1
|
Akinboye AJ, Kim K, Roh H, Park J, Koo M, Lee JG. Development of an analytical method and risk characterization for benzotriazole ultraviolet stabilizers in various foods. Food Chem 2025; 482:144081. [PMID: 40209376 DOI: 10.1016/j.foodchem.2025.144081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/14/2025] [Accepted: 03/26/2025] [Indexed: 04/12/2025]
Abstract
This study developed and validated an analytical method for quantifying benzotriazole ultraviolet stabilizers (BUVSs) in various foods commonly consumed in Korea, addressing a critical gap in the monitoring of these emerging contaminants in food matrices. The validation results of this gas chromatography-mass spectrometry method demonstrated high specificity, sensitivity, and precision, with limits of detection as low as 0.008-0.040 ng/g across various food types. Among the tested foods, BUVS contamination was highest in fatty matrices, with beef, eel, and mackerel showing elevated levels of UV-326, UV-327, and UV-328. Exposure assessments using dietary consumption data from KNHANES revealed that the average dietary intake of BUVSs posed low health risks, as margins of exposures exceeded the safety threshold of 100. This study emphasizes the importance of ongoing monitoring of persistent organic pollutants in high-fat and other food products to reduce potential bioaccumulation risks, ensuring food safety and public health protection.
Collapse
Affiliation(s)
- Adebayo J Akinboye
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Nowon-gu, Seoul 01811, Republic of Korea
| | - Kiyun Kim
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Nowon-gu, Seoul 01811, Republic of Korea
| | - Hyesang Roh
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Nowon-gu, Seoul 01811, Republic of Korea
| | - Junhyeong Park
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Nowon-gu, Seoul 01811, Republic of Korea
| | - Minju Koo
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Nowon-gu, Seoul 01811, Republic of Korea
| | - Joon-Goo Lee
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Nowon-gu, Seoul 01811, Republic of Korea.
| |
Collapse
|
2
|
Xu L, Sheng D, He R, Meng Y, Tian L, Luo Y, Wang Y, Aizemaiti R, An Z, Wang Y. Developmental and neurobehavioral toxicity of benzotriazole ultraviolet stabilizer UV-360 on zebrafish larvae. PLoS One 2025; 20:e0324355. [PMID: 40408449 PMCID: PMC12101659 DOI: 10.1371/journal.pone.0324355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/23/2025] [Indexed: 05/25/2025] Open
Abstract
The presence of UV-360, a commonly utilized benzotriazole ultraviolet stabilizer, has been frequently detected in diverse environments and organisms. However, existing knowledge regarding the potential impacts of UV-360 exposure on organisms remains limited. To evaluate the influence of UV-360 exposure on zebrafish during their initial developmental phases. The study began with an assessment of the developmental impact of UV-360 on larval stages. Subsequently, the investigation focused on examining its effects on locomotor behaviors. Additionally, analyses were conducted on neuronal development, the expression of genes associated with neurotoxicity, and electrophysiological recordings. Finally, the research extended to an exploration of transcriptome-level gene expression profiles. Exposure to UV-360 exhibited significant adverse effects on larvae, evidenced by a marked reduction in hatching rate, decreased heart rate, and impaired development of total body length. Furthermore, UV-360 exposure induced notable behavioral alterations, malformations in spinal motor neuron axons, and a substantial decrease in both the area and volume of these axons. Additionally, the expression of neurotoxicity-related genes and electrophysiological spike activity were significantly altered by UV-360 exposure. Lastly, exposure to UV-360 triggered significant modifications in the transcriptomic profile of zebrafish larvae, with a considerable proportion of differentially expressed genes associated with signal transduction processes and the neuroactive ligand-receptor interaction pathway. The results of this study revealed a dose-dependent developmental and neurobehavioral toxicity associated with UV-360 exposure in zebrafish larvae. The observed modifications in neuroactive ligand-receptors and disruptions in neurotransmitter systems suggested a potential mechanism for the neurotoxicity induced by UV-360 exposure in zebrafish larvae. These findings contribute significantly to the understanding of the toxicological effects of UV-360 on zebrafish larvae and provide strong evidence to help clarify the mechanisms of UV-360-induced toxicity.
