1
|
Niu Z, Xiao S, Zhou G, Sun K, Lin H, Fang G, Si Y. Unlocking the roles of wheat root exudates in regulating laccase-catalyzed estrogen humification. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135637. [PMID: 39208633 DOI: 10.1016/j.jhazmat.2024.135637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/27/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
While laccase humification has an efficient capacity to convert estrogenic pollutants, the roles of wheat (Triticum aestivum L.) root exudates (W-REs) in the enzymatic humification remain poorly understood. Herein, we presented the research into the effects of W-REs on 17β-estradiol (E2) and bisphenol A (BPA) conversion in vitro laccase humification. W-REs inhibited E2 removal but promoted BPA conversion in the enzymatic humification, and the first-order kinetic constants for E2 and BPA were 0.27-0.69 and 0.28-0.55 h-1, respectively. Specialized small phenols and amino acids in W-REs were susceptible to laccase humification, resulting in increased copolymerization of estrogen and W-REs. In greenhouse hydroponics, the accumulated amounts of E2 (BPA) in the roots and shoots were estimated to be 0.87 (2.15) and 0.43 (0.51) nmol·plant-1 at day 3, respectively. By forming low- and eventually non-toxic copolymeric precipitates between estrogen and W-REs, laccase humification lowered the phytotoxicity and bioavailability of estrogen in the rhizosphere solution, consequently relieving its uptake, accumulation, and distribution in the wheat cells. This work sheds light on the roles of W-REs in regulating laccase-catalyzed estrogen humification, and gives an insight into the path of addressing organic contamination in the rhizosphere and ensuring food safety.
Collapse
Affiliation(s)
- Ziyan Niu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Shenghua Xiao
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Guoning Zhou
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Hui Lin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
2
|
Pan B, Zhu X, Huang L, Cai K, Li YW, Cai QY, Feng NX, Mo CH. Root-zone regulation and longitudinal translocation cause intervarietal differences for phthalates accumulation in vegetables. CHEMOSPHERE 2024; 359:142322. [PMID: 38761823 DOI: 10.1016/j.chemosphere.2024.142322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Selecting and cultivating low-accumulating crop varieties (LACVs) is the most effective strategy for the safe utilization of di-(2-ethylhexyl) phthalate (DEHP)-contaminated soils, promoting cleaner agricultural production. However, the adsorption-absorption-translocation mechanisms of DEHP along the root-shoot axis remains a formidable challenge to be solved, especially for the research and application of LACV, which are rarely reported. Here, systematic analyses of the root surface ad/desorption, root apexes longitudinal allocation, uptake and translocation pathway of DEHP in LACV were investigated compared with those in a high-accumulating crop variety (HACV) in terms of the root-shoot axis. Results indicated that DEHP adsorption was enhanced in HACV by root properties, elemental composition and functional groups, but the desorption of DEHP was greater in LACV than HACV. The migration of DEHP across the root surface was controlled by the longitudinal partitioning process mediated by root tips, where more DEHP accumulated in the root cap and meristem of LACV due to greater cell proliferation. Furthermore, the longitudinal translocation of DEHP in LACV was reduced, as evidenced by an increased proportion of DEHP in the root apoplast. The symplastic uptake and xylem translocation of DEHP were suppressed more effectively in LACV than HACV, because DEHP translocation in LACV required more energy, binding sites and transpiration. These results revealed the multifaceted regulation of DEHP accumulation in different choysum (Brassica parachinensis L.) varieties and quantified the pivotal regulatory processes integral to LACV formation.
