1
|
Zhang H, Nie Y, Zhao S, Wu L, Xi X, Xu L, Fang Y, Long X, Liu X. Distribution characteristics and transport pathways of soil microplastics in coral reef islands with different developmental stages and human activities. MARINE POLLUTION BULLETIN 2025; 215:117848. [PMID: 40138955 DOI: 10.1016/j.marpolbul.2025.117848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Microplastics have attracted substantial attention on remote coral sand islands owing to their delicate ecosystems. However, the distribution, transport pathways, and control mechanisms of soil microplastics on these islands are yet to be elucidated. The coral reef islands of China's Xisha Archipelago in the South China Sea are at varying stages of development and experience differing levels of human activity, rendering them an ideal location to investigate the environmental characteristics of microplastics. This study conducted a comparative analysis of the distribution characteristics of microplastics in surface soils and beach sands, which were collected from coral cays and islands. We further analyzed the potential impacts of plant cover, geomorphology, soil environmental factors and human activities on accumulation and transport of microplastics. The results show that their abundance varies from 1068 to 1616 particles/kg on the different reef islands. Total organic carbon and dissolved organic carbon in the soils exert a significant influence on the accumulation of microplastics. The abundance of microplastics in the exposed areas showed an increasing trend with the degree of island development, and the human activities have a significant impact on the distribution of microplastics across the islands. Analysis of the microplastic abundance at different locations of the atoll reveals that ocean currents and monsoons are the primary drivers of microplastic accumulation on the coral reef islands. This study provides a scientific basis for the management of microplastic pollution and environmental conservation on remote islands.
Collapse
Affiliation(s)
- Haiyang Zhang
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Lithospheric and Environmental Coevolution, University of Science and Technology of China, Hefei 230026, China
| | - Yaguang Nie
- Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei 230601, China
| | - Sanping Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Libin Wu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xianglong Xi
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Lithospheric and Environmental Coevolution, University of Science and Technology of China, Hefei 230026, China
| | - Liqiang Xu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Youfei Fang
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Lithospheric and Environmental Coevolution, University of Science and Technology of China, Hefei 230026, China
| | - Xuanqi Long
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Lithospheric and Environmental Coevolution, University of Science and Technology of China, Hefei 230026, China
| | - Xiaodong Liu
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Lithospheric and Environmental Coevolution, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
2
|
Suljević D, Karlsson P, Fočak M, Brulić MM, Sulejmanović J, Šehović E, Särndahl E, Engwall M, Alijagic A. Microplastics and nanoplastics co-exposure modulates chromium bioaccumulation and physiological responses in rats. ENVIRONMENT INTERNATIONAL 2025; 198:109421. [PMID: 40168788 DOI: 10.1016/j.envint.2025.109421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/21/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025]
Abstract
The environmental fragmentation of plastics generates a mixture of plastic particles of various sizes, which frequently co-occur with other mobile and persistent environmental pollutants. Despite the prevalence of such scenarios, the interaction between micro- and nanoplastics (MNPs) and their combined effects with environmental pollutants, such as highly toxic hexavalent chromium (Cr(VI)), remain almost entirely unexplored in mammalian species. This study demonstrated that nanoplastic and microplastic particles co-aggregate and together influence Cr bioaccumulation patterns and related physiological alterations in rats. Following a four-week repeated intragastric exposure of Wistar rats to MNPs and Cr(VI), either alone or in combination, MNPs significantly enhanced Cr bioaccumulation in the liver, heart, brain, and skin. Under co-exposure conditions, Cr(VI) was the primary driver of cellular effects observed in the blood, including shifts in immune cell subpopulations (e.g., neutrophils, lymphocytes) and alterations in red blood cell indices, while serum biochemistry reflected limited physiological stress. MNPs per se decreased creatine kinase activity and increased cholesterol levels. In summary, polystyrene MNPs increase Cr(VI) distribution and bioavailability, but co-exposure does not uniformly exacerbate toxicity. Instead, their interaction may selectively alter physiological responses, emphasizing the need for a deeper understanding of their combined effects and potential health risks.
