1
|
Qiao Z, Feng X, Sun W, Wang F, Lu C. Independent and synergistic effects of extreme heat and NO 2 pollution on diabetic nephropathy in a type II diabetes mouse model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126321. [PMID: 40294690 DOI: 10.1016/j.envpol.2025.126321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 04/13/2025] [Accepted: 04/26/2025] [Indexed: 04/30/2025]
Abstract
Extreme heat and traffic-related air pollution (TRAP) have been linked to worsening chronic health disorders, however, their combined effects on diabetic nephropathy (DN) are little understood. Type II diabetic mice were exposed to heat (40 °C) and NO2 (5 ppm) separately for 4 h per day over 6 weeks to investigate the synergistic effects on the progression of DN. We found that exposure to high temperature and NO2 elevated blood glucose levels and exacerbated histopathological changes. Additionally, there were increased oxidation indicators (ROS, MDA, 8-OHdG) and decreased antioxidant indicators (CAT, SOD, GSH-PX), along with elevated inflammation markers (TNF-α, IL-1β, IL-6). The expressions of transient receptor potential (TRP) ion channels (TRPV1, TRPV4, TRPA1, TRPM2) were also upregulated. Our findings suggest that simultaneous exposure to high temperature and NO2 impairs metabolic and autophagy pathways. Exposure to both high temperature and NO2 produces a synergistic effect, leading to more severe damage than exposure to either factor individually. This resulted in increased expression of APOA1, P62, and p-mTOR/mTOR while decreasing the expression of p-AMPKα/AMPKα and LC3-II/I. This disruption promoted the progression of DN. In contrast, capsazepine (CZP) reduced TRP expression, inflammatory markers, oxidative stress, metabolic and autophagy disorders, thereby mitigating renal damage and alleviating the progression of diabetic nephropathy. Our study provides some potential strategies for early prevention and effective reduction of DN.
Collapse
Affiliation(s)
- Zipeng Qiao
- XiangYa School of Public Health, Central South University, Changsha, 410013, China
| | - Xiangling Feng
- XiangYa School of Public Health, Central South University, Changsha, 410013, China
| | - Wenying Sun
- XiangYa School of Public Health, Central South University, Changsha, 410013, China
| | - Faming Wang
- Centre for Molecular Biosciences and Non-communicable Diseases, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Chan Lu
- XiangYa School of Public Health, Central South University, Changsha, 410013, China; FuRong Laboratory, Changsha, 410078, Hunan, China; Hunan Provincial Key Laboratory of Low Carbon Healthy Building, Central South University, Changsha, 410083, China.
| |
Collapse
|
2
|
Guo M, Qi J, He G, Liu J, Hu J, Yin P, Liu T, Lin Z, Jing F, You J, Ma W, Liu F, Zhou M. The current and future temperature-related mortality burden of cause-specific kidney diseases: A national case-crossover study in China. ENVIRONMENTAL RESEARCH 2025; 279:121696. [PMID: 40320029 DOI: 10.1016/j.envres.2025.121696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/07/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND Many studies have investigated the association of temperature with non-accidental mortality, but there is limited evidence on the temperature-related mortality burden of kidney diseases. This study aims to assess the mortality impact of temperatures on cause-specific kidney in China. METHODS We conducted a time-stratified case-crossover study using mortality data from kidney diseases across 2790 counties/districts in China from 2003 to 2022. We used conditional logistic regression in conjunction with distribution lag nonlinear model (DLNM) to examine the association between temperature and kidney disease mortality. Furthermore, we projected the mortality burden of kidney diseases attributed to temperature under diverse climate change scenarios in China in the future. RESULTS The study included 914,177 kidney disease fatalities, revealing an inversely J-shaped association between temperature and kidney disease mortality across various subgroups. Both extreme cold (Odds ratios [OR] = 1.34, 95 % CI: 1.27-1.41) and extreme heat (1.06, 95 % CI: 1.02-1.10) were linked to increased kidney mortality, with a more pronounced effect in females [1.08(95 % CI: 1.02-1.14) for extreme heat, 1.34(95 % CI: 1.24-1.46) for extreme cold], the elderly [1.07(95 % CI: 1.03-1.12) for extreme heat, 1.35(95 % CI: 1.26-1.45) for extreme cold ] and those with acute kidney disease [1.10(95 % CI: 0.96-1.26)] for extreme heat, 1.43(95 % CI: 1.19-1.73) for