1
|
Diao Z, Ping X, Zhang X, Hui B, Zhu F, Zhang Y, Wang J, Yu Y, Zhang L, Hui W, Xie X, Zhang X, Wang S, Yuan X. Seasonal characteristics, source apportionment and ecological risk assessment of priority and emerging contaminants using passive samplers in the coastal water. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138398. [PMID: 40286660 DOI: 10.1016/j.jhazmat.2025.138398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/29/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
The presence of priority and emerging contaminants in aquatic environments is a worldwide concern. This study utilized the diffusive gradients in thin-films (DGT) technique for in situ monitoring of polycyclic aromatic hydrocarbons (PAHs) and synthetic musks (SMs) in coastal waters over a year. DGT provided time-integrated and reliable pollutant measurements, outperforming grab sampling in terms of repeatability and stability. Seasonal and spatial variations in PAH and SM concentrations were observed, influenced by proximity to vehicle and maritime transport and tourist areas. Source apportionment using diagnostic ratios, positive matrix factorization, and principal component analysis indicated mixed pollutant origins. High ecological risks for certain PAHs emerged in the summer, highlighting significant seasonal threats. These findings provide critical insights for the long-term monitoring and management of PAHs and SMs, offering valuable regional data to support pollution mitigation efforts in the coastal water.
Collapse
Affiliation(s)
- Zishan Diao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xianyin Ping
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Xue Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Bin Hui
- School of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Fanping Zhu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Yiqiao Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Jing Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Yinjie Yu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Lin Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Wenjia Hui
- Weihai Institute for Interdisciplinary Research, Shandong University, Weihai, Shandong, 264209, PR China
| | - Xiaomin Xie
- College of Resources and Environmental Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China
| | - Xiaohan Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China.
| | - Shuguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; WeiHai Research Institute of Industrial Technology of Shandong University, Weihai, Shandong 264209, PR China
| | - Xianzheng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| |
Collapse
|
2
|
Yesildagli B, Joo S, Hwang N, Lee G, Kim JT, Lee J. Volatile methylsiloxanes of 141 personal care products in Korea: An adult exposure assessment. ENVIRONMENTAL RESEARCH 2025; 266:120633. [PMID: 39675448 DOI: 10.1016/j.envres.2024.120633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
The widespread use of personal care products (PCPs) and subsequent exposure to their volatile methylsiloxane (VMS) content are often overlooked worldwide. Moreover, regulatory measures addressing VMS levels are sparse, and research on VMS levels in PCPs is limited. Therefore in this study, 141 PCPs from Korea, one of the biggest PCP markets in the world, were extracted and analyzed for seven VMSs using gas chromatography-mass spectrometry. Overall, cyclic VMS (cVMS) compounds were found at higher concentrations than linear VMS (lVMS) compounds, accounting for more than 93% of the total VMS concentration. The highest VMS content in PCPs was observed for octamethylcyclotetrasiloxane (D4) and hexamethylcyclotrisiloxane (D3), at approximately 130,000 and 110,000 μg g-1, respectively. Additionally, the total VMS (∑VMS) concentration were in the order of face > hair > body products. PCPs were classified as non-rinse or rinse products based on their retention time on the body of the consumer. Non-rinse body products had more than twelve times the ∑VMS content of rinse body products (341 and 26.8 μg g-1). Rinse hair products are three times the ∑VMS content of non-rinse hair products (576 and 191 μg g-1). Furthermore, the principal component analysis suggested that PCPs can be grouped according to their cVMS content, with D3 and decamethylcyclopenatsiloxane (D5), D4, and D5 co-occurring. Notably, daily dermal exposure to VMSs in PCPs was largely determined by the retention time of the PCP on the body, followed by the VMS concentration. Although exposures to cVMS compounds were generally higher, exposure to the lVMS content of some PCPs was higher depending on the product type. Therefore, it is crucial to consider the significance of all VMS compounds, not solely cVMS, in exposure calculation and regulations. This study provides a database for regulatory bodies to implement in their exposure and toxicity studies.
