment and Water (RENEW) Institute, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
5
|
Baqar M, Chen H, Yao Y, Sun H. Latest trends in the environmental analysis of PFAS including nontarget analysis and EOF-, AOF-, and TOP-based methodologies. Anal Bioanal Chem 2025; 417:555-571. [PMID: 39570388 DOI: 10.1007/s00216-024-05643-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024]
Abstract
Ubiquitous environmental occurrence of per- and polyfluoroalkyl substances (PFAS) underscores the critical need to broaden investigative efforts in effective screening, risk assessment, and remediation. Owing to the broad spectrum of PFAS, various analytical techniques have been extensively utilized to attain inclusivity, with notable attention given to methods such as extractable organic fluorine (EOF), adsorbable organic fluorine (AOF), and the total oxidizable precursor (TOP) assay. These techniques expand the scope of PFAS analysis by estimating perfluoroalkyl acid precursors or the total organochlorine fraction. This review offers a comprehensive comparative overview of up-to-date methodologies, alongside acknowledging the inherent limitations associated with their applications. When coupled with target analysis via low-resolution tandem mass spectrometry, these techniques offer a potential estimation of total PFAS concentrations. Yet, analytical challenges such as the limited availability of reference analytical standards, partial PFAS adsorption, and the entrapment of fluorinated inorganic anions on adsorbent materials often restrict the comprehensiveness of PFAS analysis. So, integrating nontarget analysis using high-resolution mass spectrometry (HRMS) tools fortifies these PFAS mass balance approaches, enabling the development of a more holistic approach for an environmental analysis framework. This review provides additional insights into the comparative advantages of PFAS analytical approaches and explores various data prioritization strategies in nontarget screening methods. It advocates for the necessary optimization of PFAS extraction methods, asserting that integrating the nontarget approach would foster the establishment of a comprehensive monitoring framework across diverse environmental matrices. Such integration holds promise for enhancing scientific comprehension of PFAS contamination across diverse environmental matrices.
Collapse
Affiliation(s)
- Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
6
|
Manz KE. Considerations for Measurements of Aggregate PFAS Exposure in Precision Environmental Health. ACS MEASUREMENT SCIENCE AU 2024; 4:620-628. [PMID: 39713038 PMCID: PMC11659993 DOI: 10.1021/acsmeasuresciau.4c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 12/24/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have become a major focus of research due to their widespread environmental presence and adverse health effects associated with human exposure. PFAS include legacy and emerging structures and are characterized by a range of functional groups and carbon-fluorine chains that vary in length (from fewer than 3 carbons to more than 7 carbons). Research has linked PFAS exposure to an array of health concerns, ranging from developmental and reproductive disorders to immune system impairments and an increased risk of certain cancers. In this new era of personalized health, measuring markers of PFAS exposure in human biospecimens is an important part of environmental public health surveillance. PFAS are typically measured in human blood and tissues using targeted approaches, which quantify individual PFAS structures using specific instrumentation. The diversity and complexity of PFAS, the limitations of the targeted approaches due to the sheer number of structures, and the absence of publicly available analytical standards pose significant challenges for measurement methodologies. This perspective aims to describe aggregate PFAS exposure measurements and their potential for use in precision medicine applications including a discussion of the limitations and potential benefits of these aggregate measurements. As public health organizations, healthcare professionals, and the public look for guidance regarding the safe use of and exposure to PFAS, in a pragmatic cost-effective manner, the dynamic field of measurement science is poised to respond with innovative technological solutions to an important public health need.
