1
|
Essandoh YE, Steiniche T, Xia C, Romanak K, Ogwang J, Mutegeki R, Wasserman M, Venier M. Tracking toxic chemical exposure in Uganda: Insights from silicone wristbands. ENVIRONMENTAL RESEARCH 2025; 277:121522. [PMID: 40180265 DOI: 10.1016/j.envres.2025.121522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/14/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
The increasing use of synthetic chemicals, including pesticides for agriculture and flame retardants from consumer products like electronics, raises environmental concerns for public health and biodiversity, particularly in agricultural and rural communities. Although these chemicals have been extensively studied in industrialized regions, data on human exposure particulary near protected areas in sub-Saharan Africa, remain scarce. This study provides novel insights into chemical exposure among different occupational groups in Uganda using silicone wristbands. We collected 39 silicone wristbands from participants living around Kibale National Park, including tea workers (n = 8), researchers (n = 10), commercial farmers (n = 6), subsistence farmers (n = 7), and urban workers (n = 8), and analyzed for 21 polybrominated biphenyl ethers (PBDEs), 11 novel flame retardants (nFRs), 20 current-use pesticides (CUPs), and 21 organochlorine pesticides (OCPs). CUPs the most abundant chemicals detected (range 18.2-54.4 ng/g), were significantly higher for commercial and subsistence farmers and tea workers. Urban workers and researchers had higher levels of PBDEs and nFRs than the other three groups with BDE-47, -99, -139, -153, -209, bis (2-ethylhexyl) tetrabromophthalate (BETHTBP) and decabromodiphenylethane (DBDPE) being the most detected compounds. Ametryn, β-HCH, o,p'-DDT, p,p'-DDT, and endosulfan sulfate were the most frequently detected pesticides. The widespread detection of legacy and emerging chemicals at levels similar to urban and industrialized areas among populations near a protected area in Eastern Africa highlights an urgent environmental and public health concern.
Collapse
Affiliation(s)
- Yaw Edu Essandoh
- O'Neill School of Public and Environmental Affairs, Indiana University, 702 North Walnut Grove, Bloomington, IN, 47405, USA
| | - Tessa Steiniche
- Department of Anthropology, Indiana University, Bloomington, IN, USA; Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Chunjie Xia
- O'Neill School of Public and Environmental Affairs, Indiana University, 702 North Walnut Grove, Bloomington, IN, 47405, USA
| | - Kevin Romanak
- O'Neill School of Public and Environmental Affairs, Indiana University, 702 North Walnut Grove, Bloomington, IN, 47405, USA
| | - Jimmy Ogwang
- Makerere University Biological Field Station (MUBFS), Uganda
| | | | - Michael Wasserman
- Department of Anthropology, Indiana University, Bloomington, IN, USA
| | - Marta Venier
- O'Neill School of Public and Environmental Affairs, Indiana University, 702 North Walnut Grove, Bloomington, IN, 47405, USA.
| |
Collapse
|
2
|
Gómez Ó, Ramírez N, Vallecillos L, Borrull F. Determining personal exposure to high production volume chemicals (HPVCs) and polycyclic aromatic hydrocarbons (PAHs) with silicone wristbands: A pilot study. ENVIRONMENTAL RESEARCH 2024; 263:120107. [PMID: 39368597 DOI: 10.1016/j.envres.2024.120107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/07/2024]
Abstract
High production volume chemicals (HPVCs) and polycyclic aromatic hydrocarbons (PAHs) are semi-volatile organic compounds (semi-VOCs) of great environmental concern because of their presence worldwide and health problems resulting from long-term exposure to some of them. It is essential to have robust analytical methods to monitor the concentrations of these compounds not only in environmental samples but also individual exposure. In this pilot study we develop and validate a multiresidue analytical method based on ultrasound-assisted extraction and gas-chromatography mass spectrometry for the simultaneous determination of 56 semi-VOCs using silicone wristbands (SWBs) as personal passive samplers. The developed method provided recoveries between 43% and 114% on sampled SWBs and method detection and quantification limits in the range of 0.1-35 ng/g and 0.3-119 ng/g, respectively. A preliminary study was performed with a small group of adults living in the industrial city of Tarragona (north-eastern Spain) to evaluate the applicability of SWBs for monitoring individual exposure to the studied HPVCs and PAHs. Benzothiazoles, benzenesulfonamides, UV stabilisers and phenolic antioxidants were determined for the first time in SWBs. Phthalates (PAEs), stood out above the rest, accounting for 52% of the total concentrations. Diethylhexyl phthalate was the compound found at the highest concentrations with values between 1.1 and 82 μg/g. Carcinogenic and non-carcinogenic dermal risk assessment was performed for adults and considering two scenarios (low and high). PAHs were the compounds with the highest carcinogenic and non-carcinogenic dermal risk regardless of the exposure scenario. The second family of compounds that contributed the most to the total risk were PAEs but high punctual concentrations of these compounds caused significant differences between exposure scenarios.