extreme cold]. Nationwide, temperatures accounted for 9.28 % (95 % CI: 9.17 %-9.40 %) of kidney disease mortality, with 9.15 % (95 % CI: 9.03 %-9.26 %) for cold and 0.13 % (95 % CI: 0.12 %-0.14 %) for heat, and temperature-related AF of acute kidney disease was the greatest (attributable fraction [AF] = 11.00 %,95 %CI:10.71 %-11.31 %). Projections suggest that temperature-related AFs would rise from 11.39 % (95 % CI: 8.19 %-13.89 %) in the 2050s to 15.26 % (95 % CI: 10.30 %-18.68 %) in the 2090s under SSP5-8.5, with heat-related AFs increasing from 2.82 % (95 % CI: 1.8 %-4.20 %) to 7.12 % (95 % CI: 4.23 %-10.09 %) and cold-related AFs decreasing from 8.57 % (95 % CI: 5.71 %-9.89 %) to 8.14 % (95 % CI: 5.22 %-8.81 %). CONCLUSION Our study indicates that temperatures are significantly associated with the mortality risk and burden of kidney diseases in China, and temperature-related mortality is expected to increase in the future, particularly from heat. Our findings indicate that kidney diseases are vulnerable to ambient temperature in the context of climate change.
Collapse
Affiliation(s)
- Mengen Guo
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jinlei Qi
- The National Center for Chronic and Noncommunicable Disease Control and Prevention, Beijing, 100050, China
| | - Guanhao He
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
| | - Jiangmei Liu
- The National Center for Chronic and Noncommunicable Disease Control and Prevention, Beijing, 100050, China
| | - Jianxiong Hu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
| | - Peng Yin
- The National Center for Chronic and Noncommunicable Disease Control and Prevention, Beijing, 100050, China
| | - Tao Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Ziqiang Lin
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Fengrui Jing
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jinling You
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Wenjun Ma
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Fanna Liu
- Nephrology Department, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.
| | - Maigeng Zhou
- The National Center for Chronic and Noncommunicable Disease Control and Prevention, Beijing, 100050, China.
| |
Collapse
|
3
|
Chu L, Ma X, Chen K. Reply: Strengthening Temperature-Stroke Associations: Methodologic Considerations. J Am Coll Cardiol 2025; 85:1522. [PMID: 40204383 DOI: 10.1016/j.jacc.2025.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 04/11/2025]
Affiliation(s)
- Lingzhi Chu
- Yale School of Public Health, New Haven, Connecticut, USA
| | - Xiaomei Ma
- Yale University, New Haven, Connecticut, USA.
| | - Kai Chen
- Yale School of Public Health, New Haven, Connecticut, USA.
| |
Collapse
|
4
|
Martin D, Brewster P, Crowley ST. Preparing for stormy weather: building VA health system resilience for dialysis emergency preparedness in the era of climate change. Curr Opin Nephrol Hypertens 2025; 34:156-163. [PMID: 39699057 DOI: 10.1097/mnh.0000000000001054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
PURPOSE OF REVIEW Climate change has been implicated as the driver for the increasing number, intensity, duration, and consequences of catastrophic weather events. As a result of extreme weather events, climate change has also been implicated as an important mediator of adverse kidney health outcomes, not only increasing the risk for the development of acute and chronic kidney diseases, but also disrupting the delivery of critical kidney health services. In particular, the delivery of dialysis services during major emergencies remains an ongoing and increasing problem, with a recognized need for improved emergency preparedness and disaster management (EP-DM) strategies to mitigate the increased risk of morbidity and mortality associated with missed dialysis treatment. RECENT FINDINGS There are increasing reports detailing the challenges of kidney dialysis care in times of crisis, to include those resulting from both man-made and natural disasters. Optimized management of the high-risk vulnerable dialysis patient population must include both facility-facing comprehensive continuity of operations and emergency response plans, and ongoing patient-facing emergency preparedness education. SUMMARY This review discusses the adverse impact of climate change-related natural disasters on the delivery of dialysis services, and the evolving EP-DM strategies developed and implemented by the Veterans Health Administration (VA) to optimize the care and well being of the vulnerable end stage kidney disease (ESKD) patient population.