Collapse
Affiliation(s)
- Katherine E. Manz
- Department
of Environmental Health Sciences, University
of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
7
|
Ezeorba TPC, Okeke ES, Nwankwo CE, Emencheta SC, Enochoghene AE, Okeke VC, Ozougwu VEO. Emerging eco-friendly technologies for remediation of Per- and poly-fluoroalkyl substances (PFAS) in water and wastewater: A pathway to environmental sustainability. CHEMOSPHERE 2024; 364:143168. [PMID: 39181463 DOI: 10.1016/j.chemosphere.2024.143168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/31/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are rampant, toxic contaminants from anthropogenic sources, called forever chemicals for their recalcitrance. Although banned in several parts of the world for public health implications, including liver, kidney, and testicular diseases, PFAS are abundant in water sources due to easy dispersion. With chemical properties resulting from strong hydrophobic bonds, they defile many physicochemical removal methods. Though adsorption processes such as granular activated carbon (GAC) are widely used, they are marred by several limitations, including cost and secondary contamination. Thus, eco-friendly methods involving a synergy of the removal principles have been preferred for ease of use, cost-effectiveness, and near-zero effect on the environment. We present novel eco-friendly methods as the solution to PFAS remediation towards environmental sustainability. Current eco-friendly methods of PFAS removal from water sources, including electrocoagulation, membrane/filtration, adsorption, and phytoremediation methods, were highlighted, although with limitations. Novel eco-friendly methods such as microbial fuel cells, photoelectrical cells, and plasma treatment offer solutions to PFAS remediation and are quite efficient in terms of cost, result, and environmental sustainability. Overall, the successful integration of eco-friendly techniques in a seamless manner ensures the desired result. We also present a balanced position on the ecosystem impact of these ecofriendly methods, noting the successes towards environmental sustainability while exposing the gaps for further research.
Collapse
Affiliation(s)
- Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Science, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria; Department of Environmental Health and Risk Management, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, United Kingdom
| | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Science, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria; Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China.
| | - Chidiebele Emmanuel Nwankwo
- Department of Microbiology, Faculty of Biological Sciences University of Nigeria, Nsukka, Enugu State, 410001, Nigeria; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Stephen Chijioke Emencheta
- Deparment of Pharmaceutical Microbiology & Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | | | - Veronica Chisom Okeke
- Deparment of Pharmaceutical Microbiology & Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Vincent E O Ozougwu
- Department of Biochemistry, Faculty of Biological Science, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria.
| |
Collapse
|
8
|
Cioni L, Nikiforov V, Benskin JP, Coêlho ACM, Dudášová S, Lauria MZ, Lechtenfeld OJ, Plassmann MM, Reemtsma T, Sandanger TM, Herzke D. Combining Advanced Analytical Methodologies to Uncover Suspect PFAS and Fluorinated Pharmaceutical Contributions to Extractable Organic Fluorine in Human Serum (Tromsø Study). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12943-12953. [PMID: 38985529 PMCID: PMC11271008 DOI: 10.1021/acs.est.4c03758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
A growing number of studies have reported that routinely monitored per- and polyfluoroalkyl substances (PFAS) are not sufficient to explain the extractable organic fluorine (EOF) measured in human blood. In this study, we address this gap by screening pooled human serum collected over 3 decades (1986-2015) in Tromsø (Norway) for >5000 PFAS and >300 fluorinated pharmaceuticals. We combined multiple analytical techniques (direct infusion Fourier transform ion cyclotron resonance mass spectrometry, liquid chromatography-Orbitrap-high-resolution mass spectrometry, and total oxidizable precursors assay) in a three-step suspect screening process which aimed at unequivocal suspect identification. This approach uncovered the presence of one PFAS and eight fluorinated pharmaceuticals (including some metabolites) in human serum. While the PFAS suspect only accounted for 2-4% of the EOF, fluorinated pharmaceuticals accounted for 0-63% of the EOF, and their contribution increased in recent years. Although fluorinated pharmaceuticals often contain only 1-3 fluorine atoms, our results indicate that they can contribute significantly to the EOF. Indeed, the contribution from fluorinated pharmaceuticals allowed us to close the organofluorine mass balance in pooled serum from 2015, indicating a good understanding of organofluorine compounds in humans. However, a portion of the EOF in human serum from 1986 and 2007 still remained unexplained.