Collapse
Affiliation(s)
- Berkay Yesildagli
- Center for Sustainable Environment Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Energy & Environment Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Siyeon Joo
- Center for Sustainable Environment Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Nagyeong Hwang
- Center for Sustainable Environment Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Chemical Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Geonpyo Lee
- Center for Sustainable Environment Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Jun-Tae Kim
- Center for Sustainable Environment Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Energy & Environment Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jiwon Lee
- Center for Sustainable Environment Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Energy & Environment Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
3
|
Kim D, Lee SY, Lee J, Cho HE, Kim MS, Won EJ, Shin KH. Innovative approach for environmental pollution assessment using seabird eggs: mercury in black-tailed gull (Larus crassirostris) eggs from the Korean islands (2012-2021). MARINE POLLUTION BULLETIN 2024; 209:117167. [PMID: 39442352 DOI: 10.1016/j.marpolbul.2024.117167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/26/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Since black-tailed gulls derive energy for egg production around their habitat, analyzing concentration of chemicals in the eggs reveals the local environmental pollution. This is, however, complex due to the diversity of seabird diets across multiple ecosystems. This study determined the influence of food source and trophic position (TP) on the mercury concentration ([Hg]) in eggs and subsequently mitigated these influences by adjusting through [Hg]-TP relationship, thereby enabling spatial and temporal comparisons among individuals. Following TP adjustment, the [Hg] that previously exhibited significant regional differences no longer displayed such a variation. Moreover, by normalizing to trophic level 4, as suggested by the European Union (EU), the total [Hg] was standardized from 1001 ± 415 ng g-1 to 1347 ± 516 ng g-1 in all the egg samples, far exceeding the EU criteria. These two approaches provide valuable insights for the effective monitoring of marine pollution and past environmental reconstruction by adjusting/normalizing [Hg] in seabird eggs.
Collapse
Affiliation(s)
- Dokyun Kim
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea; Marine Environment Research Department, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea
| | - Soo Yong Lee
- Natural Environment Research Division, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Jangho Lee
- Natural Environment Research Division, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Ha-Eun Cho
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Min-Seob Kim
- Environmental Measurement and Analysis Center, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Eun-Ji Won
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea.
| | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
4
|
Rojo-Nieto E, Wernicke T, Muz M, Jahnke A. From Trophic Magnification Factors to Multimedia Activity Ratios: Chemometers as Versatile Tools to Study the Fate of Hydrophobic Organic Compounds in Aquatic Ecosystems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21046-21057. [PMID: 39527730 PMCID: PMC11603764 DOI: 10.1021/acs.est.4c07940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
We applied passive equilibrium sampling using silicone-based chemometers to nine biota species, sediment, and water in a multimedia aquatic ecosystem. They allowed for direct comparison of the concentration of regulated and emerging hydrophobic organic compounds in the silicone across species as well as the comparison of biota with sediments and water. We derived chemometer-based trophic magnification factors (TMFs) of diverse compounds that agreed with the traditionally derived TMFs. Our exploratory work in water demonstrated that equilibrium with newly designed chemometers can be achieved in few days for compounds with a log KOW up to 6. We calculated activity ratios, dividing the concentrations in the silicone equilibrated with biota by those equilibrated with the abiotic exposure media (sediments and water), assessing the thermodynamics of bioaccumulation and the equilibrium state between the ecosystem compartments. They confirmed that the biota were below equilibrium partitioning relative to sediments and water, as other studies have described. Silicone-based chemometers open up new opportunities and applicability in multimedia aquatic ecosystems for studies that rely on equilibrium partitioning of the in-situ mixtures of chemicals, such as multimedia assessments or application of effect-based methods.