Collapse
Affiliation(s)
- Damir Suljević
- Department of Biology, Faculty of Science, University of Sarajevo 71 000 Sarajevo, Bosnia and Herzegovina
| | - Patrik Karlsson
- Department of Mechanical Engineering, Örebro University, Örebro SE-701 82, Sweden
| | - Muhamed Fočak
- Department of Biology, Faculty of Science, University of Sarajevo 71 000 Sarajevo, Bosnia and Herzegovina
| | - Maja Mitrašinović Brulić
- Department of Biology, Faculty of Science, University of Sarajevo 71 000 Sarajevo, Bosnia and Herzegovina
| | - Jasmina Sulejmanović
- Department of Chemistry, Faculty of Science, University of Sarajevo 71 000 Sarajevo, Bosnia and Herzegovina
| | - Elma Šehović
- Department of Chemistry, Faculty of Science, University of Sarajevo 71 000 Sarajevo, Bosnia and Herzegovina
| | - Eva Särndahl
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, SE-701 82 Örebro, Sweden; Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
| | - Andi Alijagic
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, SE-701 82 Örebro, Sweden; Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden; Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden.
| |
Collapse
|
3
|
Shankar VS, De K, Jacob S, Satyakeerthy TR. Unveiling the risk of marine litter and derelict fishing gear in remote coral reefs of the Andaman and Nicobar Islands, North Indian Ocean. MARINE POLLUTION BULLETIN 2025; 212:117591. [PMID: 39847968 DOI: 10.1016/j.marpolbul.2025.117591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
An increasing amount of plastic litter and derelict fishing gear in the global oceans poses significant threats to corals and reef-associated marine biota. In this context, an underwater marine litter survey was conducted along the fringing coral reefs in the Andaman and Nicobar Islands- a remote archipelago in the Bay of Bengal, Northern Indian Ocean. The result revealed entanglement and smothering of coral colonies by plastic and derelict fishing gear. The survey recorded an average litter density of 0.42 ± 0.08 items/m2 (range: 0.23 ± 0.02 to 0.71 ± 0.09) and a mean mass of 138.61 ± 42.15 g/m2 (range: 70.17 ± 7.74 to 303.4 ± 2.55). Plastic was the most dominant litter (60.82 %) recorded in the reef environment. Derelict fishing gear made of plastic comprised 33.65 % of the total litter. Plastic Abundance Index (PAI), Hazardous Item Index (HII), and Clean Environment Index (CEI) were used to assess the ecological impact of marine litter. These indices highlighted the significant risks posed by marine litter to the coral reef environment. The finding helps to strengthen the assessment of marine litter in remote islands and underscores the urgent need for improved waste management, stricter regulations on the disposal of fishing gear, and effective removal of derelict fishing gear from the coral reef environments. Present study offers actionable insights for policymakers and stakeholders to prioritize interventions for managing marine litter to safeguard vulnerable coral reef systems.
Collapse
Affiliation(s)
- Venkatesan Shiva Shankar
- Faculty of Environmental Science, Mahatma Gandhi Government College, Middle & North Andaman, Andaman and Nicobar Islands 744203, India.
| | - Kalyan De
- Biological Oceanography Division, CSIR- National Institute of Oceanography, Dona Paula, Goa 403 004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Sunil Jacob
- IGNOU Regional Centre, Port Blair, Andaman and Nicobar Islands 744 103, India
| | | |
Collapse
|
4
|
Zoveidadianpour Z, Alava JJ, Drever MC, Schuerholz G, Pierzchalski C, Douglas T, Heath WA, Juurlink B, Bendell L. Microplastic distribution and composition in mudflat sediments and varnish clams (Nuttallia obscurata) at two estuaries of British Columbia, Canada: An assessment of potential anthropogenic sources. MARINE POLLUTION BULLETIN 2025; 211:117367. [PMID: 39626500 DOI: 10.1016/j.marpolbul.2024.117367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 02/13/2025]
Abstract
Widespread microplastic contamination affects the marine-coastal ecosystems in British Columbia, Canada. To understand the characteristics and spatial distribution of of microplastics (MPs), we compared the MPs in sediments (n = 159) and Varnish clams (Nuttallia obscurata; n = 160) collected from two estuarine ecosystems (Cowichan and K'ómoks) experiencing different anthropogenic impacts; primarily resource extraction (i.e., logging) at Cowichan and urban development at K'omoks. Our objective wasto determine the MP abundance levels in sediments and clams and infer possible sources of MPs at the two estuaries. Microplastic polymer type was confirmed through FTIR spectrometry. The average abundance of MPs in sediments were 14.37 ± 11.57 particles/kg in the Cowichan Estuary and 30.96 ± 14.58 particles/kg in the K'ómoks Estuary. Varnish clam samples contained average abundance of 3.62 ± 2.58 particles/g and 2.24 ± 1.96 particles/g in Cowichan and K'ómoks estuaries, respectively. The Cowichan Estuary's marine terminal and K'ómoks Marina were found to be hotspots for MPs, likely due to a combination of industrial and local sources. Fibers were the most common type of MPs found in both sediment (53.34 %) and clam samples (53.5 %) from Cowichan, as well as in clam samples in% K'ómoks, indicating a potential link to textile sources contributing to the widespread presence of MPs in the marine environment. There was no clear signal based on the primary use of the estuary. Polyethylene was the predominant polymer type of MPs found in sediment and clam samples at Cowichan, whereas Polyester was most common at K'ómoks. Our study revealed the ubiquitous nature of these emerging pollutants in the sensitive estuarine environments of BC, with implications for plastic waste management and the reduction of plastic pollution at the regional level.