Collapse
Affiliation(s)
- Lara Cioni
- NILU,
Fram Centre, Tromsø NO-9296, Norway
- Department
of Community Medicine, UiT—the Arctic
University of Norway, Tromsø NO-9037, Norway
| | | | - Jonathan P. Benskin
- Department
of Environmental Science, Stockholm University, Stockholm SE-10691, Sweden
| | | | - Silvia Dudášová
- Helmholtz
Centre for Environmental Research—UFZ, Leipzig DE-04103, Germany
| | - Melanie Z. Lauria
- Department
of Environmental Science, Stockholm University, Stockholm SE-10691, Sweden
| | | | - Merle M. Plassmann
- Department
of Environmental Science, Stockholm University, Stockholm SE-10691, Sweden
| | - Thorsten Reemtsma
- Helmholtz
Centre for Environmental Research—UFZ, Leipzig DE-04103, Germany
| | - Torkjel M. Sandanger
- NILU,
Fram Centre, Tromsø NO-9296, Norway
- Department
of Community Medicine, UiT—the Arctic
University of Norway, Tromsø NO-9037, Norway
| | - Dorte Herzke
- NILU,
Fram Centre, Tromsø NO-9296, Norway
- Norwegian
Institute for Public Health, Oslo NO-0213, Norway
| |
Collapse
|
9
|
Müller V, Andrade Costa LC, Rondan FS, Matic E, Mesko MF, Kindness A, Feldmann J. Per and polyfluoroalkylated substances (PFAS) target and EOF analyses in ski wax, snowmelts, and soil from skiing areas. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1926-1936. [PMID: 37853802 DOI: 10.1039/d3em00375b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Per and polyfluoroalkylated substances (PFAS) are common additives in ski waxes for their water repellent characteristic. Abrasion of ski wax leaves PFAS on the snow surface, however, little is known about the distribution and concentration of PFAS in snow and soil due to skiing. In this study we analysed different ski waxes, snowmelts and soil from family skiing areas from Alpine locations using targeted high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) to understand more about PFAS distribution in the environment. In general, we found a very diverse PFAS pattern in the analysed media. PFAS level was higher in skiing areas compared to the non-skiing ones that were used as control. ∑target PFAS ranged between <1.7 ng L-1 and 143 ng L-1 in snowmelt, <0.62 ng g-1 and 5.35 ng g-1 in soil and <1.89 and 874 ± 240 ng g-1 in ski wax samples. Snowmelt was dominated by short-chained PFAS, while soil and wax contained both short and long-chained PFAS. Extractable organic fluorine (EOF) was several orders of magnitude higher for waxes (0.5-2 mg g-1) than for soils (up to 0.3 μg g-1), while total fluorine (TF) content of the waxes was even higher, up to 31 210 ± 420 μg g-1. We also showed that the ∑ target PFAS accounts for up to 1.5% in EOF content, showing that targeted LC-MS/MS gives a limited measure of the pollution originated from ski waxes and non-targeted analysis and EOF is necessary for a better overview on PFAS distribution.
Collapse
Affiliation(s)
- Viktoria Müller
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
- TESLA-Analytical Chemistry, Institute of Chemistry, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria.
| | - Larissa Cristine Andrade Costa
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-000, Brazil
| | - Filipe Soares Rondan
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-000, Brazil
| | - Eleonora Matic
- TESLA-Analytical Chemistry, Institute of Chemistry, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria.
| | - Marcia Foster Mesko
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Capão do Leão, RS, 96160-000, Brazil
| | - Andrew Kindness
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
- University of KwaZulu Natal, School of Chemistry & Physics, Private Bag X54001, Westville Campus, ZA-4000 Durban, South Africa
| | - Jörg Feldmann
- TESLA-Analytical Chemistry, Institute of Chemistry, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria.