Collapse
Affiliation(s)
- Elisa Rojo-Nieto
- Department
of Exposure Science, Helmholtz Centre for
Environmental Research - UFZ, Permoserstr. 15, Leipzig 04318, Germany
| | - Theo Wernicke
- Department
of Exposure Science, Helmholtz Centre for
Environmental Research - UFZ, Permoserstr. 15, Leipzig 04318, Germany
| | - Melis Muz
- Department
of Exposure Science, Helmholtz Centre for
Environmental Research - UFZ, Permoserstr. 15, Leipzig 04318, Germany
| | - Annika Jahnke
- Department
of Exposure Science, Helmholtz Centre for
Environmental Research - UFZ, Permoserstr. 15, Leipzig 04318, Germany
- Institute
for Environmental Research, RWTH Aachen
University, Aachen 52074, Germany
| |
Collapse
|
5
|
Chen C, He W, Ni Z, Zhang X, Cui Y, Song X, Feng J. Bioaccumulation, trophic transfer and risk assessment of polycyclic musk in marine food webs of the Bohai Sea. MARINE POLLUTION BULLETIN 2024; 202:116353. [PMID: 38598929 DOI: 10.1016/j.marpolbul.2024.116353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/18/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Galaxolide (HHCB) and tonalide (AHTN) are dominant musks added to personal care products. However, the accumulate and trophic transfer of SMs through the marine food chain are unclear. In this study, organisms were collected from three bays in Bohai Sea to investigate the bioaccumulation, trophic transfer, and health risk of SMs. The HHCB and AHTN concentrations in the muscles range from 2.75 to 365.40 μg/g lw and 1.04-4.94 μg/g lw, respectively. The median HHCB concentrations in muscles were the highest in Bohai Bay, followed by Laizhou Bay and Liaodong Bay, consistent with the HHCB concentrations in sediments. The different fish tissues from Bohai Bay were analyzed, and the HHCB and AHTN concentrations followed the heart > liver > gill > muscles. The trophic magnification factors (TMF) were lower than 1 and the health risk assessment showed no adverse health effects. The results provide insights into the bioaccumulation and trophic transfer behavior of SMs in marine environments.
Collapse
Affiliation(s)
- Cuihong Chen
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wanyu He
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhenyang Ni
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Xiaohui Zhang
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, 037009, China
| | - Yuxiao Cui
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaojing Song
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jianfeng Feng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
6
|
Li J, Lu Y, Chen H, Zheng D, Yang Q, Campos LC. Synthetic musks in the natural environment: Sources, occurrence, concentration, and fate-A review of recent developments (2010-2023). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171344. [PMID: 38432391 DOI: 10.1016/j.scitotenv.2024.171344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/14/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Synthetic musks (SMs) have served as cost-effective substitutes for natural musk compounds in personal care and daily chemical products for decades. Their widespread use has led to their detection in various environmental matrices, raising concerns about potential risks. Despite numerous studies on SM levels in different natural environments, a systematic review of their contemporary presence is lacking. This review aims to address this gap by summarising recent research developments on SMs in diverse natural environments, including river water, lake water, seawater, estuarine water, groundwater, snow, meltwater, sediments, aquatic suspended matter, soils, sands, outdoor air, and atmospheric particulate matter. Covering the period from 2010 to 2023, the review focuses on four SM categories: nitro, polycyclic, macrocyclic, and alicyclic. It systematically examines their sources, occurrences, concentrations, spatial and temporal variations, and fate. The literature reveals widespread detection of SMs in the natural environment (freshwater and sediments in particular), with polycyclic musks being the most studied group. Both direct (e.g., wastewater discharges) and indirect (e.g., human recreational activities) sources contribute to SM presence. Levels of SMs vary greatly among studies with higher levels observed in certain regions, such as sediments in Southeast Asia. Spatial and temporal variations are also evident. The fate of SMs in the environment depends on their physicochemical properties and environmental processes, including bioaccumulation, biodegradation, photodegradation, adsorption, phase exchange, hydro-dilution effects. Biodegradation and photodegradation can decrease SM levels, but may produce more persistent and eco-toxic products. Modelling approaches have been employed to analyse SM fate, especially for indirect processes like photodegradation or long-distance atmospheric transport. Future studies should further investigate the complex fate if SMs and their environmental influence. This review enhances understanding of SM status in the natural environment and supports efforts to control environmental contamination.
Collapse
Affiliation(s)
- Jianan Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yu Lu
- Department of Civil, Environmental & Geomatic Engineering, University College London, London WC1E 6BT, UK; Department of Structural Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0085, USA
| | - Huanfa Chen
- Centre for Advanced Spatial Analysis, University College London, London WC1E 6BT, UK
| | - Duan Zheng
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Qinlin Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Luiza C Campos
- Centre for Urban Sustainability and Resilience, Department of Civil, Environmental & Geomatic Engineering, University College London, London WC1E 6BT, UK.
