1
|
Mattson E, Warner GR. Single-cell RNA-seq reveals that granulosa cells are a target of phthalate toxicity in the ovary. Toxicol Sci 2025; 204:169-180. [PMID: 39752319 PMCID: PMC11939077 DOI: 10.1093/toxsci/kfaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
Phthalates are known endocrine-disrupting chemicals and ovarian toxicants that are used widely in consumer products. Phthalates have been shown to exert ovarian toxicity on multiple endpoints, altering transcription of genes responsible for normal ovarian function. However, the molecular mechanisms by which phthalates act on the ovary are not well understood. In this study, we hypothesized that phthalates specifically target granulosa cells within the ovarian follicle. To test our hypothesis, we cultured whole mouse antral follicles for 96 h in the presence of vehicle or 10 µg/ml of a phthalate metabolite mixture. At the end of the culture period, follicles were dissociated into single-cell suspensions and subjected to single-cell RNA-sequencing. We used markers from published studies to identify cell-type clusters, the largest of which were granulosa and theca/stroma cells. We further identified subpopulations of granulosa, theca, and stromal cells and analyzed differentially expressed genes between the phthalate treatment and control. Granulosa cells, specifically mural granulosa cells, had the most differentially expressed genes. Pathway analysis of differentially expressed genes from the overall granulosa cell cluster revealed disruption of cell cycle and mitosis, whereas pathway analysis of the mural granulosa cell subcluster identified terms related to translation, ribosome, and endoplasmic reticulum. Our findings suggest that phthalates have both broad impacts on cell types and specific impacts on cellular subtypes, emphasizing the complexity of phthalate toxicity and highlighting how bulk sequencing can mask effects on vulnerable cell types.
Collapse
Affiliation(s)
- Erik Mattson
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07103, United States
| | - Genoa R Warner
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07103, United States
| |
Collapse
|
2
|
Gokyer D, Laws MJ, Kleinhans A, Riley JK, Flaws JA, Babayev E. Phthalates are detected in the follicular fluid of adolescents and oocyte donors with associated changes in the cumulus cell transcriptome. F&S SCIENCE 2025; 6:30-41. [PMID: 39515754 PMCID: PMC11829829 DOI: 10.1016/j.xfss.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE To investigate the follicular fluid (FF) phthalate levels in adolescents undergoing fertility preservation compared with oocyte donors and explore its association with ovarian reserve and cumulus cell (CC) gene expression. DESIGN Retrospective study and molecular analysis of CCs and FF. SUBJECTS Adolescents (n = 20, 16.7 ± 0.6 years) undergoing fertility preservation and oocyte donors (n = 24, 26.2 ± 0.4 years). EXPOSURE Not applicable. MAIN OUTCOME MEASURES Patient demographics, ovarian stimulation, and oocyte retrieval outcomes were analyzed for each group. The FF levels of 9 phthalate metabolites were assessed individually and as molar sums representative of common compounds (all phthalates, ƩPhthalates; di(2-ethylhexyl) phthalate (DEHP)-associated phthalate metabolites, ƩDEHP), exposure sources (plastics, ƩPlastic; personal care products, ƩPCP), and modes of action (antiandrogenic, ƩAA) and compared between the 2 groups. The transcriptome of CC associated with mature oocytes was compared between adolescents and oocyte donors using bulk ribonucleic acid sequencing. RESULTS The FF ƩPlastic and ƩPCP levels were significantly higher in adolescents than in oocyte donors. The FF ƩDEHP, ƩPlastic, ƩPCP, ƩAA, and ƩPhthalates levels were positively associated with antral follicle count in oocyte donors when adjusted for age, body mass index, and race/ethnicity. Ribonucleic acid sequencing analysis revealed 248 differentially expressed genes in CCs of adolescents within the top quartile (n = 4) of the FF ƩPhthalates levels compared with those of the adolescents within the bottom half (n = 9). Genes enriched in pathways involved in cell motility and development were significantly down-regulated. CONCLUSIONS Adolescents undergoing fertility preservation cycles demonstrate higher levels of phthalate metabolites in their FF than oocyte donors. Higher phthalate levels are associated with alterations in cumulus cells transcriptome in adolescents. The phthalate metabolite levels in FF are associated with higher antral follicle count levels in oocyte donors.