Collapse
Affiliation(s)
- Zeinab Zoveidadianpour
- Ecotoxicology Research Group, Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby, British Columbia V5A 1S6, Canada; Ocean Pollution Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, AERL 2202 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada.
| | - Juan José Alava
- Ocean Pollution Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, AERL 2202 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Mark C Drever
- Environment and Climate Change Canada, Pacific Wildlife Research Centre, 5421 Robertson Rd, Delta, British Columbia V4K 3N2, Canada
| | - Goetz Schuerholz
- Cowichan Estuary Restoration and Conservation Association, 1069 Khenipsen Road, Duncan, British Columbia V9L 5L3, Canada
| | - Caitlin Pierzchalski
- Project Watershed Society, 2356A Rosewall Crescent in Tin Town, Courtenay, BC, V9N 8R9, Canada
| | - Tristan Douglas
- Cowichan Estuary Restoration and Conservation Association, 1069 Khenipsen Road, Duncan, British Columbia V9L 5L3, Canada; Faculty of Forestry, 2424 Main Mall, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - William A Heath
- Cowichan Estuary Restoration and Conservation Association, 1069 Khenipsen Road, Duncan, British Columbia V9L 5L3, Canada
| | - Bernhard Juurlink
- Cowichan Estuary Restoration and Conservation Association, 1069 Khenipsen Road, Duncan, British Columbia V9L 5L3, Canada
| | - Leah Bendell
- Ecotoxicology Research Group, Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
5
|
Gao X, Chen J, Yu K, Bu Y, Wang L, Yu X. Exposure to polypropylene microplastics induces the upregulation of protein digestion-associated genes and microbiome reorganization in the octocoral Junceella squamata. MARINE POLLUTION BULLETIN 2025; 210:117331. [PMID: 39602985 DOI: 10.1016/j.marpolbul.2024.117331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/14/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
Microplastics, a new type of pollutants found in coral reefs, have attracted increasing attention. However, most of the current research focuses on the scleractinian corals and few reports on Octocorallia. To reveal the impact of microplastic exposure on Octocorallia, we analyzed the transcriptional response of the coral hosts Junceella squamata along with changes to the diversity and community structure of its symbiotic bacteria following exposure to polystyrene microplastics. These results suggest that the microplastics have adverse impacts on nutrient metabolism and absorption in J. squamata. The symbiotic bacteria of J. squamata exhibited a clear response after exposure to microplastics, which may also reflect an adaptation mechanism of corals, and help to maintain the physiological function of coral symbiotic function under the exposure of microplastics. This study has revealed the impact of microplastic exposure on J. squamata, providing new insights for coral protection against the background of increased microplastics pollution.
Collapse
Affiliation(s)
- Xu Gao
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Junling Chen
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China.
| | - Yinyao Bu
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Limei Wang
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xiaopeng Yu
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, China.
| |
Collapse
|
6
|
Ilechukwu I, Das RR, Lalas JAA, Jamodiong EA, Abram A, De Palmas S, Reimer JD. Assessment of marine litter interactions with urban coral reefs in Okinawa, Japan. MARINE POLLUTION BULLETIN 2024; 209:117248. [PMID: 39531831 DOI: 10.1016/j.marpolbul.2024.117248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/21/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
This study assessed different reef zones (lagoon, reef crest, reef slope) in three urban locations around Okinawa Island (Mizugama, Ginowan, Sunabe) and two marine protected areas around nearby Aka Island (Hizushi, Sakubaru) for marine litter pollution and litter interactions with reef organisms. A total reef area of 2250 m2 was surveyed by scuba diving, and 46 marine litter items were recorded. Litter density ranged from 0.01 to 0.05 items/m2, and plastics (76.09 %) and metals (15.22 %) were the most common litter types. The substrates for litter items were live corals (52.17 %), followed by dead corals and algae (26.09 %), sand (13.04 %), and rocks (8.70 %). Litter items on live corals were entangled exclusively with branching Acropora spp. (95.83 %) and Pocillopora spp. (4.17 %). This study highlights the need to protect coral reef ecosystems from the impacts of urbanisation in order to conserve and sustain their ecological and economic benefits.
