1
|
Ishmatov A. Age, gender, and race differences in nasal morphology: Linking air conditioning and filtration efficiency to disparities in air pollution health outcomes and COVID-19 mortality. CHEMOSPHERE 2025; 377:144358. [PMID: 40153988 DOI: 10.1016/j.chemosphere.2025.144358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/17/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
COVID-19 mortality disparities underscore the critical role of environmental factors, age, sex, and racial demographics. This study investigates how individual variations in nasal morphology - specifically its air conditioning (temperature and humidity regulation) and filtration functions - may influence respiratory health and contribute to differential COVID-19 outcomes. Analysis reveals significant differences in nasal structure and function across racial, sex, and age groups, demonstrating associations with disparities in respiratory vulnerability to environmental stressors such as air pollution, infectious aerosols, and climatic conditions. Specifically, wider nasal cavities (more common in certain populations), larger male nasal passages, and age-related changes like mucosal atrophy and increased endonasal volume impair air conditioning and filtration efficiency. These morphological variations influence the nose's protective capacity, which is critical for shielding the middle and lower airways from environmental exposures. Populations with inherently reduced nasal filtration and conditioning efficiency demonstrate higher vulnerability, aligning with U.S. mortality patterns for both COVID-19 and air pollution across demographic groups. This suggests a direct link between nasal anatomy and population-level health disparities. These findings provide novel insights into the role of nasal anatomy in mediating respiratory health disparities by modulating individual responses to environmental exposures, air pollution, and pathogens. They highlight the need to address critical gaps in understanding how airway characteristics influence susceptibility to environmental stressors and to develop targeted interventions aimed at reducing health disparities.
Collapse
Affiliation(s)
- Alexander Ishmatov
- Institute for Engineering and Environmental Safety, Togliatti State University, Belorusskaya St, 14, Togliatti, 445020, Russia.
| |
Collapse
|
2
|
Duan J, Ding R, Li M, Qi J, Yin P, Wang L, Sun Z, Hu Y, Zhou M. Subnational Evidence for the Attributable Burden of Respiratory Infections in China's Population under 20: Challenges from Particulate Matter Pollution. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:177-189. [PMID: 40012876 PMCID: PMC11851210 DOI: 10.1021/envhealth.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 01/03/2025]
Abstract
Respiratory infections and tuberculosis ranked as the second leading global causes of mortality in 2021. Following the methodology from the Global Burden of Disease Study (GBD) 2021, we aimed to estimate the attributable burden and risk factors of respiratory infections and tuberculosis among China's population under 20 from 1990 to 2021. In 2021, there were 652 million new cases and 12 699 deaths of respiratory infections and tuberculosis among people under 20 years old in China. We estimated 9054 (71.2%) deaths and 818 498 (54.6%) disability-adjusted life years (DALYs) from respiratory infections attributed to all evaluated risk factors. Mortality rates were the highest in Xizang, Xinjiang, and Qinghai in 2021, while they constantly decreased since 1990. Ambient particulate matter pollution was the second leading cause of death among males and first among females, accounting for nearly 1/5 of deaths from respiratory infections and tuberculosis in 2021. In 23 of 33 provinces, ambient particulate matter pollution was the first leading cause of death and DALY, while in Xizang and Gansu, it was not the major contributor to the burden. From 1990 to 2021, the burden from household air pollution declined remarkably in all 33 provinces except for Xizang and Gansu, while the population attributable fraction (PAF) of ambient particulate matter pollution continuously increased. The overall burden of respiratory infections and tuberculosis showed a declining trend, while it remained a fatal threat to infants in relatively less developed regions. The raised hazard of ambient particulate matter pollution underscored the necessity of the shift into the formulation of prevention and intervention strategies.