Collapse
Affiliation(s)
- Dilan Gokyer
- Division of Reproductive Endocrinology and Infertility, and Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Mary J Laws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, Illinois
| | - Anna Kleinhans
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, Illinois
| | - Joan K Riley
- Division of Reproductive Endocrinology and Infertility, and Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, Illinois
| | - Jodi A Flaws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, Illinois
| | - Elnur Babayev
- Division of Reproductive Endocrinology and Infertility, and Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, Illinois.
| |
Collapse
|
3
|
Klimowska A, Jurewicz J, Radwan M, Radwan P, Pol P, Wielgomas B. Distribution of Environmental Phenols into Follicular Fluid and Urine of Women Attending Infertility Clinic. J Xenobiot 2025; 15:17. [PMID: 39997360 PMCID: PMC11856404 DOI: 10.3390/jox15010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 02/26/2025] Open
Abstract
Infertility and environmental pollution are two globally prevalent and related issues. To explore women's reproductive health, the composition of follicular fluid (FF) has been studied and it was found that changes to its composition, including the presence of exogenous chemicals, can adversely affect the fertilization process. Two groups of women (idiopathic infertility and controls) who were patients at a fertility clinic were recruited for this study. Samples of urine and FF were gathered from each participant to determine the concentration of 14 common phenols (four parabens, six bisphenols, two benzophenones, and two naphthols). Associations between phenol concentrations (free and total) in both matrices were described using Spearman's correlation coefficient and were compared between two groups by the Mann-Whitney U test. Eight phenols were quantified in more than 50% of the urine samples, while only three parabens were quantified in hydrolyzed FF samples, and only methylparaben was quantified in non-hydrolyzed FF samples. Conjugates were the predominant form in FF samples. However, a significant correlation of 0.533 (p < 0.0001) was observed between free and total methylparaben concentrations in FF. Differences in concentrations between cases and controls in both matrices were not statistically significant, except for benzophenone-3 in urine, with a higher median observed in the control group (p = 0.04). The total paraben concentrations in urine and FF samples were rather weakly correlated (r = 0.232-0.473), implying that urine concentrations may not be appropriate for predicting their concentration in FF.
Collapse
Affiliation(s)
- Anna Klimowska
- Department of Toxicology, Faculty of Pharmacy, Medical University of Gdansk, 107 Hallera Street, 80-416 Gdańsk, Poland;
| | - Joanna Jurewicz
- Department of Chemical Safety, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland;
| | - Michał Radwan
- Department of Gynecology and Reproduction, Gameta Hospital, 34/36 Rudzka St., 95-030 Rzgow, Poland;
- Faculty of Health Sciences, Mazovian State University in Plock, 2 Dabrowskiego Sq., 09-402 Plock, Poland
| | - Paweł Radwan
- Gameta Health Centre, 7 Cybernetyki St., 02-677 Warsaw, Poland;
- Gameta, Kielce-Regional Science-Technology Centre, 45 Podzamcze St., Chęciny, 26-060 Kielce, Poland;
| | - Paweł Pol
- Gameta, Kielce-Regional Science-Technology Centre, 45 Podzamcze St., Chęciny, 26-060 Kielce, Poland;
| | - Bartosz Wielgomas
- Department of Toxicology, Faculty of Pharmacy, Medical University of Gdansk, 107 Hallera Street, 80-416 Gdańsk, Poland;
| |
Collapse
|
4
|
Mastrorocco A, Temerario L, Vurchio V, Cotecchia S, Martino NA, Dell’Aquila ME. In Vitro Toxicity of a DEHP and Cadmium Mixture on Sheep Cumulus-Oocyte Complexes. Int J Mol Sci 2024; 26:5. [PMID: 39795862 PMCID: PMC11719533 DOI: 10.3390/ijms26010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) and Cadmium (Cd) affect female reproduction. To date, toxicological research has focused on the effects of individual contaminants, whereas living beings are exposed to mixtures. This study analyzed the effects of a DEHP/Cd mixture on nuclear and cytoplasmic maturation of sheep cumulus-oocyte complexes (COCs) compared with single compounds. COCs recovered from slaughterhouses-derived sheep ovaries were in vitro exposed to 0.5 μM DEHP, 0.1 μM Cd, or DEHP/Cd mixture at the same concentrations during 24 h of in vitro maturation (IVM). After IVM, oocyte nuclear chromatin configuration was evaluated, and bioenergetic/oxidative parameters were assessed on expanded cumulus cells (CCs) and matured oocytes (chi-square test and one-way ANOVA; p < 0.05). Under examined conditions, oocyte nuclear maturation was never impaired. However, COC bioenergetics was affected with stronger effects for the mixture than single compounds. Indeed, the percentages of matured oocytes with healthy mitochondrial distribution patterns were reduced (p < 0.001 and p < 0.05 for mixture and single compounds, respectively). Oocyte mitochondrial membrane potential, intracellular ROS levels, and mitochondria/ROS co-localization were reduced, with the same significance level, in all contaminated conditions. CCs displayed increased ROS levels only upon mixture exposure (p < 0.001). In conclusion, in vitro exposure to the DEHP/Cd mixture affected COC quality in the sheep to a greater extent than separate compounds.