| |
Collapse
|
7
|
Diao Z, Zhang X, Xu M, Wei F, Xie X, Zhu F, Hui B, Zhang X, Wang S, Yuan X. A critical review of distribution, toxicological effects, current analytical methods and future prospects of synthetic musks in aquatic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169872. [PMID: 38199360 DOI: 10.1016/j.scitotenv.2024.169872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024]
Abstract
Synthetic musks (SMs) have gained widespread utilization in daily consumer products, leading to their widespread dissemination in aquatic environments through various pathways. Over the past few decades, the production of SMs has consistently risen, prompting significant concern over their potential adverse impacts on ecosystems and human health. Although several studies have focused on the development of analytical techniques for detecting SMs in biological samples and cosmetic products, a comprehensive evaluation of their global distribution in diverse aquatic media and biological matrices remains lacking. This review aims to provide an up-to-date overview of the occurrence of SMs in both aquatic and various biological matrices, investigating their worldwide distribution trends, assessing their ecological toxicity, and comparing different methodologies for processing and analysis of SMs. The findings underscore the prevalence of polycyclic musks as predominant SMs, with consumption of various products in different countries leading to contrasting distribution of contaminants. Furthermore, the migration of SMs from sediments to the water phase is investigated, indicating the role of solid-phase reservoirs. Incomplete degradation of SMs in the environment could contribute to their accumulation in aquatic systems, impacting the growth and oxidative stress of aquatic organisms, and having a possibility of genotoxicity to them. Human exposure data highlight substantial risks for vulnerable populations such as pregnant women and infants. Moreover, contemporary methods for SMs analysis are presented in this review, particularly focusing on advancements made in the last five years. Finally, research enhancement and critical questions regarding the analysis of SMs are provided, offering suggestions for future research endeavors.
Collapse
Affiliation(s)
- Zishan Diao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xue Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Mengxin Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Fenghua Wei
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xiaomin Xie
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Fanping Zhu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, Shandong 266237, PR China
| | - Bin Hui
- School of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Xiaohan Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, Shandong 266237, PR China.
| | - Shuguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xianzheng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, Shandong 266237, PR China
| |
Collapse
|
8
|
Kim D, Lee J, Won EJ, Lee SY, Cho HE, Choi H, Shin KH. Integrated approach for the isotope trophic position of black-tailed gull (Larus crassirostris) eggs over a decade: Combining stable isotopes of amino acids and fatty acids composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169732. [PMID: 38160818 DOI: 10.1016/j.scitotenv.2023.169732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Recently, compound-specific isotope analysis (CSIA) using the amino acid nitrogen stable isotope ratio (δ15NAAs) has been widely used for accurate estimation of trophic position (TP). In addition, a quantitative fatty acid signature analysis (QFASA) offers insights into diet sources. In this study, we used these techniques to estimate the TP for seabirds that rely on diverse food sources across multiple ecosystems. This allows for the proper combination of factors used in TP calculation which are different for each ecosystem. The approach involved the application of a multi-mixing trophic discrimination factor (TDF) and mixing β which is a Δδ15N between trophic and source amino acid of primary producer. Since the black-tailed gulls (BTGs) are income-breeding seabirds, which rely on energy sources obtained around their breeding sites, they and their eggs could be useful bioindicators for environmental monitoring. However, the ecological properties of BTGs such as habitats, diets, and TP are not well known due to their large migration range for wintering or breeding and their feeding habits on both aquatic and terrestrial prey. In this study, the eggs were used for estimating TP and for predicting TP of mother birds to overcome difficulties such as capturing birds and collecting non-invasive tissue samples. Eggs, sampled over a decade from three Korean islands, showed spatial differences in diet origin. Considering both the food chain and physiology of BTG, the TP of eggs was estimated to be 3.3-4.0. Notably, the TP was significantly higher at site H (3.8 ± 0.1) than at site B (3.5 ± 0.2), which indicated a higher contribution of marine diet as confirmed by QFASA. Using a reproductive shift of δ15NAAs, the TP of the mother birds was predicted to be 3.6-4.3, positioning them as the top predator in the food web. The advanced integration of multiple approaches provides valuable insights into bird ecology.