Collapse
Affiliation(s)
- Bogui Pan
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Xiaoqiong Zhu
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Li Huang
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Kunzheng Cai
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Tropical Agricultural Environment in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
| | - Yan-Wen Li
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Quan-Ying Cai
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Nai-Xian Feng
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Ce-Hui Mo
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
3
|
Sun K, Dai LZ, Chen MH, Si YB, Fang GD, Li SY, Yu HQ. Laccase-induced decontamination and humification mechanisms of estrogen in water-crop matrices. PNAS NEXUS 2024; 3:pgae118. [PMID: 38595803 PMCID: PMC11002785 DOI: 10.1093/pnasnexus/pgae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
Enzymatic humification plays a crucial biogeochemical role in eliminating steroidal estrogens and expanding organic carbon stocks. Estrogenic contaminants in agroecosystems can be taken up and acropetally translocated by crops, but the roles of laccase-triggered rhizospheric humification (L-TRH) in pollutant dissipation and plant uptake remain poorly understood. In this study, the laccase-induced decontamination and humification mechanisms of 17β-estradiol (E2) in water-crop media were investigated by performing greenhouse pot experiments with maize seedlings (Zea mays L.). The results demonstrated that L-TRH effectively dissipated E2 in the rhizosphere solution and achieved the kinetic constants of E2 dissipation at 10 and 50 μM by 8.05 and 2.75 times as much as the treatments without laccase addition, respectively. The copolymerization of E2 and root exudates (i.e. phenols and amino acids) consolidated by L-TRH produced a larger amount of humified precipitates with the richly functional carbon architectures. The growth parameters and photosynthetic pigment levels of maize seedlings were greatly impeded after a 120-h exposure to 50 μM E2, but L-TRH motivated the detoxication process and thus mitigated the phytotoxicity and bioavailability of E2. The tested E2 contents in the maize tissues initially increased sharply with the cultivation time but decreased steadily. Compared with the treatment without laccase addition, the uptake and accumulation of E2 in the maize tissues were obviously diminished by L-TRH. E2 oligomers such as dimer, trimer, and tetramer recognized in the rhizosphere solution were also detected in the root tissues but not in the shoots, demonstrating that the acropetal translocation of E2 oligomers was interrupted. These results highlight a promising strategy for decontaminating estrogenic pollutants, boosting rhizospheric humification, and realizing low-carbon emissions, which would be beneficial for agroenvironmental bioremediation and sustainability.
Collapse
Affiliation(s)
- Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ling-Zhi Dai
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Mei-Hua Chen
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - You-Bin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Guo-Dong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shun-Yao Li
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Zhang S, Li J, Li Y, Jiang L, Zhao Y, Jiang X, Zhang X, Shi W. Assimilation behaviors and metabolite formations of estrone sulfate sodium (E1-3S) and 17β-estradiol-3-O-sulfate sodium (E2-3S) in the wheat. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118666. [PMID: 37506444 DOI: 10.1016/j.jenvman.2023.118666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
The conjugated steroid estrogens (CSEs), including estrone sulfate sodium (E1-3 S) and 17β-estradiol-3-O-sulfate sodium (E2-3 S), exhibit distinct metabolic behaviors in the aqueous and soil environments. However, their assimilation behaviors and metabolite formations in plant bodies (shoots and roots) remain poorly understood. Therefore, this study used a modified plant hydroponic system to explore the efficiency with which wheat (Triticum acstivnm L.) assimilated the two estrogen conjugates, E1-3 S and E2-3 S. Results indicated the potential of wheat to absorb E1-3 S and E2-3 S, with their assimilation in the root being significantly higher (104-105 ng/g dw) than in the shoot (103-104 ng/g dw). E1-3 S de-sulfated and transformed to estrone (E1) at a rate of 4%-45% in the root's oxidative environment, whereas E2-3 S converted to E1-3 S at 210%-570%. However, the root-to-shoot transfer was impeded by a less potent metabolic activity within the shoot system. The co-exposure treatment revealed that E1 or 17β-estradiol (E2) affects the assimilation of E1-3 S and E2-3 S by wheat, with E1 inhibiting E1-3 S assimilation and E2 promoting E2-3 S assimilation in wheat bodies. Nonetheless, free-form steroid estrogens (FSEs), which typically have a significant hormone action, can oxidative-damage the wheat tissues, producing a progressive wilting of wheat leaf and so limiting the transpiration process. Co-exposure initially increased the assimilation amounts of E1-3 S (particularly in shoots) and E2-3 S (in both roots and shoots), but these values rapidly declined as exposure duration increased. The combined effects of E1-3 S and E2-3 S exposure also increased their assimilation. These findings suggest the need for further investigation into the cumulative impact of environmental estrogen contaminants. The findings of present study can potentially guide the development of strategies to prevent and manage steroid estrogen contamination in agricultural contexts.
Collapse
Affiliation(s)
- Shengwei Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Jing Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yanxia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Linshu Jiang
- Beijing University of Agriculture, Beijing, 102206, China.
| | - Yan Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xiaoman Jiang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xuelian Zhang
- Beijing Soil and Fertilizer Extension Service Station, Beijing, 100029, China
| | - Wenzhuo Shi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|