Collapse
Affiliation(s)
- DeAndra Martin
- Renal Section, Medicine Service, Audie L Murphy VA Hospital, VA South Texas Healthcare System
- Division of Nephrology, University of Texas Health San Antonio, San Antonio, Texas
| | - Peter Brewster
- Office of Emergency Management, Veterans Health Administration, Washington, District of Columbia
| | - Susan T Crowley
- Kidney Medicine Section, VA Connecticut Healthcare System, West Haven
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, West Haven, USA
| |
Collapse
|
5
|
Wang W, Wang F, Yang C, Wang J, Liang Z, Zhang F, Li P, Zhang L. Associations between heat waves and chronic kidney disease in China: The modifying role of land cover. ENVIRONMENT INTERNATIONAL 2024; 186:108657. [PMID: 38626496 DOI: 10.1016/j.envint.2024.108657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/18/2024]
Abstract
The increasing frequency of heat waves under the global urbanization and climate change background poses elevating risks of chronic kidney disease (CKD). Nevertheless, there has been no evidence on associations between long-term exposures to heat waves and CKD as well as the modifying effects of land cover patterns. Based on a national representative population-based survey on CKD covering 47,086 adults and high spatial resolution datasets on temperature and land cover data, we found that annual days of exposure to heat waves were associated with increased odds of CKD prevalence. For one day/year increases in HW_975_4d (above 97.5 % of annual maximum temperature and lasting for at least 4 consecutive days), the odds ratio (OR) of CKD was 1.14 (95 %CI: 1.12, 1.15). Meanwhile, stronger associations were observed in regions with lower urbanicity [rural: 1.14 (95 %CI: 1.12, 1.16) vs urban: 1.07 (95 %CI: 1.03, 1.11), Pinteraction < 0.001], lower water body coverage [lower: 1.14 (95 %CI: 1.12, 1.16) vs higher: 1.02 (95 %CI: 0.98, 1.05), Pinteraction < 0.001], and lower impervious area coverage [lower: 1.16 (95 %CI: 1.14, 1.18) vs higher: 1.06 (95 %CI: 1.03, 1.10), Pinteraction = 0.008]. In addition, this study found disparities in modifying effects of water bodies and impervious areas in rural and urban settings. In rural regions, the associations between heat waves and CKD prevalence showed a consistent decreasing trend with increases in both proportions of water bodies and impervious areas (Pinteraction < 0.05). Nevertheless, in urban regions, we observed significant effect modification by water bodies, but not by impervious areas. Our study indicates the need for targeted land planning as part of adapting to the kidney impacts of heat waves, with a focus on urbanization in rural regions, as well as water body construction and utilization in both rural and urban regions.
Collapse
Affiliation(s)
- Wanzhou Wang
- National Institute of Health Data Science at Peking University, Beijing 100191, China; Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
| | - Fulin Wang
- National Institute of Health Data Science at Peking University, Beijing 100191, China; Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
| | - Chao Yang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing 100034, China; Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing 100034, China; Advanced Institute of Information Technology, Peking University, Hangzhou 311215, China
| | - Jinwei Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing 100034, China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education of the People's Republic of China, Beijing, China
| | - Ze Liang
- Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Feifei Zhang
- National Institute of Health Data Science at Peking University, Beijing 100191, China; Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
| | - Pengfei Li
- Advanced Institute of Information Technology, Peking University, Hangzhou 311215, China
| | - Luxia Zhang
- National Institute of Health Data Science at Peking University, Beijing 100191, China; Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing 100034, China; Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing 100034, China; Advanced Institute of Information Technology, Peking University, Hangzhou 311215, China.