Collapse
Affiliation(s)
- Dokyun Kim
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Jangho Lee
- Natural Environment Research Division, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Eun-Ji Won
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea; Institute of Ocean and Atmospheric Sciences, Hanyang University, Ansan 15588, Republic of Korea
| | - Soo Yong Lee
- Natural Environment Research Division, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Ha-Eun Cho
- Institute of Ocean and Atmospheric Sciences, Hanyang University, Ansan 15588, Republic of Korea
| | - Hyuntae Choi
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
9
|
Sultan MB, Anik AH, Rahman MM. Emerging contaminants and their potential impacts on estuarine ecosystems: Are we aware of it? MARINE POLLUTION BULLETIN 2024; 199:115982. [PMID: 38181468 DOI: 10.1016/j.marpolbul.2023.115982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/07/2024]
Abstract
Emerging contaminants (ECs) are becoming more prevalent in estuaries and constitute a danger to both human health and ecosystems. These pollutants can infiltrate the ecosystem and spread throughout the food chain. Because of the diversified sources and extensive human activities, estuaries are particularly susceptible to increased pollution levels. A thorough review on recent ECs (platinum group elements, pharmaceuticals and personal care products, pesticides, siloxanes, liquid crystal monomers, cationic surfactant, antibiotic resistance genes, and microplastics) in estuaries, including their incidence, detection levels, and toxic effects, was performed. The inclusion of studies from different regions highlights the global nature of this issue, with each location having its unique set of contaminants. The diverse range of contaminants detected in estuary samples worldwide underscores the intricacy of ECs. A significant drawback is the scarcity of research on the toxic mechanisms of ECs on estuarine organisms, the prospect of unidentified ECs, warrant research scopes.
Collapse
Affiliation(s)
- Maisha Binte Sultan
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh; Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka-1216, Bangladesh
| | - Amit Hasan Anik
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka-1216, Bangladesh
| | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh; Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka-1216, Bangladesh; Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh.
| |
Collapse
|
10
|
Chen W, Lee S, Moon HB. Cyclic and linear siloxane contamination in sediment and invertebrates around a thermal power plant in Korea: Source impact, distribution, seasonal variation, and potential for bioaccumulation. CHEMOSPHERE 2024; 349:140779. [PMID: 38008296 DOI: 10.1016/j.chemosphere.2023.140779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Siloxanes have been commonly used as additives in a variety of industrial and consumer products. Media and government investigations have revealed that defoamers containing siloxanes are used in the effluent of thermal power plants in Korea. However, investigations of the source impact of siloxane contamination from the discharge of thermal power plants into coastal environments are scarce. In this study, sediment and invertebrates were collected around a thermal power plant to assess source impact, seasonal variation, and a potential for bioaccumulation. Although siloxanes were detectable in sediment and invertebrates, the spatial distribution and composition (which differed between the siloxanes found in sediment and invertebrates and those in defoamer used in the plant) suggest they were likely transported by long-distance migration as well as the discharge of thermal power plant. Seasonal differences might affect sedimentary contamination and the bioaccumulation potential of siloxanes. Specifically, octamethylcyclotetrasiloxane (D4) may have limited adsorption capacity and potential for long-distance migration, as its contribution in sediment far from the coastline was greater than that of decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexasiloxane (D6). However, higher D5 accumulation in invertebrates, and D5 has a potential bioaccumulation. A molecular docking analysis showed that the binding affinity between D5 and the cytochrome enzyme in invertebrates was weaker than that with other siloxanes, which could lead to higher D5 accumulation in invertebrates.
Collapse
Affiliation(s)
- Wenming Chen
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, 571158, China.
| | - Sunggyu Lee
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
11
|
Kang Y, Lee S, Chen W, Moon HB. Factors determining contamination and time trends in cyclic and linear siloxanes in sediments from an industrialized lake in Korea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115817. [PMID: 38103470 DOI: 10.1016/j.ecoenv.2023.115817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Siloxanes, widely used in various consumer and industrial products, are emerging concerns of contaminants. Despite this, limited studies have been conducted on contamination and time trends on siloxanes in coastal environments. In the present study, four cyclic and 15 linear siloxanes were measured in sediments collected from an artificial saltwater lake in Korea during 2001-2016 to investigate contamination, time trends, and ecotoxicological concerns. Cyclic siloxanes were detected in all sediment samples, whereas linear siloxanes were not frequently detected. The highest siloxane concentrations were observed in creeks passing through various industrial complexes, indicating that industrial activities predominantly contributed to siloxane contamination in coastal environments. Decamethylcyclopentasiloxane (D5) and dodecylcyclohexasiloxane (D6) were predominant siloxanes in sediments over the last two decades. Siloxane concentrations significantly increased in creek sediments from 2008 to 2016, whereas those in inshore and offshore regions significantly decreased due to a strong dilution effect by the operation of tidal power plant. This suggests that consumption patterns and coastal development activities are crucial factors determining the contamination and time trends in the sedimentary siloxanes. The sedimentary concentrations of octamethylcyclotetrasiloxane (D4) and D5 exceeded several thresholds, raising the potentials for ecological risks to aquatic organisms.