Collapse
Affiliation(s)
- Junchao Duan
- Department
of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ruiyang Ding
- Department
of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Menglong Li
- Department
of Child and Adolescent Health and Maternal Care, School of Public
Health, Capital Medical University, Beijing 100069, China
| | - Jinlei Qi
- National
Center for Chronic and Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Peng Yin
- National
Center for Chronic and Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Lijun Wang
- National
Center for Chronic and Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Zhiwei Sun
- Department
of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yifei Hu
- Department
of Child and Adolescent Health and Maternal Care, School of Public
Health, Capital Medical University, Beijing 100069, China
| | - Maigeng Zhou
- National
Center for Chronic and Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
3
|
Lin J, Sun W, Peng S, Hu Y, Zhang G, Song W, Jiang B, Liao Y, Pei C, Zhang J, Dai J, Wang X, Peng P, Bi X. Molecular characteristics of organic matters in PM 2.5 associated with upregulation of respiratory virus infection in vitro. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136583. [PMID: 39577291 DOI: 10.1016/j.jhazmat.2024.136583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
The extent to which organic matters (OM) in PM2.5 affect virus infections and the key organic molecules involved in this process remain unclear. Herein, this study utilized ultra-high resolution mass spectrometry coupled with in vitro experiments to identify the organic molecules associated with respiratory virus infection for the first time. Water-soluble organic matters (WSOM) and water-insoluble organic matters (WIOM) were separated from PM2.5 samples collected at the urban area of Guangzhou, China. Their molecular compositions were analyzed using Fourier transform ion cyclotron resonance mass spectrometry. Subsequently, in vitro experiments were conducted to explore the impact of WSOM and WIOM exposure on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudo-virus infection in A549 cells. Results revealed that WSOM and WIOM respectively promoted 1.7 to 2.1-fold and 1.9 to 3.5-fold upregulation of SARS-CoV-2 pseudo-virus infection in a concentration-dependent manner (at 25 to 100 μg mL-1) compared to the virus-only control group. Partial least squares model analysis indicated that the increased virus infection was likely related to phthalate ester and nitro-aromatic molecules in WSOM, as well as LipidC molecules with aliphatic and olefinic structures in WIOM. Interestingly, the molecules responsible for upregulating SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) expression and virus infection differed. Thus, it was concluded that ACE2 upregulation alone may not fully elucidate the mechanisms underlying increased susceptibility to virus infection. The findings highlight the critical importance of aromatic and lipid molecules found in OM in relation to respiratory virus infection.
Collapse
Affiliation(s)
- Juying Lin
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wei Sun
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510640, PR China
| | - Shuyi Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yaohao Hu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Guohua Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510640, PR China
| | - Wei Song
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510640, PR China
| | - Bin Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510640, PR China
| | - Yuhong Liao
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510640, PR China
| | - Chenglei Pei
- Guangzhou Sub-branch of Guangdong Ecological and Environmental Monitoring Center, Guangzhou 510006, China
| | - Jinpu Zhang
- Guangzhou Sub-branch of Guangdong Ecological and Environmental Monitoring Center, Guangzhou 510006, China
| | - Jianwei Dai
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 510436, PR China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510640, PR China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510640, PR China
| | - Xinhui Bi
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510640, PR China.
| |
Collapse
|
4
|
Marchetti S, Colombo A, Saibene M, Bragato C, La Torretta T, Rizzi C, Gualtieri M, Mantecca P. Shedding light on the cellular mechanisms involved in the combined adverse effects of fine particulate matter and SARS-CoV-2 on human lung cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175979. [PMID: 39233085 DOI: 10.1016/j.scitotenv.2024.175979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Airborne pathogens represent a topic of scientific relevance, especially considering the recent COVID-19 pandemic. Air pollution, and particulate matter (PM) in particular, has been proposed as a possible risk factor for the onset and spread of pathogen-driven respiratory diseases. Regarding SARS-CoV-2 infection, exposure to fine PM (PM2.5, particles with an aerodynamic diameter < 2.5 μm) has been associated with increased incidence of the COVID-19 disease. To provide useful insights into the mechanisms through which PM might be involved in infection, we exposed human lung cells (A549) to PM2.5 and SARS-CoV-2, to evaluate the toxicological properties and the molecular pathways activated when airborne particles are combined with viral particles. Winter PM2.5 was collected in a metropolitan urban area and its physico-chemical composition was analyzed. A549 cells were exposed to SARS-CoV-2 concomitantly or after pre-treatment with PM2.5. Inflammation, oxidative stress and xenobiotic metabolism were the main pathways investigated. Results showed that after 72 h of exposure PM2.5 significantly increased the expression of the angiotensin-converting enzyme 2 (ACE2) receptor, which is one of the keys used by the virus to infect host cells. We also analyzed the endosomal route in the process of internalization, by studying the expression of RAB5 and RAB7. The results show that in cells pre-activated with PM and then exposed to SARS-CoV-2, RAB5 expression is significantly increased. The activation of the inflammatory process was then studied. Our findings show an increase of pro-inflammatory markers (NF-kB and IL-8) in cells pre-activated with PM for 72 h and subsequently exposed to the virus for a further 24 h, further demonstrating that the interaction between PM and SARS-CoV-2 determines the severity of the inflammatory responses in lung epithelial cells. In conclusion, the study provides mechanistic biological evidence of PM contribution to the onset and progression of viral respiratory diseases in exposed populations.