| |
Collapse
|
6
|
Goldfarb DS. Nephrologists should talk to their patients about climate change. Curr Opin Nephrol Hypertens 2024; 33:170-173. [PMID: 38240262 DOI: 10.1097/mnh.0000000000000956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Affiliation(s)
- David S Goldfarb
- Nephrology Division, NYU Grossman School of Medicine and Nephrology Section, NY Harbor VA Healthcare System, New York, New York, USA
| |
Collapse
|
7
|
López-Bueno JA, Díaz J, Padrón-Monedero A, Martín MAN, Linares C. Short-term impact of extreme temperatures, relative humidity and air pollution on emergency hospital admissions due to kidney disease and kidney-related conditions in the Greater Madrid area (Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166646. [PMID: 37652385 DOI: 10.1016/j.scitotenv.2023.166646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/18/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
While some studies report a possible association between heat waves and kidney disease and kidney-related conditions, there still is no consistent scientific consensus on the matter or on the role played by other variables, such as air pollution and relative humidity. Ecological retrospective time series study 01-01-2013 to 31-12-2018). Dependent variables: daily emergency hospitalisations due to kidney disease (KD), acute kidney injury (AKI), lithiasis (L), dysnatraemia (DY) and hypovolaemia (HPV). Independent variables: maximum and minimum daily temperature (Tmax, Tmin, °C), and daily relative humidity (RH, %). Other variables were also calculated, such as the daily temperature for risk of kidney disease (Theat, °C) and low daily hazardous relative humidity (HRH%). As variables of air pollution, we used the daily mean concentrations of PM10, PM2.5, NO2 and O3 in μg/m3. Based on these, we then calculated their daily excesses over World Health Organisation (WHO) guideline levels (hPM10, hPM2.5, hNO2 and hO3 respectively). Poisson family generalised linear models (GLMs) (link = log) were used to calculate relative risks (RRs), and attributable risks and attributable admissions. In the models, we controlled for the covariates included: seasonalities, trend, autoregressive component, day of the week, month and year. A statistically significant association was found between Theat and all the dependent variables analysed. The greatest AKI disease burden was attributable to Theat (2.2 % (1.7, 2.6) of attributable hospital admissions), followed by hNO2 (1.7 % (0.9, 3.4)) and HRH (0.8 (0.6, 1.1)). In the case of hypovolaemia and dysnatraemia, the greatest disease burden again corresponded to Theat, with 6.9 % (6.2, 7.6) and 5.7 (4.8, 6.6) of attributable hospital admissions respectively. Episodes of extreme heat exacerbate daily emergency hospital admissions due to kidney disease and kidney-related conditions; and attributable risks are likewise seen for low relative humidity and high ozone levels.
Collapse
Affiliation(s)
- J A López-Bueno
- Climate Change, Health and Urban Environment Reference Unit, National School of Public Health, Carlos III Institute of Health, Madrid, Spain
| | - J Díaz
- Climate Change, Health and Urban Environment Reference Unit, National School of Public Health, Carlos III Institute of Health, Madrid, Spain.
| | - A Padrón-Monedero
- National School of Public Health, Carlos III Institute of Health, Madrid, Spain
| | - M A Navas Martín
- Climate Change, Health and Urban Environment Reference Unit, National School of Public Health, Carlos III Institute of Health, Madrid, Spain
| | - C Linares
- Climate Change, Health and Urban Environment Reference Unit, National School of Public Health, Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
8
|
Chu L, Chen K, Di Q, Crowley S, Dubrow R. Associations between short-term exposure to PM 2.5, NO 2 and O 3 pollution and kidney-related conditions and the role of temperature-adjustment specification: A case-crossover study in New York state. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121629. [PMID: 37054868 DOI: 10.1016/j.envpol.2023.121629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/24/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Abstract
Epidemiologic evidence on the relationship between air pollution and kidney disease remains inconclusive. We evaluated associations between short-term exposure to PM2.5, NO2 and O3 and unplanned hospital visits for seven kidney-related conditions (acute kidney failure [AKF], urolithiasis, glomerular diseases [GD], renal tubulo-interstitial diseases, chronic kidney disease, dysnatremia, and volume depletion; n = 1,209,934) in New York State (2007-2016). We applied a case-crossover design with conditional logistic regression, controlling for temperature, dew point temperature, wind speed, and solar radiation. We used a three-pollutant model at lag 0-5 days of exposure as our main model. We also assessed the influence of model adjustment using different specifications of temperature by comparing seven temperature metrics (e.g., dry-bulb temperature, heat index) and five intraday temperature measures (e.g., daily mean, daily minimum, nighttime mean), according to model performance and association magnitudes between air pollutants and kidney-related conditions. In our main models, we adjusted for daytime mean outdoor wet-bulb globe temperature, which showed good model performance across all kidney-related conditions. We observed the odds ratios (ORs) for 5 μg/m3 increase in daily mean PM2.5 to be 1.013 (95% confidence interval [CI]: 1.001, 1.025) for AKF, 1.107 (95% CI: 1.018, 1.203) for GD, and 1.027 (95% CI: 1.015, 1.038) for volume depletion; and the OR for 5 ppb increase in daily 1-hour maximum NO2 to be 1.014 (95% CI; 1.008, 1.021) for AKF. We observed no associations with daily 8-hour maximum O3 exposure. Association estimates varied by adjustment for different intraday temperature measures: estimates adjusted for measures with poorer model performance resulted in the greatest deviation from estimates adjusted for daytime mean, especially for AKF and volume depletion. Our findings indicate that short-term exposure to PM2.5 and NO2 is a risk factor for specific kidney-related conditions and underscore the need for careful adjustment of temperature in air pollution epidemiologic studies.