| |
Collapse
|
10
|
Cioni L, Plassmann M, Benskin JP, Coêlho ACM, Nøst TH, Rylander C, Nikiforov V, Sandanger TM, Herzke D. Fluorine Mass Balance, including Total Fluorine, Extractable Organic Fluorine, Oxidizable Precursors, and Target Per- and Polyfluoroalkyl Substances, in Pooled Human Serum from the Tromsø Population in 1986, 2007, and 2015. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14849-14860. [PMID: 37747946 PMCID: PMC10569050 DOI: 10.1021/acs.est.3c03655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
Of the thousands of per- and polyfluoroalkyl substances (PFAS) known to exist, only a small fraction (≤1%) are commonly monitored in humans. This discrepancy has led to concerns that human exposure may be underestimated. Here, we address this problem by applying a comprehensive fluorine mass balance (FMB) approach, including total fluorine (TF), extractable organic fluorine (EOF), total oxidizable precursors (TOP), and selected target PFAS, to human serum samples collected over a period of 28 years (1986, 2007, and 2015) in Tromsø, Norway. While concentrations of TF did not change between sampling years, EOF was significantly higher in 1986 compared to 2007 and 2015. The ∑12PFAS concentrations were highest in 2007 compared to 1986 and 2015, and unidentified EOF (UEOF) decreased from 1986 (46%) to 2007 (10%) and then increased in 2015 (37%). While TF and EOF were not influenced by sex, women had higher UEOF compared to men, opposite to target PFAS. This is the first FMB in human serum to include TOP, and it suggests that precursors with >4 perfluorinated carbon atoms make a minor contribution to EOF (0-4%). Additional tools are therefore needed to identify substances contributing to the UEOF in human serum.
Collapse
Affiliation(s)
- Lara Cioni
- NILU,
Fram Centre, Tromsø NO-9296, Norway
- Department
of Community Medicine, UiT − The
Arctic University of Norway, Tromsø NO-9037, Norway
| | - Merle Plassmann
- Department
of Environmental Science, Stockholm University, Stockholm SE-106 91, Sweden
| | - Jonathan P. Benskin
- Department
of Environmental Science, Stockholm University, Stockholm SE-106 91, Sweden
| | | | - Therese H. Nøst
- Department
of Community Medicine, UiT − The
Arctic University of Norway, Tromsø NO-9037, Norway
| | - Charlotta Rylander
- Department
of Community Medicine, UiT − The
Arctic University of Norway, Tromsø NO-9037, Norway
| | | | - Torkjel M. Sandanger
- NILU,
Fram Centre, Tromsø NO-9296, Norway
- Department
of Community Medicine, UiT − The
Arctic University of Norway, Tromsø NO-9037, Norway
| | - Dorte Herzke
- NILU,
Fram Centre, Tromsø NO-9296, Norway
- Norwegian
Institute for public Health, Oslo NO-0213, Norway
| |
Collapse
|
11
|
Pennoyer EH, Heiger-Bernays W, Aro R, Yeung LWY, Schlezinger JJ, Webster TF. Unknown Organofluorine Mixtures in U.S. Adult Serum:Contribution from Pharmaceuticals? TOXICS 2023; 11:toxics11050416. [PMID: 37235230 DOI: 10.3390/toxics11050416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023]
Abstract
Organofluorines occur in human serum as complex mixtures of known and unidentified compounds. Human biomonitoring traditionally uses targeted analysis to measure the presence of known and quantifiable per- and polyfluoroalkyl substances (PFAS) in serum, yet characterization of exposure to and quantification of PFAS are limited by the availability of methods and analytical standards. Studies comparing extractable organofluorine (EOF) in serum to measured PFAS using organofluorine mass balance show that measurable PFAS only explain a fraction of EOF in human serum and that other sources of organofluorine may exist. The gap in fluorine mass balance has important implications for human biomonitoring because the total body burden of PFAS cannot be characterized and the chemical species that make up unidentified EOF are unknown. Many highly prescribed pharmaceuticals contain organofluorine (e.g., Lipitor, Prozac) and are prescribed with dosing regimens designed to maintain a therapeutic range of concentrations in serum. Therefore, we hypothesize organofluorine pharmaceuticals contribute to EOF in serum. We use combustion ion chromatography to measure EOF in commercial serum from U.S. blood donors. Using fluorine mass balance, we assess differences in unexplained organofluorine (UOF) associated with pharmaceutical use and compare them with concentrations of organofluorine predicted based on the pharmacokinetic properties of each drug. Pharmacokinetic estimates of organofluorine attributable to pharmaceuticals ranged from 0.1 to 55.6 ng F/mL. Analysis of 44 target PFAS and EOF in samples of commercial serum (n = 20) shows the fraction of EOF not explained by Σ44 PFAS ranged from 15% to 86%. Self-reported use of organofluorine pharmaceuticals is associated with a 0.36 ng F/mL (95% CL: -1.26 to 1.97) increase in UOF, on average, compared to those who report not taking organofluorine pharmaceuticals. Our study is the first to assess sources of UOF in U.S. serum and examine whether organofluorine pharmaceuticals contribute to EOF. Discrepancies between pharmacokinetic estimates and EOF may be partly explained by differences in analytical measurements. Future analyses using EOF should consider multiple extraction methods to include cations and zwitterions. Whether organofluorine pharmaceuticals are classified as PFAS depends on the definition of PFAS.