Collapse
Affiliation(s)
- Óscar Gómez
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Sescelades Campus Building N4, Marcel⋅lí Domigo, 1, 43007, Tarragona, Spain; Universitat Rovira i Virgili, Department of Electrical and Automatic control Engineering, Sescelades Campus Building E4, Av. Països Catalans, 26, 43007, Tarragona, Spain
| | - Noelia Ramírez
- Institut d'Investigació Sanitària Pere Virgili, Excorxador, s/n, 43007, Tarragona, Spain; Universitat Rovira i Virgili, Paediatrics Research Unit, Nutrition & Human Development, Sescelades Campus Building E4, Països Catalans, 26, 43007, Tarragona, Spain
| | - Laura Vallecillos
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Sescelades Campus Building N4, Marcel⋅lí Domigo, 1, 43007, Tarragona, Spain.
| | - Francesc Borrull
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Sescelades Campus Building N4, Marcel⋅lí Domigo, 1, 43007, Tarragona, Spain
| |
Collapse
|
3
|
Baker BH, Day DB, Hazlehurst MF, Herkert NJ, Stapleton HM, Sathyanarayana S. Associations of environmental chemical exposures measured in personal silicone wristbands with sociodemographic factors, COVID-19 restrictions, and child respiratory health. ENVIRONMENTAL RESEARCH 2024; 262:119776. [PMID: 39142453 PMCID: PMC11568935 DOI: 10.1016/j.envres.2024.119776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Although human biomonitoring of environmental chemicals has been considered a gold standard, these methods can be costly, burdensome, and prone to unwanted sources of variability that may cause confounding. Silicone wristbands have recently emerged as innovative passive samplers for measuring personal exposures. METHODS In a pilot study from 2019 to 2021 involving 55 children aged 5-9 years in Seattle and Yakima, Washington, we utilized silicone wristbands to explore associations of sociodemographic variables and COVID-19-related restrictions, including school closures, with exposures to numerous chemicals including brominated and organophosphate ester (OPE) flame retardants, polychlorinated biphenyls, polycyclic aromatic hydrocarbons (PAHs), phthalates, and pesticides. We additionally conducted the first analysis testing silicone wristband chemicals as predictors of child wheeze, individually and in mixtures via logistic weighted quantile sum regression (WQS). RESULTS Among 109 semi-volatile organic compounds measured, we detected 40 in >60% of wristbands worn by children continuously for an average of 5 days. Chemicals were generally positively correlated, especially within the same class. Male sex and increasing age were linked with higher exposures across several chemical classes; Hispanic/Latino ethnicity was linked with higher exposures to some phthalates and OPEs. COVID-19 restrictions were associated with lower wristband concentrations of brominated and triaryl OPE flame retardants. Each one-decile higher WQS exposure index was suggestively associated with 2.11-fold [95% CI: 0.93-4.80] higher odds of child wheeze. Risk of child wheeze was higher per 10-fold increase in the PAH chrysene (RR = 1.93[1.07-3.49]), the pesticide cis-permethrin (3.31[1.23-8.91]), and di-isononyl phthalate (DINP) (5.40[1.22-24.0]) CONCLUSIONS: Our identification of demographic factors including sex, age, and ethnicity associated with chemical exposures may aid efforts to mitigate exposure disparities. Lower exposures to flame retardants during pandemic restrictions corroborates prior evidence of higher levels of these chemicals in school versus home environments. Future research in larger cohorts is needed to validate these findings.