Collapse
Affiliation(s)
- Lihan Xu
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
- College of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Donglai Sheng
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Rong He
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
- College of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Yanlong Meng
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, China
| | - Lili Tian
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
- Pharmacy of Traditional Chinese Medicine, Zhejiang Hospital, Hangzhou, China
| | - Yuhao Luo
- College of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Yingjia Wang
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, College of Basic Medical, Hangzhou Normal University, Hangzhou, China
| | - Rusidanmu Aizemaiti
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhou An
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuying Wang
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
- College of Stomatology, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
3
|
Zhang B, Wang X, Meng F, Du S, Li H, Xia Y, Yao Y, Zhang P, Cui J, Cui Z. Metabolic variation and oxidative stress responses of clams (Ruditapes philippinarum) perturbed by ofloxacin exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135783. [PMID: 39276738 DOI: 10.1016/j.jhazmat.2024.135783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Ofloxacin (OFL), one of the most widely used fluoroquinolone antibiotics, has been frequently detected in marine environments. Nonetheless, researchers are yet to focus on the effects of OFL on the benthos. In the present study, marine clams (Ruditapes philippinarum) were exposed to OFL (0.5, 50, and 500 μg/L) for 14 d, followed by a 7 d depuration period. The accumulation of OFL, antioxidative defense responses, neurotoxicity, burrowing behavior, and metabolomic changes in clams were evaluated. The results indicated that OFL could accumulate in clams, albeit with a low bioaccumulation capacity. The intermediate (50 μg/L) and high (500 μg/L) levels of OFL induced significant antioxidative responses in the gills and digestive glands of clams, mainly manifesting as the inhibition of catalase activities and the induction of superoxide dismutase and glutathione S-transferase activities, which ultimately elevated the content of malondialdehyde, causing oxidative damage. Furthermore, the significant induction of acetylcholinesterase activities was observed, coinciding with a significant increase in burrowing rates of clams. The high level of OFL affected glycerophospholipid, arachidonic acid, steroid hormone biosynthesis, unsaturated fatty acids biosynthesis, and glycolysis/glycogenesis metabolism. In conclusion, this study has contributed to the understanding of the physiological and biochemical effects and molecular toxicity mechanisms of OFL to marine bivalves.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
| | - Xiaotong Wang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China; College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Fanping Meng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China.
| | - Shuhao Du
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China
| | - Haiping Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China
| | - Yufan Xia
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China
| | - Yu Yao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China
| | - Ping Zhang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China
| | - Jiali Cui
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China
| | - Zhengguo Cui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
| |
Collapse
|
4
|
Yang X, Li G, Xiu W. Transcriptome Responses of the Soil-Dwelling Collembolan ( Entomobrya proxima Folsom) to Fertilizer Type and Concentration. BIOLOGY 2024; 13:950. [PMID: 39596905 PMCID: PMC11592122 DOI: 10.3390/biology13110950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Soil collembolans have been regarded as the effective bioindicator of environmental changes. However, the physiological mechanisms through which collembolans respond to agricultural activities are largely unknown. Given the plasticity and sensitivity to environmental changes, even subtle responses can be quantified via transcriptomics. Therefore, the relevant in situ soil ecosystem and numerically dominant collembolan species Entomobrya proxima Folsom was selected to explore the dynamic responses to fertilizer type and concentration using transcriptome sequencing over three periods (6 h, 24 h and 10 d). The results showed that exposure duration caused significant alterations in gene expression profiles. At day 10 after exposure, gene expression patterns differed remarkably between the two fertilizer types and the control. Relative to organic fertilizer, the number of DEGs was increased by 114.31% under inorganic fertilizer, which declined with increasing inorganic fertilizer concentrations. Functional enrichment analysis was indicative of enhanced fatty acid and carbohydrate metabolism and reduced disease occurrence by organic fertilizer; however, an inhibited lipid synthesis process promoted susceptibility to infection, triggered oxidative stress, etc. by inorganic fertilizer. Overall, fertilizer addition changed the transcriptional pattern of the collembolan, potentially causing shifts in pathways related to metabolism, immunity, etc. In comparison to inorganic fertilizer, organic fertilizer impacted less on the gene expression patterns, implying that organic fertilizer application may be more beneficial to soil animal health.
Collapse
Affiliation(s)
| | - Gang Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China;
| | - Weiming Xiu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China;
| |
Collapse
|
5
|
Zhao Y, Bai L, Wang X, Huo M, Gao W, Jiang L, Jin J, Wang Y, Cao D. Exposure Assessment of Benzotriazole Ultraviolet Absorbers in Plastic Sports Field Dust and Indoor Dust: Are Plastic Sports Fields High Exposure Scenarios? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17419-17428. [PMID: 39292546 DOI: 10.1021/acs.est.4c03930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Benzotriazole ultraviolet absorbers (BUVs), as emerging contaminants of extensive use, especially in plastic sports fields, have aroused increasing concern due to their potential human and environmental impacts. However, BUV exposure from plastic sports field dust is still unknown. This study compared BUVs in plastic sports field dust and indoor dust for the first time. The order of the geometric mean concentrations of the total BUVs (ΣBUVs) in plastic sports field dust was indoor badminton courts (11023 ng g-1) > basketball courts (4777 ng g-1) > plastic tracks (3779 ng g-1) > synthetic turf (1920 ng g-1) > tennis courts (689 ng g-1). The geometric mean concentrations of ΣBUVs in indoor dust (1150 ng g-1) were lower than those in most plastic sports field dust. The dominant BUV was 2-hydroxy-4-(octyloxy)benzophenone (UV-531) in plastic sports field dust, while 2,2'-methylenebis[4-(1,1,3,3-tetramethylbutyl)-6-2H-benzotriazole-2-yl)phenol] (UV-360) was the dominant BUV in indoor dust. Releases from plastic track materials, sneaker soles, and friction between them might be important BUV sources in plastic track dust. The average estimated daily intakes of ΣBUVs from plastic sports field dust for general exercisers were lower than those from indoor dust, but those for exercisers with long time or professional athletes might be higher, potentially posing health risks.