Collapse
Affiliation(s)
- Emily H Pennoyer
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
| | - Wendy Heiger-Bernays
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
| | - Rudolf Aro
- MTMResearch Centre, Örebro University, SE-701 82 Örebro, Sweden
| | - Leo W Y Yeung
- MTMResearch Centre, Örebro University, SE-701 82 Örebro, Sweden
| | - Jennifer J Schlezinger
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
| | - Thomas F Webster
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
| |
Collapse
|
12
|
Workman J. Analyzing Organofluorine Compounds in the Environment Using Combustion Ion Chromatography (CIC) and Other Methods. LCGC NORTH AMERICA 2023. [DOI: 10.56530/lcgc.na.le9188h1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Organofluorine compounds are potential contaminants in the environment, particularly in natural water sources. Leo W. Y. Yeung, PhD, is a Senior Lecturer in the School of Science and Technology of the Man-Technology-Environment Research Centre (MTM) at Örebro University in Örebro, Sweden. His research has involved the analysis of organofluorine compounds of concern in the natural environment. We recently spoke to him about his work using combustion ion chromatography (CIC) and other methods to analyze organofluorine and specific perfluoroalkyl and polyfluoroalkyl substances (PFAS) compounds in environmental samples.
Collapse
|
13
|
Ao Y, Nian M, Tang W, Zhang J, Zhang Q, Ao J. A sensitive and robust method for the simultaneous determination of thirty-three legacy and emerging per- and polyfluoroalkyl substances in human plasma and serum. Anal Bioanal Chem 2023; 415:457-470. [PMID: 36383228 DOI: 10.1007/s00216-022-04426-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022]
Abstract
Legacy and emerging per- and polyfluoroalkyl substances (PFAS) have attracted growing attention due to their potential adverse effects on humans. We developed a method to simultaneously determine thirty-three PFAS (legacy PFAS, precursors, and alternatives) in human plasma and serum using solid phase extraction coupled to ultra-performance liquid chromatography-tandem mass spectrometry (SPE-UPLC-MS/MS). The method yielded good linearity (>0.995) and excellent limits of detection (LODs) (0.0005~0.012 ng mL-1 in plasma and 0.002~0.016 ng mL-1 in serum). The relative recoveries ranged from 80.1 to 116%, with intra- and inter-day precision less than 14.3%. The robustness of this method has been tested continuously for 10 months (coefficients of variation <14.9%). Our method was successfully applied to the PFAS analysis of 42 real human plasma and serum samples collected from women. The proposed method is attractive for the biomonitoring of multi-class PFAS in human health risk assessment and epidemiological studies.
Collapse
Affiliation(s)
- Yan Ao
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Shanghai, 200092, China
| | - Min Nian
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200082, China
| | - Weifeng Tang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Shanghai, 200092, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Shanghai, 200092, China.,School of Public Health, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Qianlong Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Shanghai, 200092, China.