Collapse
Affiliation(s)
- Brennan H Baker
- University of Washington, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA.
| | - Drew B Day
- Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | | | - Sheela Sathyanarayana
- University of Washington, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA
| |
Collapse
|
4
|
Rude CI, Wilson LB, La Du J, Lalli PM, Colby SM, Schultz KJ, Smith JN, Waters KM, Tanguay RL. Aryl hydrocarbon receptor-dependent toxicity by retene requires metabolic competence. Toxicol Sci 2024; 202:50-68. [PMID: 39107868 PMCID: PMC11514837 DOI: 10.1093/toxsci/kfae098] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of organic compounds frequently detected in the environment with widely varying toxicities. Many PAHs activate the aryl hydrocarbon receptor (AHR), inducing the expression of a battery of genes, including xenobiotic metabolizing enzymes like cytochrome P450s (CYPs); however, not all PAHs act via this mechanism. We screened several parent and substituted PAHs in in vitro AHR activation assays to classify their unique activity. Retene (1-methyl-7-isopropylphenanthrene) displays Ahr2-dependent teratogenicity in zebrafish, but did not activate human AHR or zebrafish Ahr2, suggesting a retene metabolite activates Ahr2 in zebrafish to induce developmental toxicity. To investigate the role of metabolism in retene toxicity, studies were performed to determine the functional role of cyp1a, cyp1b1, and the microbiome in retene toxicity, identify the zebrafish window of susceptibility, and measure retene uptake, loss, and metabolite formation in vivo. Cyp1a-null fish were generated using CRISPR-Cas9. Cyp1a-null fish showed increased sensitivity to retene toxicity, whereas Cyp1b1-null fish were less susceptible, and microbiome elimination had no significant effect. Zebrafish required exposure to retene between 24 and 48 hours post fertilization (hpf) to exhibit toxicity. After static exposure, retene concentrations in zebrafish embryos increased until 24 hpf, peaked between 24 and 36 hpf, and decreased rapidly thereafter. We detected retene metabolites at 36 and 48 hpf, indicating metabolic onset preceding toxicity. This study highlights the value of combining molecular and systems biology approaches with mechanistic and predictive toxicology to interrogate the role of biotransformation in AHR-dependent toxicity.
Collapse
Affiliation(s)
- Christian I Rude
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
| | - Lindsay B Wilson
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
| | - Jane La Du
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
| | - Priscila M Lalli
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Sean M Colby
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Katherine J Schultz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Jordan N Smith
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Katrina M Waters
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Robyn L Tanguay
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
| |
Collapse
|
5
|
Li S, Liu X, Wang J, Li J, Wang Z, Ma S, Dong Z, Li M, Han Y, Cao J. Exposure to polycyclic aromatic hydrocarbons (PAHs) from domestic heating and cooking combustion of different fuel types for elders in rural China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124416. [PMID: 38942271 DOI: 10.1016/j.envpol.2024.124416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/26/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
Solid fuel combustion emitted abundant pollutants, especially polycyclic aromatic hydrocarbons (PAHs) which had significant minus impact on human health in rural China. PAHs in PM2.5 emitted from different fuels combustion and hydroxylated metabolites of PAHs (OH-PAHs) in urine samples of different fuel users were detected in this study. The indoor PAHs were higher than that in outdoors for solid fuel use households, and the concentration of PAHs in the indoor of liquefied petroleum gas (LPG) use household was not much lower than solid fuel use households. Biogas-use household produced the lowest PAHs, which significantly reduced 64-82% compared with those emitted by solid fuel combustion. The different combustion conditions influenced the gaseous PAHs in indoors between two sampling sites. The gas/particle partition indicated that PAHs tended to occur in the particle phase with increased molecular weight, and the absorption was the main mechanism. The relative higher contribution of high molecular weight PAHs (HMW-PAHs) in solid fuel use households than in clean fuel use households, induced more health risks of PAHs. The concentration of Σ10OH-PAHs in the urine samples for elders of different fuel-use households displayed the trend of coal (83.27 ng/mL) > wood (79.32 ng/mL) > LPG (51.61 ng/mL) > biogas (28.96 ng/mL), and OH-NaPs was the predominant metabolites, which accounted for more than 90% of the total concentration. The carcinogenic risk of PAHs based on internal exposure was greater than or close to 10-4, with serious carcinogenic risks. This was different with the incremental lifetime cancer risk based on the atmospheric concentrations. The exposure of PAHs from solid fuel combustion for human being especially for the elders in this region should be concerned, and more data should be done for the internal exposure of PAHs.