Collapse
Affiliation(s)
- Yuqian Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Lu Bai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinying Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Mengmeng Huo
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Wei Gao
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Lu Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jie Jin
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dandan Cao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
6
|
Haridevamuthu B, Nayak SPRR, Murugan R, Sudhakaran G, Pachaiappan R, Manikandan K, Chitra V, Almutairi MH, Almutairi BO, Kathiravan MK, Arockiaraj J. Co-occurrence of azorubine and bisphenol A in beverages increases the risk of developmental toxicity: A study in zebrafish model. Food Chem Toxicol 2024; 191:114861. [PMID: 38992409 DOI: 10.1016/j.fct.2024.114861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/06/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
The prevalent use of Azorubine (E122) and the unintentional food additive, Bisphenol A (BPA), in ready-to-drink (RTD) beverages raises significant health concerns, especially for children. The combined impact on embryonic development must be explored despite individual safety assessments. Our investigation revealed that the combined exposure of E122 and BPA at beverage concentration significantly induces mortality and morphological deformities, including reduced growth, pericardial edema, and yolk sac edema. The co-exposure triggers oxidative stress, impairing antioxidant enzyme responses and resulting in lipid and cellular damage. Notably, apoptotic cells are observed in the neural tube and notochord of the co-exposed larvae. Critical genes related to the antioxidant response elements (nrf2, ho1, and nqo1), apoptosis activation (bcl2, bax, and p53), and pro/anti-inflammatory cytokines (nfkb, tnfa, il1b, tgfb, il10, and il12) displayed substantial changes, highlighting the molecular mechanisms. Behavior studies indicated hypo-locomotion with reduced thigmotaxis and touch response in co-exposed larvae, distinguishing it from individual exposures. These findings underscore the neurodevelopmental impacts of E122 and BPA at reported beverage concentrations, emphasizing the urgent need for comprehensive safety assessments, particularly for child consumption.
Collapse
Affiliation(s)
- B Haridevamuthu
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, 602105, Chennai, Tamil Nadu, India.
| | - S P Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Raghul Murugan
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, 600077, Chennai, Tamil Nadu, India
| | - Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, 602105, Chennai, Tamil Nadu, India
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - K Manikandan
- Department of Pharmaceutical Analysis, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Vellapandian Chitra
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - M K Kathiravan
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
7
|
Li M, Ivantsova E, Liang X, Martyniuk CJ. Neurotoxicity of Benzotriazole Ultraviolet Stabilizers in Teleost Fishes: A Review. TOXICS 2024; 12:125. [PMID: 38393220 PMCID: PMC10891865 DOI: 10.3390/toxics12020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Plastic additives that maintain integrity have been extensively studied for potential toxicity to fish; however, chemicals that protect polymers from (artificial) UV degradation are less studied. Benzotriazole UV stabilizers (BUVSs) are the most widely used UV stabilizers in plastics and are often used in sunscreens, cosmetics, paint, and food packaging. BUVSs can negatively affect aquatic wildlife when released into the environment via plastic degradation. In this review, we summarize the distribution of BUVSs globally and discuss neurotoxicological endpoints measured in fish to understand how these plastic additives can affect the neurological health of teleost fishes. BUVSs have been detected in aquatic environments at concentrations ranging from 0.05 up to 99,200 ng/L. Studies show that BUVSs affect behavioral responses and acetylcholinesterase activity, indicators of neurotoxicity. Our computational analysis using transcriptome data suggests certain pathways associated with neurodegeneration are responsive to exposure to BUVSs, like "Complement Activation in Alzheimer's Disease". Based on our review, we identify some research needs for future investigations: (1) molecular studies in the central nervous system to define precise mechanisms of neurotoxicity; (2) a wider range of tests for assessing aberrant behaviors given that BUVSs can affect the activity of larval zebrafish; and (3) histopathology of the nervous system to accompany biochemical analyses. These data are expected to enhance understanding of the neurotoxicity potential of benzotriazoles and other plastic additives.