Collapse
Affiliation(s)
- Yujin Kang
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Sunggyu Lee
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Wenming Chen
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158, China
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
12
|
Chen W, Oh JS, Lim JE, Moon HB. Occurrence, time trends, and human exposure of siloxanes and synthetic musk compounds in indoor dust from Korean homes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115538. [PMID: 37806134 DOI: 10.1016/j.ecoenv.2023.115538] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023]
Abstract
Siloxanes and synthetic musk compounds (SMCs) have been widely used as additives in household and personal care products. Humans are easily exposed to siloxanes and SMCs originating from these products through ingestion and dermal absorption of indoor dust. In the present study, indoor dust samples were analyzed for 19 siloxanes (cyclic and linear) and 12 SMCs (polycyclic, macrocyclic, and nitro musks) to assess their occurrence, time trends over time, source, and health risks. A total of 18 siloxanes and 10 SMCs were detected in all indoor dust samples obtained from 2011⎯2021, indicating widespread and long-term contamination. Higher detection frequencies and concentrations were associated with siloxanes and SMCs with higher use and strong resistance against degradation processes. Indoor dust samples were dominated by linear siloxanes (L11-L13), 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-(g)-2-benzopyran (HHCB), musk ketone (MK), and 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN). The frequent use of household and personal care products is likely an important source of siloxane and SMC contamination in indoor environments. The concentrations of siloxanes and SMCs in indoor dust increased from 2011 to 2021, particularly, those of linear siloxanes, reflecting the impact of regulatory actions addressing cyclic siloxanes. The profiles of siloxanes remained stable throughout the study period, whereas those of SMCs shifted from nitro to polycyclic musks. The estimated daily intakes (EDIs) of siloxanes and SMCs arising from ingestion were greater than from dermal absorption of indoor dust. The EDIs of siloxanes and SMCs associated with indoor dust indicated that children are exposed to these pollutants.
Collapse
Affiliation(s)
- Wenming Chen
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158, China
| | - Jin-Su Oh
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Jae-Eun Lim
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
13
|
Kim D, Won EJ, Cho HE, Lee J, Shin KH. New insight into biomagnification factor of mercury based on food web structure using stable isotopes of amino acids. WATER RESEARCH 2023; 245:120591. [PMID: 37690411 DOI: 10.1016/j.watres.2023.120591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
Although many attempts have been carried out to elaborate trophic magnification factor (TMF) and biomagnification factor (BMF), such as normalizing the concentration of pollutants and averaging diet sources, the uncertainty of the indexes still need to be improved to assess the bioaccumulation of pollutants. This study first suggests an improved BMF (i.e., BMF') applied to mercury bioaccumulation in freshwater fish from four sites before and after rainfall. The diet source and TP of each fish were identified using nitrogen stable isotope of amino acids (δ15NAAs) combined with bulk carbon stable isotope (δ13C). The BMF' was calculated normalizing with TP and diet contributions derived from MixSIAR. The BMF' values (1.3-27.2 and 1.2-27.8), which are representative of the entire food web, were generally higher than TMF (1.5-13.9 and 1.5-14.5) for both total mercury and methyl mercury, respectively. The BMF' implying actual mercury transfer pathway is more reliable index than relatively underestimated TMF for risk assessment. The ecological approach for BMF calculations provides novel insight into the behavior and trophic transfer of pollutants like mercury.