Collapse
Affiliation(s)
- Sara Marchetti
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
| | - Anita Colombo
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Melissa Saibene
- Platform of Microscopy, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Cinzia Bragato
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Teresa La Torretta
- Laboratory of Atmospheric Pollution, National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, 40129 Bologna, Italy
| | - Cristiana Rizzi
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Piazza della Scienza, 1, 20126 Milano, Italy
| | - Maurizio Gualtieri
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Paride Mantecca
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| |
Collapse
|
5
|
Kyrychenko O. Health benefits of air pollution reduction: Evidence from economic slowdown in India. ECONOMICS AND HUMAN BIOLOGY 2024; 55:101437. [PMID: 39454267 DOI: 10.1016/j.ehb.2024.101437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/06/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
This paper evaluates health benefits associated with the impact of air pollution reduction on infant mortality in India. Leveraging plausibly exogenous geographic variation in air pollution due to the post-2010 economic slowdown-a period largely overlooked in the literature-I find that improvements in air quality resulted in a significant decline in infant mortality, particularly through respiratory diseases and biological pathways such as in utero and post-birth exposure. The associated health benefits correspond to 1338 saved infant lives, translating to monetary gains of $312.5 million. The paper advances our understanding of the link between air pollution and human health in settings with elevated air pollution and suboptimal regulatory frameworks.
Collapse
Affiliation(s)
- Olexiy Kyrychenko
- Nijmegen School of Management, Radboud University, Heyendaalseweg 141, Nijmegen 6525 AJ, the Netherlands.
| |
Collapse
|
6
|
Afthab M, Hambo S, Kim H, Alhamad A, Harb H. Particulate matter-induced epigenetic modifications and lung complications. Eur Respir Rev 2024; 33:240129. [PMID: 39537244 PMCID: PMC11558539 DOI: 10.1183/16000617.0129-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/27/2024] [Indexed: 11/16/2024] Open
Abstract
Air pollution is one of the leading causes of early deaths worldwide, with particulate matter (PM) as an emerging factor contributing to this trend. PM is classified based on its physical size, which ranges from PM10 (diameter ≤10 μm) to PM2.5 (≤2.5 μm) and PM0.5 (≤0.5 μm). Smaller-sized PM can move freely through the air and readily infiltrate deep into the lungs, intensifying existing health issues and exacerbating complications. Lung complications are the most common issues arising from PM exposure due to the primary site of deposition in the respiratory system. Conditions such as asthma, COPD, idiopathic pulmonary fibrosis, lung cancer and various lung infections are all susceptible to worsening due to PM exposure. PM can epigenetically modify specific target sites, further complicating its impact on these conditions. Understanding these epigenetic mechanisms holds promise for addressing these complications in cases of PM exposure. This involves studying the effect of PM on different gene expressions and regulation through epigenetic modifications, including DNA methylation, histone modifications and microRNAs. Targeting and manipulating these epigenetic modifications and their mechanisms could be promising strategies for future treatments of lung complications. This review mainly focuses on different epigenetic modifications due to PM2.5 exposure in the various lung complications mentioned above.