Collapse
Affiliation(s)
- Mengli Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (M.L.); (X.L.)
| | - Emma Ivantsova
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA;
| | - Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (M.L.); (X.L.)
| | - Christopher J. Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
8
|
Zheng Y, Liu C, Chen J, Tang J, Luo J, Zou D, Tang Z, He J, Bai J. Integrated transcriptomic and biochemical characterization of the mechanisms governing stress responses in soil-dwelling invertebrate (Folsomia candida) upon exposure to dibutyl phthalate. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132644. [PMID: 37820532 DOI: 10.1016/j.jhazmat.2023.132644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Dibutyl phthalate (DBP) is one of the most commonly utilized plasticizers and a frequently detected phthalic acid ester (PAE) compound in soil samples. However, the toxicological effects of DBP on soil-dwelling organisms remain poorly understood. This study employed a multi-biomarker approach to investigate the impact of DBP exposure on Folsomia candida's survival, reproduction, enzyme activity levels, and transcriptional profiles. Analyses of antioxidant biomarkers, including catalase (CAT) and glutathione S-transferase (GST), as well as detoxifying enzymes such as acetylcholinesterase (AChE), Cytochrome P450 (CYP450), and lipid peroxidation (LPO), revealed significant increases in CAT activity, GST levels, and CYP450 expression following treatment with various doses of DBP for 2, 4, 7, or 14 days. Additionally, LPO induction was observed along with significant AChE inhibition. In total, 3175 differentially expressed genes (DEGs) were identified following DBP treatment that were enriched in six Gene Ontology (GO) terms and 144 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including 85 upregulated and 59 downregulated primarily associated with lipid metabolism, signal transduction, DNA repair, and cell growth and death. Overall these results provide foundational insights for further research into the molecular mechanisms underlying responses of soil invertebrates to DBP exposure.
Collapse
Affiliation(s)
- Yu Zheng
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China; Hunan Provincial Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China.
| | - Can Liu
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Jiayi Chen
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Jianquan Tang
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Jiali Luo
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Di Zou
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Zhen Tang
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Jiali He
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Jing Bai
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China.
| |
Collapse
|
9
|
Ren C, Yan R, Yuan Z, Yin L, Li H, Ding J, Wu T, Chen R. Maternal exposure to sunlight-irradiated graphene oxide induces neurodegeneration-like symptoms in zebrafish offspring through intergenerational translocation and genomic DNA methylation alterations. ENVIRONMENT INTERNATIONAL 2023; 179:108188. [PMID: 37690221 DOI: 10.1016/j.envint.2023.108188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/20/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
The physiochemical properties of graphene oxide may be affected by sunlight irradiation. However, the underlying mechanisms that alter the properties and subsequent intergenerational effects are not sufficiently investigate. Epigenetics is an early sensitive marker for the intergenerational effects of nanomaterial exposure due to the epigenetic memory. In this study, we investigate changes in the physicochemical properties and the intergenerational effects of maternal exposure to simulated sunlight-irradiated polyethyleneimine-functionalized graphene oxide (SL-PEI-GO). Results show that the physicochemical properties of polyethyleneimine-functionalized graphene oxide (PEI-GO) can be altered significantly by the oxidation of carbon atoms with unpaired electrons present in the defects and on the edges of PEI-GO by sunlight. First, the positive charges, sharp edges, defects and disordered structures of SL-PEI-GO make it translocate from maternal zebrafish to offspring, thus catalyzing the production of reactive oxygen species and damaging mitochondria directly. In addition, changes in DNA methylation reduce the expression of protocadherin1a, protocadherin19 and cadherin4, thus destroying cell membrane integrity, cell adhesion and Ca2+ binding. The alteration of DNA methylation induced by maternal exposure activates the Ca2+-CaMKK-brsk2a pathway, which catalyzes the phosphorylation of Tau and eventually results in the appearance of neurodegeneration-like symptoms, including the loss of neurons and neurobehavioral disorders. This study demonstrates that maternal exposure to SL-PEI-GO induces clear neurodegeneration-like symptoms in offspring through both the intergenerational translocation of nanomaterials and differential DNA methylation. These findings may provide new insights into the health risks of nanomaterials altered by nature conditions.
Collapse
Affiliation(s)
- Chaoxiu Ren
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ruyu Yan
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ziyi Yuan
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Lijia Yin
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Hongji Li
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jing Ding
- Tianjin Environmental Meteorological Center, Tianjin 300074, China
| | - Tao Wu
- Beijing Key Laboratory of Enze Biomass Fine Chemicals, College of New Materials and Chemical Engineering, Beijing institute of Petrochemical Technology, Beijing 102617, China.
| | - Rui Chen
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary chemistry, School of Public Health, Capital Medical University, Beijing 100069, China.
| |
Collapse
|