Collapse
Affiliation(s)
- Shengping Li
- National Demonstration Center for Experimental Geography Education, School of Geography and Tourism, Shaanxi Normal University, Xi'an, China
| | - Xiuqun Liu
- National Demonstration Center for Experimental Geography Education, School of Geography and Tourism, Shaanxi Normal University, Xi'an, China
| | - Jingzhi Wang
- National Demonstration Center for Experimental Geography Education, School of Geography and Tourism, Shaanxi Normal University, Xi'an, China; Key Lab of Aerosol Chemistry & Physics, State Key Lab of Loess and Quaternary Geology (SKLLQG), Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China.
| | - Jiayu Li
- Mechanical and Aerospace Engineering, University of Miami, Coral Gables, USA; Center for Aerosol Science & Technology, University of Miami, Coral Gables, USA
| | - Zedong Wang
- National Demonstration Center for Experimental Geography Education, School of Geography and Tourism, Shaanxi Normal University, Xi'an, China
| | - Shengtao Ma
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Zhibao Dong
- National Demonstration Center for Experimental Geography Education, School of Geography and Tourism, Shaanxi Normal University, Xi'an, China
| | - Minrui Li
- National Demonstration Center for Experimental Geography Education, School of Geography and Tourism, Shaanxi Normal University, Xi'an, China
| | - Yongming Han
- Key Lab of Aerosol Chemistry & Physics, State Key Lab of Loess and Quaternary Geology (SKLLQG), Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Junji Cao
- Key Lab of Aerosol Chemistry & Physics, State Key Lab of Loess and Quaternary Geology (SKLLQG), Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Herkert NJ, Getzinger GJ, Hoffman K, Young AS, Allen JG, Levasseur JL, Ferguson PL, Stapleton HM. Wristband Personal Passive Samplers and Suspect Screening Methods Highlight Gender Disparities in Chemical Exposures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15497-15510. [PMID: 39171898 PMCID: PMC12012859 DOI: 10.1021/acs.est.4c06008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Wristband personal samplers enable human exposure assessments for a diverse range of chemical contaminants and exposure settings with a previously unattainable scale and cost-effectiveness. Paired with nontargeted analyses, wristbands can provide important exposure monitoring data to expand our understanding of the environmental exposome. Here, a custom scripted suspect screening workflow was developed in the R programming language for feature selection and chemical annotations using gas chromatography-high-resolution mass spectrometry data acquired from the analysis of wristband samples collected from five different cohorts. The workflow includes blank subtraction, internal standard normalization, prediction of chemical uses in products, and feature annotation using multiple library search metrics and metadata from PubChem, among other functionalities. The workflow was developed and validated against 104 analytes identified by targeted analytical results in previously published reports of wristbands. A true positive rate of 62 and 48% in a quality control matrix and wristband samples, respectively, was observed for our optimum set of parameters. Feature analysis identified 458 features that were significantly higher on female-worn wristbands and only 21 features that were significantly higher on male-worn wristbands across all cohorts. Tentative identifications suggest that personal care products are a primary driver of the differences observed.
Collapse
Affiliation(s)
| | - Gordon J. Getzinger
- School of Environmental Sustainability, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, NC, 27710, USA
| | - Anna S. Young
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Joseph G. Allen
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | | | - P. Lee Ferguson
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, 27708, USA
| | | |
Collapse
|
7
|
Riley KW, Burke K, Dixon H, Holmes D, Calero L, Barton M, Miller RL, Bramer LM, Waters KM, Anderson KA, Herbstman J, Rohlman D. Development and Outcomes of Returning Polycyclic Aromatic Hydrocarbon Exposure Results in the Washington Heights, NYC Community. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241262604. [PMID: 39055113 PMCID: PMC11271165 DOI: 10.1177/11786302241262604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024]
Abstract
Report-back of research results (RBRR) is becoming standard practice for environmental health research studies. RBRR is thought to increase environmental health literacy (EHL), although standardized measurements are limited. For this study, we developed a report back document on exposure to air pollutants, Polycyclic Aromatic Hydrocarbons, during pregnancy through community engaged research and evaluated whether the report increased EHL. We used focus groups and surveys to gather feedback on the report document from an initial group of study participants (Group 1, n = 22) and then sent the revised report to a larger number of participants (Group 2, n = 168). We conducted focus groups among participants in Group 1 and discussed their suggested changes to the report and how those changes could be implemented. Participants in focus groups demonstrated multiple levels of EHL. While participant engagement critically informed report development, a survey comparing feedback from Group 1 (initial report) and Group 2 (revised report) did not show a significant difference in the ease of reading the report or knowledge gained about air pollutants. We acknowledge that our approach was limited by a lack of EHL tools that assess knowledge and behavior change, and a reliance on quantitative methodologies. Future approaches that merge qualitative and quantitative methodologies to evaluate RBRR and methodologies for assessing RBRR materials and subsequent changes in knowledge, attitudes, and behavior, may be necessary.