Collapse
Affiliation(s)
- Muhammed Afthab
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Shadi Hambo
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Hyunji Kim
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Ali Alhamad
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Hani Harb
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| |
Collapse
|
7
|
Vilas-Boas V, Chatterjee N, Carvalho A, Alfaro-Moreno E. Particulate matter-induced oxidative stress - Mechanistic insights and antioxidant approaches reported in in vitro studies. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104529. [PMID: 39127435 DOI: 10.1016/j.etap.2024.104529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Inhaled particulate matter (PM) is a key factor in millions of yearly air pollution-related deaths worldwide. The oxidative potential of PM indicates its ability to promote an oxidative environment. Excessive reactive oxygen species (ROS) can cause cell damage via oxidative stress, leading to inflammation, endoplasmic reticulum stress, airway remodeling, and various cell death modes (apoptosis, ferroptosis, pyroptosis). ROS can also interact with macromolecules, inducing DNA damage and epigenetic modifications, disrupting homeostasis. These effects have been studied extensively in vitro and confirmed in vivo. This review explores the oxidative potential of airborne particles and PM-induced ROS-mediated cellular damage observed in vitro, highlighting the link between oxidative stress, inflammation, and cell death modes described in the latest literature. The review also analyzes the effects of ROS on DNA damage, repair, carcinogenicity, and epigenetics. Additionally, the latest developments on the potential of antioxidants to prevent ROS's harmful effects are described, providing future perspectives on the topic.
Collapse
Affiliation(s)
- Vânia Vilas-Boas
- Nanosafety Group, International Iberian Nanotechnology Laboratory, Braga, Portugal.
| | - Nivedita Chatterjee
- Nanosafety Group, International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Andreia Carvalho
- Nanosafety Group, International Iberian Nanotechnology Laboratory, Braga, Portugal
| | | |
Collapse
|
8
|
Botto L, Bulbarelli A, Lonati E, Cazzaniga E, Palestini P. Correlation between Exposure to UFP and ACE/ACE2 Pathway: Looking for Possible Involvement in COVID-19 Pandemic. TOXICS 2024; 12:560. [PMID: 39195662 PMCID: PMC11359209 DOI: 10.3390/toxics12080560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024]
Abstract
The overlap between the geographic distribution of COVID-19 outbreaks and pollution levels confirmed a correlation between exposure to atmospheric particulate matter (PM) and the SARS-CoV-2 pandemic. The RAS system is essential in the pathogenesis of inflammatory diseases caused by pollution: the ACE/AngII/AT1 axis activates a pro-inflammatory pathway, which is counteracted by the ACE2/Ang(1-7)/MAS axis, which activates an anti-inflammatory and protective pathway. However, ACE2 is also known to act as a receptor through which SARS-CoV-2 enters host cells to replicate. Furthermore, in vivo systems have demonstrated that exposure to PM increases ACE2 expression. In this study, the effects of acute and sub-acute exposure to ultrafine particles (UFP), originating from different anthropogenic sources (DEP and BB), on the levels of ACE2, ACE, COX-2, HO-1, and iNOS in the lungs and other organs implicated in the pathogenesis of COVID-19 were analyzed in the in vivo BALB/c male mice model. Exposure to UFP alters the levels of ACE2 and/or ACE in all examined organs, and exposure to sub-acute DEP also results in the release of s-ACE2. Furthermore, as evidenced in this and our previous works, COX-2, HO-1, and iNOS levels also demonstrated organ-specific alterations. These proteins play a pivotal role in the UFP-induced inflammatory and oxidative stress responses, and their dysregulation is linked to the development of severe symptoms in individuals infected with SARS-CoV-2, suggesting a heightened vulnerability or a more severe clinical course of the disease. UFP and SARS-CoV-2 share common pathways; therefore, in a "risk stratification" concept, daily exposure to air pollution may significantly increase the likelihood of developing a severe form of COVID-19, explaining, at least in part, the greater lethality of the virus observed in highly polluted areas.