| | - Junjie Ao
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
14
|
Horii Y, Ohtsuka N, Nishino T, Kuroda K, Imaizumi Y, Sakurai T. Spatial distribution and benthic risk assessment of cyclic, linear, and modified methylsiloxanes in sediments from Tokyo Bay catchment basin, Japan: Si-based mass profiles in extractable organosilicon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155956. [PMID: 35580679 DOI: 10.1016/j.scitotenv.2022.155956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
We investigated the spatial distribution, mass profiles, and benthic risk assessment of a wide range of methylsiloxanes (MSs), including 7 cyclic MSs (CMSs; D3-D9; the number refers to the number of SiO bonds), 13 linear MSs (LMSs; L3-L15), and 15 modified and other MSs (MMSs) in sediments from the Tokyo Bay catchment basin, Japan. We observed widespread distribution of MSs (ΣCMS, ΣLMS, and ΣMMS) in the sediment samples, with concentrations of 1.0-6180 ng/g dry weight (dw), 1.8-10,100 ng/g dw, and < 0.31-210 ng/g dw, respectively. Our study is the first to measure various MMSs modified with hydrogen, vinyl, or phenyl groups; however, only methyltris(trimethylsiloxy)silane and phenyltris(trimethylsiloxy)silane were detected with high occurrence frequency. Notably, no elevated concentrations of MSs were observed downstream of silicone manufacturers, whereas the sediment was characterized by a specific D4/D5 ratio. With the Si-based mass profiles in extractable organosilicon (EOSi), the measured CMSs, LMSs, and MMSs accounted for 5.4%, 7.8%, and 0.2%, respectively. Unidentified EOSi (unknown fraction) constituted a major proportion of the EOSi in the sediment, with a mean of 87%, suggesting that the organosilicon environmental emissions were more than the measured MSs. In risk assessment of the adverse effects of D4, D5, and D6 in sediment on benthic organisms, the respective distributions indicated no overlap between the 95th percentile field sediment concentration and the 5th percentile chronic sediment no-effect concentration in organic carbon-normalized concentration. Although the hazard quotient compared with the predicted no-effect concentration for D5 and D6 exceeded the threshold level (hazard quotient ≥1), the results of probabilistic risk assessment for the three CMSs were not high enough to indicate a threat to benthic organisms in the study area.
Collapse
Affiliation(s)
- Yuichi Horii
- Center for Environmental Science in Saitama, 914 Kamitanadare, Kazo, Saitama 347-0115, Japan.
| | - Nobutoshi Ohtsuka
- Center for Environmental Science in Saitama, 914 Kamitanadare, Kazo, Saitama 347-0115, Japan
| | - Takahiro Nishino
- Tokyo Metropolitan Research Institute for Environmental Protection, 1-7-5 Shinsuna, Koto, Tokyo 136-0075, Japan
| | - Keisuke Kuroda
- Department of Environmental and Civil Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yoshitaka Imaizumi
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Takeo Sakurai
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| |
Collapse
|
15
|
Jiao E, Zhu Z, Yin D, Qiu Y, Kärrman A, Yeung LWY. A pilot study on extractable organofluorine and per- and polyfluoroalkyl substances (PFAS) in water from drinking water treatment plants around Taihu Lake, China: what is missed by target PFAS analysis? ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1060-1070. [PMID: 35687097 DOI: 10.1039/d2em00073c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have raised concerns due to their worldwide occurrence and adverse effects on both the environment and humans as well as posing challenges for monitoring. Further collection of information is required for a better understanding of their occurrence and the unknown fractions of the extractable organofluorine (EOF) not explained by commonly monitored target PFAS. In this study, eight pairs of raw and treated water were collected from drinking water treatment plants (DWTPs) around Taihu Lake in China and analyzed for EOF and 34 target PFAS. Mass balance analysis of organofluorine revealed that at least 68% of EOF could not be explained by target PFAS. Relatively higher total target concentrations were observed in 4 DWTPs (D1 to D4) when compared to other samples with the highest sum concentration up to 189 ng L-1. PFOA, PFOS and PFHxS were the abundant compounds. Suspect screening analysis identified 10 emerging PFAS (e.g., H-PFAAs, H-PFESAs and OBS) in addition to target PFAS in raw or treated water. The ratios PFBA/PFOA and PFBS/PFOS between previous and current studies showed significant replacements of short-chain to long-chain PFAS. The ratios of the measured PFAS concentrations to the guideline values showed that some of the treated drinking water exceeds guideline values, appealing for efforts on drinking water safety guarantee.
Collapse
Affiliation(s)
- Enmiao Jiao
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, China.
| | - Zhiliang Zhu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, China.
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, China.
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, China.
| | - Anna Kärrman
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Sweden.
| | - Leo W Y Yeung
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Sweden.
| |
Collapse
|