Collapse
Affiliation(s)
- Kylie W Riley
- Columbia Center for Children’s Environmental Health, Columbia University, New York, NY, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Kimberly Burke
- Columbia Center for Children’s Environmental Health, Columbia University, New York, NY, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Holly Dixon
- Environmental and Molecular Toxicology, Food Safety and Environmental Stewardship Program, Oregon State University, Corvallis, OR, USA
| | - Darrell Holmes
- Columbia Center for Children’s Environmental Health, Columbia University, New York, NY, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Lehyla Calero
- Columbia Center for Children’s Environmental Health, Columbia University, New York, NY, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Michael Barton
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Rachel L Miller
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lisa M Bramer
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Katrina M Waters
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kim A Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Julie Herbstman
- Columbia Center for Children’s Environmental Health, Columbia University, New York, NY, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Diana Rohlman
- School of Nutrition and Public Health, College of Health, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
8
|
McLarnan SM, Bramer LM, Dixon HM, Scott RP, Calero L, Holmes D, Gibson EA, Cavalier HM, Rohlman D, Miller RL, Kincl L, Waters KM, Anderson KA, Herbstman JB. Predicting personal PAH exposure using high dimensional questionnaire and wristband data. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:679-687. [PMID: 38177333 DOI: 10.1038/s41370-023-00617-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) are a class of pervasive environmental pollutants with a variety of known health effects. While significant work has been completed to estimate personal exposure to PAHs, less has been done to identify sources of these exposures. Comprehensive characterization of reported sources of personal PAH exposure is a critical step to more easily identify individuals at risk of high levels of exposure and for developing targeted interventions based on source of exposure. OBJECTIVE In this study, we leverage data from a New York (NY)-based birth cohort to identify personal characteristics or behaviors associated with personal PAH exposure and develop models for the prediction of PAH exposure. METHODS We quantified 61 PAHs measured using silicone wristband samplers in association with 75 questionnaire variables from 177 pregnant individuals. We evaluated univariate associations between each compound and questionnaire variable, conducted regression tree analysis for each PAH compound and completed a principal component analysis of for each participant's entire PAH exposure profile to determine the predictors of PAH levels. RESULTS Regression tree analyses of individual compounds and exposure mixture identified income, time spent outdoors, maternal age, country of birth, transportation type, and season as the variables most frequently predictive of exposure.
Collapse
Affiliation(s)
- Sarah M McLarnan
- Department of Environmental Health Sciences, Columbia University, Columbia Center for Children's Environmental Health, Mailman School of Public Health, New York City, NY, USA.
| | - Lisa M Bramer
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Holly M Dixon
- Environmental and Molecular Toxicology, Food Safety and Environmental Stewardship Program, Oregon State University, Corvallis, OR, USA
| | - Richard P Scott
- Environmental and Molecular Toxicology, Food Safety and Environmental Stewardship Program, Oregon State University, Corvallis, OR, USA
| | - Lehyla Calero
- Department of Environmental Health Sciences, Columbia University, Columbia Center for Children's Environmental Health, Mailman School of Public Health, New York City, NY, USA
| | - Darrell Holmes
- Department of Environmental Health Sciences, Columbia University, Columbia Center for Children's Environmental Health, Mailman School of Public Health, New York City, NY, USA
| | - Elizabeth A Gibson
- Department of Environmental Health Sciences, Columbia University, Columbia Center for Children's Environmental Health, Mailman School of Public Health, New York City, NY, USA
| | - Haleigh M Cavalier
- Department of Environmental Health Sciences, Columbia University, Columbia Center for Children's Environmental Health, Mailman School of Public Health, New York City, NY, USA
| | - Diana Rohlman
- Oregon State University, College of Public Health and Human Sciences, Corvallis, OR, USA
| | - Rachel L Miller
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Laurel Kincl
- Oregon State University, College of Public Health and Human Sciences, Corvallis, OR, USA
| | - Katrina M Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
- Environmental and Molecular Toxicology, Food Safety and Environmental Stewardship Program, Oregon State University, Corvallis, OR, USA
| | - Kim A Anderson