Collapse
Affiliation(s)
- Laura Botto
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
| | - Alessandra Bulbarelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
- POLARIS Research Centre, University of Milano-Bicocca, 20900 Monza, Italy
| | - Elena Lonati
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
| | - Emanuela Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
- POLARIS Research Centre, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
9
|
Chivé C, Martίn-Faivre L, Eon-Bertho A, Alwardini C, Degrouard J, Albinet A, Noyalet G, Chevaillier S, Maisonneuve F, Sallenave JM, Devineau S, Michoud V, Garcia-Verdugo I, Baeza-Squiban A. Exposure to PM 2.5 modulate the pro-inflammatory and interferon responses against influenza virus infection in a human 3D bronchial epithelium model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123781. [PMID: 38492752 DOI: 10.1016/j.envpol.2024.123781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Epidemiological studies showed a positive association between exposure to PM2.5 and the severity of influenza virus infection. However, the mechanisms by which PM2.5 can disrupt antiviral defence are still unclear. From this perspective, the objective of this study was to evaluate the effects of PM2.5 on antiviral signalling in the respiratory epithelium using the bronchial Calu-3 cell line grown at the air-liquid interface. Pre-exposure to PM2.5 before infection with the influenza virus was investigated, as well as a co-exposure. Although a physical interaction between the virus and the particles seems possible, no effect of PM2.5 on viral replication was observed during co-exposure, although a downregulation of IFN-β release was associated to PM2.5 exposure. However, pre-exposure slightly increased the viral nucleoprotein production and the pro-inflammatory response. Conversely, the level of the myxovirus resistance protein A (MxA), an interferon-stimulated gene (ISG) induced by IFN-β, was reduced. Therefore, these results suggest that pre-exposure to PM2.5 could alter the antiviral response of bronchial epithelial cells, increasing their susceptibility to viral infection.
Collapse
Affiliation(s)
- Chloé Chivé
- Université Paris Cité, Functional and Adaptive Biology Unit, UMR8251-CNRS, Paris, France; French Environment and Energy Management Agency 20, Avenue Du Grésillé - BP, 90406 49004, Angers, France
| | - Lydie Martίn-Faivre
- Université Paris Cité, Inflamex Excellence Laboratory, INSERM UMR-1152-PHERE, F-75018, Paris, France
| | - Alice Eon-Bertho
- Université Paris Cité, Functional and Adaptive Biology Unit, UMR8251-CNRS, Paris, France
| | - Christelle Alwardini
- Université Paris Cité, Functional and Adaptive Biology Unit, UMR8251-CNRS, Paris, France
| | - Jéril Degrouard
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France
| | - Alexandre Albinet
- Institut National de L'Environnement Industriel et des Risques (INERIS), Parc Technologique Alata BP2, 60550, Verneuil en Halatte, France
| | - Gael Noyalet
- Université Paris Cité and Université Paris Est Créteil, CNRS, LISA, F-75013, Paris, France
| | - Servanne Chevaillier
- Université Paris Cité and Université Paris Est Créteil, CNRS, LISA, F-75013, Paris, France
| | - Franck Maisonneuve
- Université Paris Est Créteil and Université Paris Cité, CNRS, LISA, F-94010, Créteil, France
| | - Jean-Michel Sallenave
- Université Paris Cité, Inflamex Excellence Laboratory, INSERM UMR-1152-PHERE, F-75018, Paris, France
| | - Stéphanie Devineau
- Université Paris Cité, Functional and Adaptive Biology Unit, UMR8251-CNRS, Paris, France
| | - Vincent Michoud
- Université Paris Cité and Université Paris Est Créteil, CNRS, LISA, F-75013, Paris, France
| | - Ignacio Garcia-Verdugo
- Université Paris Cité, Inflamex Excellence Laboratory, INSERM UMR-1152-PHERE, F-75018, Paris, France.
| | - Armelle Baeza-Squiban
- Université Paris Cité, Functional and Adaptive Biology Unit, UMR8251-CNRS, Paris, France
| |
Collapse
|