Collapse
Affiliation(s)
- Dokyun Kim
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Eun-Ji Won
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea; Institute of Ocean and Atmospheric Sciences, Hanyang University, Ansan 15588, Republic of Korea
| | - Ha-Eun Cho
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea
| | | | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
14
|
Jiang Y, Zeng Y, Lu R, Zhang Y, Long L, Zheng X, Luo X, Mai B. Application of amino acids nitrogen stable isotopic analysis in bioaccumulation studies of pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163012. [PMID: 36965734 DOI: 10.1016/j.scitotenv.2023.163012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 05/17/2023]
Abstract
Accurately quantifying trophic positions (TP) to describe food web structure is an important element in studying pollutant bioaccumulation. In recent years, compound-specific nitrogen isotopic analysis of amino acids (AAs-N-CSIA) has been progressively applied as a potentially reliable tool for quantifying TP, facilitating a better understanding of pollutant food web transfer. Therefore, this review provides an overview of the analytical procedures, applications, and limitations of AAs-N-CSIA in pollutant (halogenated organic pollutants (HOPs) and heavy metals) bioaccumulation studies. We first summarize studies on the analytical techniques of AAs-N-CSIA, including derivatization, instrumental analysis, and data processing methods. The N-pivaloyl-i-propyl-amino acid ester method is a more suitable AAs derivatization method for quantifying TP. The AAs-N-CSIA application in pollutant bioaccumulation studies (e.g., Hg, MeHg, and HOPs) is discussed, and its application in conjunction with various techniques (e.g., spatial analysis, food source analysis, and compound tracking techniques, etc.) to research the influence of pollutant levels on organisms is summarized. Finally, the limitations of AAs-N-CSIA in pollutant bioaccumulation studies are discussed, including the use of single empirical values of βglu/phe and TDFglu/phe that result in large errors in TP quantification. The weighted βglu/phe and the multi-TDFglu/phe models are still challenging to solve for accurate TP quantification of omnivores; however, factors affecting the variation of βglu/phe and TDFglu/phe are unclear, especially the effect of pollutant bioaccumulation in organisms on internal AA metabolic processes.
Collapse
Affiliation(s)
- Yiye Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China.
| | - Ruifeng Lu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanting Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Long
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaobo Zheng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
15
|
Wang T, Zou H, Li D, Gao J, Bu Q, Wang Z. Global distribution and ecological risk assessment of synthetic musks in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121893. [PMID: 37245793 DOI: 10.1016/j.envpol.2023.121893] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/30/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
Synthetic musks, as an alternative product of natural musks, are widely used in almost all fragrances of consumer products, such as perfumes, cosmetics and detergents. During the past few decades, the production of synthetic musks has been increasing year by year, subsequently followed by large concern about their adverse effects on ecosystems and human beings. Until now, several studies have reviewed the latest development of analytical methods of synthetic musks in biological samples and cosmetics products, while there is still lack of a systematic analysis of their global distribution in different environmental media. Thus, this review summarizes the occurrence of synthetic musks in the environment including biota around the world and explores their global distribution patterns. The results show that galaxolide (HHCB), tonalide (AHTN), musk xylene (MX) and musk ketone (MK) are generally the most frequently detected synthetic musks in different samples with HHCB and AHTN being predominant. Higher concentrations of HHCB and AHTN are normally found in western countries compared to Asian countries, indicating more consumptions of these musks in western countries. The persistence, bioaccumulation and toxicity (PBT) of synthetic musks (mainly for polycyclic musks and nitro musks) are also discussed. The risk quotients (RQs) of HHCB, AHTN, MX and MK in most waters and sediments are below 0.1, reflecting a low risk to aqueous and sediment-dwelling species. In some sites, e.g., close to STPs, high risks (RQs>1) are characterized. Currently, limited data are available for macrocyclic musks and alicyclic musks in terms of either occurrence or PBT properties. More studies with an expanded scope of chemical type, geographical distribution and (synergic) toxicological effects especially from a long-term point of view are needed.
Collapse
Affiliation(s)
- Tao Wang
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, 300387, Tianjin, PR China
| | - Hongyan Zou
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, 300387, Tianjin, PR China.