- Environmental and Molecular Toxicology, Food Safety and Environmental Stewardship Program, Oregon State University, Corvallis, OR, USA
| | - Julie B Herbstman
- Department of Environmental Health Sciences, Columbia University, Columbia Center for Children's Environmental Health, Mailman School of Public Health, New York City, NY, USA
| |
Collapse
|
9
|
Bramer LM, Dixon HM, Rohlman D, Scott RP, Miller RL, Kincl L, Herbstman JB, Waters KM, Anderson KA. PM 2.5 Is Insufficient to Explain Personal PAH Exposure. GEOHEALTH 2024; 8:e2023GH000937. [PMID: 38344245 PMCID: PMC10858395 DOI: 10.1029/2023gh000937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 10/28/2024]
Abstract
To understand how chemical exposure can impact health, researchers need tools that capture the complexities of personal chemical exposure. In practice, fine particulate matter (PM2.5) air quality index (AQI) data from outdoor stationary monitors and Hazard Mapping System (HMS) smoke density data from satellites are often used as proxies for personal chemical exposure, but do not capture total chemical exposure. Silicone wristbands can quantify more individualized exposure data than stationary air monitors or smoke satellites. However, it is not understood how these proxy measurements compare to chemical data measured from wristbands. In this study, participants wore daily wristbands, carried a phone that recorded locations, and answered daily questionnaires for a 7-day period in multiple seasons. We gathered publicly available daily PM2.5 AQI data and HMS data. We analyzed wristbands for 94 organic chemicals, including 53 polycyclic aromatic hydrocarbons. Wristband chemical detections and concentrations, behavioral variables (e.g., time spent indoors), and environmental conditions (e.g., PM2.5 AQI) significantly differed between seasons. Machine learning models were fit to predict personal chemical exposure using PM2.5 AQI only, HMS only, and a multivariate feature set including PM2.5 AQI, HMS, and other environmental and behavioral information. On average, the multivariate models increased predictive accuracy by approximately 70% compared to either the AQI model or the HMS model for all chemicals modeled. This study provides evidence that PM2.5 AQI data alone or HMS data alone is insufficient to explain personal chemical exposures. Our results identify additional key predictors of personal chemical exposure.
Collapse
Affiliation(s)
- Lisa M. Bramer
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWAUSA
| | - Holly M. Dixon
- Department of Environmental and Molecular ToxicologyFood Safety and Environmental Stewardship ProgramOregon State UniversityCorvallisORUSA
| | - Diana Rohlman
- College of HealthOregon State UniversityCorvallisORUSA
| | - Richard P. Scott
- Department of Environmental and Molecular ToxicologyFood Safety and Environmental Stewardship ProgramOregon State UniversityCorvallisORUSA
| | - Rachel L. Miller
- Division of Clinical ImmunologyIcahn School of Medicine at Mount SinaiNew York CityNYUSA
| | - Laurel Kincl
- College of HealthOregon State UniversityCorvallisORUSA
| | - Julie B. Herbstman
- Department of Environmental Health SciencesColumbia Center for Children's Environmental HealthMailman School of Public HealthColumbia UniversityNew York CityNYUSA
| | - Katrina M. Waters
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWAUSA
- Department of Environmental and Molecular ToxicologyFood Safety and Environmental Stewardship ProgramOregon State UniversityCorvallisORUSA
| | - Kim A. Anderson
- Department of Environmental and Molecular ToxicologyFood Safety and Environmental Stewardship ProgramOregon State UniversityCorvallisORUSA
| |
Collapse
|
10
|
Bramer LM, Dixon HM, Degnan DJ, Rohlman D, Herbstman JB, Anderson KA, Waters KM. Expanding the access of wearable silicone wristbands in community-engaged research through best practices in data analysis and integration. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2024; 29:170-186. [PMID: 38160278 PMCID: PMC10766083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Wearable silicone wristbands are a rapidly growing exposure assessment technology that offer researchers the ability to study previously inaccessible cohorts and have the potential to provide a more comprehensive picture of chemical exposure within diverse communities. However, there are no established best practices for analyzing the data within a study or across multiple studies, thereby limiting impact and access of these data for larger meta-analyses. We utilize data from three studies, from over 600 wristbands worn by participants in New York City and Eugene, Oregon, to present a first-of-its-kind manuscript detailing wristband data properties. We further discuss and provide concrete examples of key areas and considerations in common statistical modeling methods where best practices must be established to enable meta-analyses and integration of data from multiple studies. Finally, we detail important and challenging aspects of machine learning, meta-analysis, and data integration that researchers will face in order to extend beyond the limited scope of individual studies focused on specific populations.