Collapse
Affiliation(s)
- Antonella Mastrorocco
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (L.T.); (V.V.); (S.C.); (N.A.M.); (M.E.D.)
| | | | | | | | | | | |
Collapse
|
5
|
Luo Y, Zhang Y, Feng Y, Zeng X, Zhu D, Yang Y, Hu H, Wang Q, Guo L, Zou L, Zhong X. Prenatal exposure to low doses of benzophenone-3 elicits disruption of cortical vasculature in fetuses through perturbations in Wnt/β-catenin signaling correlating with depression-like behavior in offspring mice. Toxicology 2024; 509:153960. [PMID: 39343157 DOI: 10.1016/j.tox.2024.153960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Benzophenone-3 (BP-3), commonly used in personal care products, is routinely detected in environmental and human matrices. Evidence delineates a correlation between gestational BP-3 exposure and emotional and social disorders in children and adolescents. However, sensitive target cells and the mode of action underlying the early responses to environmentally relevant level of BP-3 exposure remain unclear. In this study, 0.3 and 3 mg/kg of BP-3 were administered to pregnant mice. Compared with the control group, the cortical blood vessel development process manifested the highest susceptibility to BP-3 exposure using transcriptomic sequencing at embryonic day 14 (E14). Notably, the diminution in vascular density and tight junction proteins presence was observed in the fetal cortex at E14, concomitant with the suppressed transcriptional activity of genes essential to angiogenesis and barrier formation. Strikingly, the investigation revealed that BP-3 exposure impeded vascular sprouting in aortic ring explants and neuroendothelial migration, implicating the Wnt/β-catenin signaling pathway. Moreover, BP-3 exposure compromised perivascular neural stem cell differentiation. Cortical vascular injury correlated with the exhibition of depression-like behavior in four-week postnatal progeny. These insights underscore the cerebrovasculature as an early sensitive target for low doses of BP-3 exposure, fostering the development of biomarkers and the establishment of the adverse outcome pathway framework for BP-3 hazard evaluation.
Collapse
Affiliation(s)
- Yijun Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yangjian Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yang Feng
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China; The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410005, China
| | - Xiangyu Zeng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Dan Zhu
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China; The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410005, China
| | - Ying Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Haichen Hu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qi Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lan Guo
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lianhong Zou
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China; The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410005, China; Geriatric Immunization Research Center of Hunan Provincial Geriatric Institute, Changsha, Hunan, China.
| | - Xiali Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
6
|
Marchiandi J, Dagnino S, Zander-Fox D, Green MP, Clarke BO. Characterization of Chemical Exposome in A Paired Human Preconception Pilot Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20352-20365. [PMID: 39508786 DOI: 10.1021/acs.est.4c04356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Parental preconception exposure to synthetic chemicals may have critical influences on fertility and reproduction. Here, we present a robust LC-MS/MS method covering up to 95 diverse xenobiotics in human urine, serum, seminal and follicular fluids to support exposome-wide assessment in reproductive health outcomes. Extraction recoveries of validated analytes ranged from 62% to 137% and limits of quantification from 0.01 to 6.0 ng/mL in all biofluids. We applied the validated method to a preconception cohort of Australian couples (n = 30) receiving fertility treatment. In total, 36 and 38 xenobiotics were detected across the paired biofluids of males and females, respectively, including PFAS, parabens, organic UV-filters, plastic additives, antimicrobials, and other industrial chemicals. Results showed 39% of analytes in males and 37% in females were equally detected in paired serum, urine, and reproductive fluids. The first detection of the sunscreen ingredient avobenzone and the industrial chemical 4-nitrophenol in follicular and seminal fluids suggests they can cross both blood-follicle/testis barriers, indicating potential risks for fertility. Further, the blood-follicle transfer of perfluorobutanoic acid, PFOA, PFHxS, PFOS, and oxybenzone corroborate that serum concentrations can be reliable proxies for assessing exposure within the ovarian microenvironment. In conclusion, we observed significant preconception exposure to multiple endocrine disruptors in couples and identified potential xenobiotics relevant to male and female fertility impairments.