| | - Danyang Li
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, 300387, Tianjin, PR China
| | - Jian Gao
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, 300387, Tianjin, PR China
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, 100083, Beijing, PR China
| | - Zhanyun Wang
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, 9014, St. Gallen, Switzerland; Institute of Environmental Engineering, ETH Zürich, 8093, Zürich, Switzerland
| |
Collapse
|
16
|
Chen W, Kang YJ, Lee HK, Lee M, Moon HB. Nationwide monitoring of cyclic and linear siloxanes in sediment and bivalves from Korean coastal waters: Occurrence, geographical distribution, and bioaccumulation potential. MARINE POLLUTION BULLETIN 2022; 185:114201. [PMID: 36257246 DOI: 10.1016/j.marpolbul.2022.114201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Contamination of coastal environments by siloxanes is of growing concern. Sediment and bivalves were collected from 50 locations along the Korean coast to assess the geographical distribution, sources, and bioaccumulation potential of siloxanes. Cyclic and linear siloxanes were detectable in all sediment and bivalve samples. The highest siloxane concentrations were detected in sediment (656 ng/g dw) and bivalves (3273 ng/g dw) from highly industrialized bays and harbor-zones, suggesting that industrial and shipping activities are major sources of siloxanes in coastal environment. The geographical distribution of siloxanes was similar in sediment and bivalves. Sedimentary siloxanes were dominated by cyclic siloxanes, while linear siloxanes were predominant in bivalves. Bioaccumulation of linear siloxanes in bivalves originated mainly from the sedimentary environment. Mean biota-sediment accumulation factors (BSAFs) of seven siloxanes ranged from 1.26 to 6.03, indicating potential for bioaccumulation. This is the first report on the nationwide survey on siloxanes in Korean coastal waters.
Collapse
Affiliation(s)
- Wenming Chen
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, PR China
| | - Yu-Jin Kang
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Hyun-Kyung Lee
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Moonjin Lee
- Maritime Safety and Environmental Research Division, Korea Research Institute of Ships and Ocean Engineering, Daejeon 34103, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
17
|
Yang YH, Kwon SY, Tsui MTK, Motta LC, Washburn SJ, Park J, Kim MS, Shin KH. Ecological Traits of Fish for Mercury Biomonitoring: Insights from Compound-Specific Nitrogen and Stable Mercury Isotopes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10808-10817. [PMID: 35852377 DOI: 10.1021/acs.est.2c02532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We coupled compound-specific isotopic analyses of nitrogen (N) in amino acids (δ15NGlu, δ15NPhe) and mercury stable isotopes (δ202Hg, Δ199Hg) to quantify ecological traits governing the concentration, variability, and source of Hg in largemouth bass (LB) and pike gudgeon (PG) across four rivers, South Korea. PG displayed uniform Hg concentration (56-137 ng/g), trophic position (TPcorrected; 2.6-3.0, n = 9), and N isotopes in the source amino acid (δ15NPhe; 7-13‰), consistent with their specialist feeding on benthic insects. LB showed wide ranges in Hg concentration (45-693 ng/g), TPcorrected (2.8-3.8, n = 14), and δ15NPhe (1.3-16‰), reflecting their opportunistic feeding behavior. Hg sources assessed using Hg isotopes reveal low and uniform Δ199Hg in PG (0.20-0.49‰), similar to Δ199Hg reported in sediments. LB displayed site-specific δ202Hg (-0.61 to -0.04‰) and Δ199Hg (0.53-1.09‰). At the Yeongsan River, LB displayed elevated Δ199Hg and low δ15NPhe, consistent with Hg and N sourced from the atmosphere. LB at the Geum River displayed low Δ199Hg and high δ15NPhe, both similar to the isotope values of anthropogenic sources. Our results suggest that a specialist fish (PG) with consistent ecological traits and Hg concentration is an effective bioindicator species for Hg. When accounting for Hg sources, however, LB better captures site-specific Hg sources.
Collapse
Affiliation(s)
- Yo Han Yang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 85 Songdogwahak-Ro, Yeonsu-Gu, Incheon 21983, South Korea
| | - Martin Tsz-Ki Tsui
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, South Block, Science Centre, Shatin, Hong Kong SAR 999077, China
| | - Laura C Motta
- Department of Chemistry, State University of New York at Buffalo, 312 Natural Sciences Complex, Buffalo, New York 14260-3000, United States
| | - Spencer J Washburn
- Environmental Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Jaeseon Park
- Environmental Measurement & Analysis Center, National Institute of Environmental Research, 42 Hwangyong-Ro, Seo-Gu, Incheon 22689, South Korea
| | - Min-Seob Kim
- Environmental Measurement & Analysis Center, National Institute of Environmental Research, 42 Hwangyong-Ro, Seo-Gu, Incheon 22689, South Korea
| | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergent Technology, Hanyang University, 55 Hanyangdaehak-Ro, Sangnok-Gu, Ansan 15588, South Korea
| |
Collapse
|