Collapse
Affiliation(s)
- Lisa M Bramer
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd Richland, WA 99354, United States,
| | | | | | | | | | | | | |
Collapse
|
11
|
Bramer LM, Dixon HM, Degnan DJ, Rohlman D, Herbstman JB, Anderson KA, Waters KM. Expanding the access of wearable silicone wristbands in community-engaged research through best practices in data analysis and integration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560217. [PMID: 37873084 PMCID: PMC10592864 DOI: 10.1101/2023.09.29.560217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Wearable silicone wristbands are a rapidly growing exposure assessment technology that offer researchers the ability to study previously inaccessible cohorts and have the potential to provide a more comprehensive picture of chemical exposure within diverse communities. However, there are no established best practices for analyzing the data within a study or across multiple studies, thereby limiting impact and access of these data for larger meta-analyses. We utilize data from three studies, from over 600 wristbands worn by participants in New York City and Eugene, Oregon, to present a first-of-its-kind manuscript detailing wristband data properties. We further discuss and provide concrete examples of key areas and considerations in common statistical modeling methods where best practices must be established to enable meta-analyses and integration of data from multiple studies. Finally, we detail important and challenging aspects of machine learning, meta-analysis, and data integration that researchers will face in order to extend beyond the limited scope of individual studies focused on specific populations.
Collapse
Affiliation(s)
- Lisa M Bramer
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd Richland, WA 99354, United States
| | - Holly M Dixon
- Environmental and Molecular Toxicology, Oregon State University, 1007 Agriculture & Life Sciences Building, Corvallis, OR 97331, United States
| | - David J Degnan
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd Richland, WA 99354, United States
| | - Diana Rohlman
- College of Health, Oregon State University, 103 SW Memorial Place, Corvallis, OR 97331, United States
| | - Julie B Herbstman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, New York City, NY 10032, United States
| | - Kim A Anderson
- Environmental and Molecular Toxicology, Oregon State University, 1007 Agriculture & Life Sciences Building, Corvallis, OR 97331, United States
| | - Katrina M Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd Richland, WA 99354, United States
- Environmental and Molecular Toxicology, Oregon State University, 1007 Agriculture & Life Sciences Building, Corvallis, OR 97331, United States
| |
Collapse
|
12
|
Okeme JO, Koelmel JP, Johnson E, Lin EZ, Gao D, Pollitt KJG. Wearable Passive Samplers for Assessing Environmental Exposure to Organic Chemicals: Current Approaches and Future Directions. Curr Environ Health Rep 2023:10.1007/s40572-023-00392-w. [PMID: 36821032 DOI: 10.1007/s40572-023-00392-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 02/24/2023]
Abstract
PURPOSE OF REVIEW We are continuously exposed to dynamic mixtures of airborne contaminants that vary by location. Understanding the compositional diversity of these complex mixtures and the levels to which we are each exposed requires comprehensive exposure assessment. This comprehensive analysis is often lacking in population-based studies due to logistic and analytical challenges associated with traditional measurement approaches involving active air sampling and chemical-by-chemical analysis. The objective of this review is to provide an overview of wearable passive samplers as alternative tools to active samplers in environmental health research. The review highlights the advances and challenges in using wearable passive samplers for assessing personal exposure to organic chemicals and further presents a framework to enable quantitative measurements of exposure and expanded use of this monitoring approach to the population scale. RECENT FINDINGS Overall, wearable passive samplers are promising tools for assessing personal exposure to environmental contaminants, evident by the increased adoption and use of silicone-based devices in recent years. When combined with high throughput chemical analysis, these exposure assessment tools present opportunities for advancing our ability to assess personal exposures to complex mixtures. Most designs of wearable passive samplers used for assessing exposure to semi-volatile organic chemicals are currently uncalibrated, thus, are mostly used for qualitative research. The challenge with using wearable samplers for quantitative exposure assessment mostly lies with the inherent complexity in calibrating these wearable devices. Questions remain regarding how they perform under various conditions and the uncertainty of exposure estimates. As popularity of these samplers grows, it is critical to understand the uptake kinetics of chemicals and the different environmental and meteorological conditions that can introduce variability. Wearable passive samplers enable evaluation of exposure to hundreds of chemicals. The review presents the state-of-the-art of technology for assessing personal exposure to environmental chemicals. As more studies calibrate wearable samplers, these tools present promise for quantitatively assessing exposure at both the individual and population levels.