Collapse
Affiliation(s)
- Ifenna Ilechukwu
- Molecular Invertebrate Systematics and Ecology (MISE) Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa 903-0123, Japan.
| | - Rocktim Ramen Das
- Molecular Invertebrate Systematics and Ecology (MISE) Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa 903-0123, Japan
| | - Jue Alef Avanzado Lalas
- Molecular Invertebrate Systematics and Ecology (MISE) Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa 903-0123, Japan
| | - Emmeline A Jamodiong
- Molecular Invertebrate Systematics and Ecology (MISE) Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa 903-0123, Japan
| | - Anže Abram
- Molecular Invertebrate Systematics and Ecology (MISE) Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa 903-0123, Japan; Department for Nanostructured Materials, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Stéphane De Palmas
- Molecular Invertebrate Systematics and Ecology (MISE) Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa 903-0123, Japan
| | - James Davis Reimer
- Molecular Invertebrate Systematics and Ecology (MISE) Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa 903-0123, Japan; Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa 903-0123, Japan
| |
Collapse
|
7
|
Lin J, Zhao YM, Zhan ZG, Zheng JY, Zhou QZ, Peng J, Li Y, Xiao X, Wang JH. Microplastics in remote coral reef environments of the Xisha Islands in the South China Sea: Source, accumulation and potential risk. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133872. [PMID: 38447364 DOI: 10.1016/j.jhazmat.2024.133872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Microplastics (MPs) are of great concern to coral health, particularly enhanced biotoxicity of small microplastics (< 100 µm) (SMPs). However, their fate and harm to remote coral reef ecosystems remain poorly elucidated. This work systematically investigated the distributions and features of MPs and SMPs in sediments from 13 islands/reefs of the Xisha Islands, the South China Sea for comprehensively deciphering their accumulation, sources and risk to coral reef ecosystems. The results show that both MPs (average, 682 items/kg) and SMPs (average, 375 items/kg) exhibit heterogeneous distributions, with accumulation within atolls and dispersion across fringing islands, which controlled by human activities and hydrodynamic conditions. Cluster analysis for the first time reveals a pronounced difference in their compositions between the southern and northern Xisha Islands and resultant distinct sources, i.e., MPs in the north part were leaked mainly from local domestic sewage and fishing waste, while in the south part were probably derived from industrial effluents from adjacent countries. Our ecological risk assessment suggests that the ecosystem within the Yongle Atoll is exposed to a high-risk of MPs pollution. The novel results and proposed framework facilitate to effectively manage and control MPs and accordingly preserve a fragile biosphere in remote coral reefs.
Collapse
Affiliation(s)
- Jia Lin
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Yuan-Ming Zhao
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Zhi-Geng Zhan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Jia-Yuan Zheng
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Qian-Zhi Zhou
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Juan Peng
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Yan Li
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Xi Xiao
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, Guangzhou 510075, China.
| | - Jiang-Hai Wang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China.
| |
Collapse
|
8
|
Panizzolo M, Martins VH, Ghelli F, Squillacioti G, Bellisario V, Garzaro G, Bosio D, Colombi N, Bono R, Bergamaschi E. Biomarkers of oxidative stress, inflammation, and genotoxicity to assess exposure to micro- and nanoplastics. A literature review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115645. [PMID: 37922781 DOI: 10.1016/j.ecoenv.2023.115645] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
The increased awareness about possible health effects arising from micro- and nanoplastics (MNPs) pollution is driving a huge amount of studies. Many international efforts are in place to better understand and characterize the hazard of MNPs present in the environment. The literature search was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology in two different databases (PubMed and Embase). The selection of articles was carried out blind, screening titles and abstracts according to inclusion and exclusion criteria. In general, these studies rely on the methodology already in use for assessing hazard from nanomaterials and particles of concern. However, only a limited number of studies have so far directly measured human exposure to MNPs and examined the relationship between such exposure and its impact on human health. This review aims to provide an overview of the current state of research on biomarkers of oxidative stress, inflammation, and genotoxicity that have been explored in relation to MNPs exposure, using human, cellular, animal, and plant models. Both in-vitro and in-vivo models suggest an increased level of oxidative stress and inflammation as the main mechanism of action (MOA) leading to adverse effects such as chronic inflammation, immunotoxicity and genotoxicity. With the identification of such biological endpoints, representing critical key initiating events (KIEs) towards adaptive or adverse outcomes, it is possible to identify a panel of surrogate biomarkers to be applied and validated especially in occupational settings, where higher levels of exposure may occur.