Collapse
Affiliation(s)
- Lingzhi Chu
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06520-8034, USA; Yale Center on Climate Change and Health, Yale School of Public Health, 60 College Street, New Haven, CT, 06520-8034, USA.
| | - Kai Chen
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06520-8034, USA; Yale Center on Climate Change and Health, Yale School of Public Health, 60 College Street, New Haven, CT, 06520-8034, USA
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, 100084, China
| | - Susan Crowley
- Department of Medicine (Nephrology), Yale University School of Medicine, New Haven, CT, 06520, USA; Veterans Administration Health Care System of Connecticut, West Haven, CT, 06516, USA
| | - Robert Dubrow
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06520-8034, USA; Yale Center on Climate Change and Health, Yale School of Public Health, 60 College Street, New Haven, CT, 06520-8034, USA
| |
Collapse
|
9
|
Salvador C, Gullón P, Franco M, Vicedo-Cabrera AM. Heat-related first cardiovascular event incidence in the city of Madrid (Spain): Vulnerability assessment by demographic, socioeconomic, and health indicators. ENVIRONMENTAL RESEARCH 2023; 226:115698. [PMID: 36931379 DOI: 10.1016/j.envres.2023.115698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
While climate change and population ageing are expected to increase the exposure and vulnerability to extreme heat events, there is emerging evidence suggesting that social inequalities would additionally magnify the projected health impacts. However, limited evidence exists on how social determinants modify heat-related cardiovascular morbidity. This study aims to explore the association between heat and the incidence of first acute cardiovascular event (CVE) in adults in Madrid between 2015 and 2018, and to assess how social context and other individual characteristics modify the estimated association. We performed a case-crossover study using the individual information collected from electronic medical records of 6514 adults aged 40-75 living in Madrid city that suffered a first CVE during summer (June-September) between 2015 and 2018. We applied conditional logistic regression with a distributed lag non-linear model to analyse the heat-CVE association. Estimates were expressed as Odds Ratio (OR) for extreme heat (at 97.5th percentile of daily maximum temperature distribution), compared to the minimum risk temperature. We performed stratified analyses by specific diagnosis, sex, age (40-64, 65-75), country of origin, area-level deprivation, and presence of comorbidities. Overall, the risk of suffering CVE increased by 15.3% (OR: 1.153 [95%CI 1.010-1.317]) during extreme heat. Males were particularly more affected (1.248, [1.059-1.471]), vs 1.039 [0.810-1.331] in females), and non-Spanish population (1.869 [1.28-2.728]), vs 1.084 [0.940-1.250] in Spanish). Similar estimates were found by age groups. We observed a dose-response pattern across deprivation levels, with larger risks in populations with higher deprivation (1.228 [1.031-1.462]) and almost null association in the lowest deprivation group (1.062 [0.836-1.349]). No clear patterns of larger vulnerability were found by presence of comorbidity. We found that heat unequally increased the risk of suffering CVE in adults in Madrid, affecting mainly males and deprived populations. Local measures should pay special attention to vulnerable populations.
Collapse
Affiliation(s)
- Coral Salvador
- Centro de Investigación Mariña, Universidade de Vigo, Environmental Physics Laboratory (EPhysLab), Ourense, Spain; Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland; Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
| | - Pedro Gullón
- Universidad de Alcalá, Grupo de Investigación en Epidemiología y Salud Pública Facultad de Medicina y Ciencias de La Salud, Alcalá de Henares, Madrid, Spain; Centre for Urban Research, RMIT University, Melbourne, Australia
| | - Manuel Franco
- Universidad de Alcalá, Grupo de Investigación en Epidemiología y Salud Pública Facultad de Medicina y Ciencias de La Salud, Alcalá de Henares, Madrid, Spain; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Md, 21205-2217, USA.
| | - Ana M Vicedo-Cabrera
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland; Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
| |
Collapse
|