Collapse
Affiliation(s)
- Joseph O Okeme
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, Room 523, New Haven, CT, 06510, USA
| | - Jeremy P Koelmel
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, Room 523, New Haven, CT, 06510, USA
| | - Emily Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, Room 523, New Haven, CT, 06510, USA
| | - Elizabeth Z Lin
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, Room 523, New Haven, CT, 06510, USA
| | - Dong Gao
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, Room 523, New Haven, CT, 06510, USA
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, Room 523, New Haven, CT, 06510, USA.
| |
Collapse
|
13
|
Zhang X, Li Z. Developing a profile of urinary PAH metabolites among Chinese populations in the 2010s. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159449. [PMID: 36244474 DOI: 10.1016/j.scitotenv.2022.159449] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/24/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) pose significant health risks. However, no nationwide cohort has been established to consistently record biomonitoring data on PAH exposure in the Chinese population. Biomonitoring data from 56 published studies were combined in this study to develop a profile of urinary PAH metabolites among Chinese population in the 2010s. The stacked column charts described the composition profiles of hydroxylated PAHs (OH-PAHs) in general, special, and occupational populations. Hydroxynaphthalene (OH-Nap) and hydroxyfluorene (OH-Flu) accounted for more than half of the urinary OH-PAH in general and special populations. The urine of the occupational populations contained a significant amount of hydroxyphenanthrene (OH-Phe) and 1-hydroxypyrene (1-OHPyr). Furthermore, this study analyzed the distribution profiles of non-occupationally exposed populations, such as spatial distribution, age distribution, and trends over time. The population of the Southern region had higher urinary OH-PAH concentrations than the population of the Northern region. Adults (45-55 years old) had the highest level of internal PAH exposure. Between 2010 and 2018, the overall trend of urinary OH-PAHs in Chinese general populations decreased. The cumulative distribution function (CDF) revealed that 1-OHNap and 1-OHPyr were better at distinguishing internal PAH exposure among different populations. The sum of OH-Flu and OH-Phe in urine can be used to assess the impact of indoor and outdoor environments on human exposure to PAHs. Our findings suggest that more emphasis should be placed on collecting biomonitoring data for adults of all ages (particularly in the Northern region) and vulnerable populations. In conclusion, this study advocates for the establishment of a nationwide cohort study of Chinese populations as soon as possible in the future to evaluate the Chinese population's exposure to environmental contaminants.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
14
|
Samon SM, Rohlman D, Tidwell LG, Hoffman PD, Oluyomi AO, Anderson KA. Associating Increased Chemical Exposure to Hurricane Harvey in a Longitudinal Panel Using Silicone Wristbands. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6670. [PMID: 35682254 PMCID: PMC9180596 DOI: 10.3390/ijerph19116670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023]
Abstract
Hurricane Harvey was associated with flood-related damage to chemical plants and oil refineries, and the flooding of hazardous waste sites, including 13 Superfund sites. As clean-up efforts began, concerns were raised regarding the human health impact of possible increased chemical exposure resulting from the hurricane and subsequent flooding. Personal sampling devices in the form of silicone wristbands were deployed to a longitudinal panel of individuals (n = 99) within 45 days of the hurricane and again one year later in the Houston metropolitan area. Using gas chromatography−mass spectroscopy, each wristband was screened for 1500 chemicals and analyzed for 63 polycyclic aromatic hydrocarbons (PAHs). Chemical exposure levels found on the wristbands were generally higher post-Hurricane Harvey. In the 1500 screen, 188 chemicals were detected, 29 were detected in at least 30% of the study population, and of those, 79% (n = 23) were found in significantly higher concentrations (p < 0.05) post-Hurricane Harvey. Similarly, in PAH analysis, 51 chemicals were detected, 31 were detected in at least 30% of the study population, and 39% (n = 12) were found at statistically higher concentrations (p < 0.05) post-Hurricane Harvey. This study indicates that there were increased levels of chemical exposure after Hurricane Harvey in the Houston metropolitan area.
Collapse
Affiliation(s)
- Samantha M. Samon
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; (S.M.S.); (L.G.T.); (P.D.H.)
| | - Diana Rohlman
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA;
| | - Lane G. Tidwell
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; (S.M.S.); (L.G.T.); (P.D.H.)
| | - Peter D. Hoffman
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; (S.M.S.); (L.G.T.); (P.D.H.)
| | - Abiodun O. Oluyomi
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
- Gulf Coast Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kim A. Anderson
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; (S.M.S.); (L.G.T.); (P.D.H.)
| |
Collapse
|