Collapse
Affiliation(s)
- Marco Panizzolo
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Vitor Hugo Martins
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Federica Ghelli
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Giulia Squillacioti
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Valeria Bellisario
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Giacomo Garzaro
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Davide Bosio
- Unit of Occupational Medicine, A.O.U Città della Salute e della Scienza di Torino, Turin, Italy
| | - Nicoletta Colombi
- Federated Library of Medicine "F. Rossi", University of Turin, 10126 Turin, Italy
| | - Roberto Bono
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy.
| | - Enrico Bergamaschi
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| |
Collapse
|
9
|
Rani-Borges B, Gomes E, Maricato G, Lins LHFDC, Moraes BRD, Lima GV, Côrtes LGF, Tavares M, Pereira PHC, Ando RA, Queiroz LG. Unveiling the hidden threat of microplastics to coral reefs in remote South Atlantic islands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165401. [PMID: 37451469 DOI: 10.1016/j.scitotenv.2023.165401] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/15/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
The widespread presence of marine microplastics (< 5 mm) is a significant concern, as it may harm marine biodiversity and ocean ecosystems. Corals' capacity to ingest microplastics has emerged as a significant threat to reef ecosystems, owing to the detrimental physiological and ecological effects it can trigger. The extent of the impact of microplastics on Brazilian corals remains unclear and this study aimed to investigate its distribution and characteristics in four coral species: Favia gravida, Mussismilia hispida, Montastrea cavernosa, and Siderastrea stellata, found in the Trindade and Martim Vaz Islands - the most isolated archipelago of Brazil, located about 1200 km (680 miles) east of the coast. This study aims to reveal the extent of microplastic distribution in the coral reef environment, assess the amount of microplastics in different coral species, and compare each species' capacity to adhere and accumulate microplastics. A high concentration of ingested and adhered microplastics was detected in all coral species evaluated in the present study. No significant differences were observed in the sampling points which indicates that although the sampling points are located at different distances from the coast, the microplastic pollution is equally distributed in the region. Polyethylene (PE), polyvinyl chloride (PVC), polypropylene (PP), poly(methyl methacrylate) (PMMA), Rayon, and Nylon particles were detected, with a predominance of PE (45.5 %). No significant differences in microplastic concentration were detected among the various species and locations studied. Our research presents findings that demonstrate the extensive occurrence of microplastic contamination in coral colonies located on remote islands.
Collapse
Affiliation(s)
- Bárbara Rani-Borges
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, USP, Prof. Lineu Prestes Ave. 748, 05508-000 São Paulo, Brazil.
| | - Erandy Gomes
- Department of Oceanography, Federal University of Pernambuco, UFPE, Prof. Moraes Rego St. 1235, 50740-540 Recife, Brazil; Reef Conservation Project, PCR, Vigário Tenório St. 194, 50030-230, Pernambuco, Brazil; Brazilian Institute of Citizenship and Social Action, IBRAS, Amapá St. 709, 69305-520, Roraima, Brazil; Estácio University Center, Salete St. 290, 02016-001 São Paulo, Brazil
| | - Guilherme Maricato
- Ecology and Evolution Graduate Program, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, UERJ, 28 de Setembro Blvd 87, 20551-030 Rio de Janeiro, Brazil
| | | | - Beatriz Rocha de Moraes
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, USP, Prof. Lineu Prestes Ave. 748, 05508-000 São Paulo, Brazil
| | - Gislaine Vanessa Lima
- Reef Conservation Project, PCR, Vigário Tenório St. 194, 50030-230, Pernambuco, Brazil; Federal University of São Paulo, UNIFESP, Silva Jardim St. 136, 11015-020 Santos, Brazil
| | - Luís Guilherme França Côrtes
- Department of Oceanography, Federal University of Pernambuco, UFPE, Prof. Moraes Rego St. 1235, 50740-540 Recife, Brazil; Reef Conservation Project, PCR, Vigário Tenório St. 194, 50030-230, Pernambuco, Brazil
| | - Marcos Tavares
- Museum of Zoology, University of São Paulo, Nazaré Ave. 481, 04263-000 São Paulo, Brazil
| | | | - Rômulo Augusto Ando
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, USP, Prof. Lineu Prestes Ave. 748, 05508-000 São Paulo, Brazil
| | - Lucas Gonçalves Queiroz
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, USP, Prof. Lineu Prestes Ave. 748, 05508-000 São Paulo, Brazil.
| |
Collapse
|