Collapse
Affiliation(s)
- Jaye Marchiandi
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria 3010, Australia
| | - Sonia Dagnino
- Transporters in Imaging and Radiotherapy in Oncology (TIRO), School of Medicine, Direction de la Recherche Fondamentale (DRF), Institut des sciences du vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Université Côte d'Azur (UCA), 28 Avenue de Valombrose, 06107 Nice, France
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W12 7TA London, U.K
| | - Deirdre Zander-Fox
- Monash IVF Group Pty, Cremorne, Melbourne, Victoria 3121, Australia
- Department of Obstetrics & Gynaecology, Monash University, Clayton, Melbourne, Victoria 3168, Australia
| | - Mark P Green
- Monash IVF Group Pty, Cremorne, Melbourne, Victoria 3121, Australia
- School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Bradley O Clarke
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
7
|
Shulhai AM, Bianco V, Donini V, Esposito S, Street ME. Which is the current knowledge on man-made endocrine- disrupting chemicals in follicular fluid? An overview of effects on ovarian function and reproductive health. Front Endocrinol (Lausanne) 2024; 15:1435121. [PMID: 39415794 PMCID: PMC11479995 DOI: 10.3389/fendo.2024.1435121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
The increase in female reproductive disorders, such as polycystic ovary syndrome, endometriosis, and diminished ovarian reserve that lead to subfertility and infertility, has encouraged researchers to search and discover their underlying causes and risk factors. One of the crucial factors that may influence the increasing number of reproductive issues is environmental pollution, particularly exposure to man-made endocrine-disrupting chemicals (EDCs). EDCs can interfere with the ovarian microenvironment, impacting not only granulosa cell function but also other surrounding ovarian cells and follicular fluid (FF), which all play essential roles for oocyte development, maturation, and overall reproductive function. FF surrounds developing oocytes within an ovarian follicle and represents a dynamic milieu. EDCs are usually found in biological fluids, and FF is therefore of interest in this respect. This narrative review examines the current knowledge on specific classes of EDCs, including industrial chemicals, pesticides, and plasticizers, and their known effects on hormonal signaling pathways, gene expression, mitochondrial function, oxidative stress induction, and inflammation in FF. We describe the impact of EDCs on the development of reproductive disorders, oocyte quality, menstrual cycle regulation, and their effect on assisted reproductive technique outcomes. The potential transgenerational effects of EDCs on offspring through animal and first-human studies has been considered also. While significant progress has been made, the current understanding of EDCs' effects on ovarian function, particularly in humans, remains limited, underscoring the need for further research to clarify actions and effects of EDCs in the ovary.
Collapse
Affiliation(s)
- Anna-Mariia Shulhai
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Department of Pediatrics №2, Ivan Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Valentina Bianco
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Valentina Donini
- Unit of Paediatrics, University Hospital of Parma, P. Barilla Children’s Hospital, Parma, Italy
| | - Susanna Esposito
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Paediatrics, University Hospital of Parma, P. Barilla Children’s Hospital, Parma, Italy
| | - Maria Elisabeth Street
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Paediatrics, University Hospital of Parma, P. Barilla Children’s Hospital, Parma, Italy
| |
Collapse
|
8
|
Gokyer D, Laws MJ, Kleinhans A, Riley JK, Flaws JA, Babayev E. Phthalates are detected in the follicular fluid of adolescents and oocyte donors with associated changes in the cumulus cell transcriptome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588126. [PMID: 38645121 PMCID: PMC11030231 DOI: 10.1101/2024.04.04.588126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Purpose To investigate follicular fluid (FF) phthalate levels in adolescents undergoing fertility preservation compared to oocyte donors and explore its association with ovarian reserve and cumulus cell gene expression. Methods 20 Adolescents (16.7 ± 0.6 years old) and 24 oocyte donors (26.2 ± 0.4 years old) undergoing fertility preservation were included in the study. Patient demographics, ovarian stimulation and oocyte retrieval outcomes were analyzed for each group. FF levels of 9 phthalate metabolites were assessed individually and as molar sums representative of common compounds (all phthalates: ΣPhthalates; DEHP: ΣDEHP), exposure sources (plastics: ΣPlastic; personal care products: ΣPCP), and modes of action (anti-androgenic: ΣAA) and compared between the two groups. Results Follicular fluid ΣPlastic and ΣPCP levels were significantly higher in adolescents compared to oocyte donors (p<0.05). Follicular fluid ΣDEHP, ΣPlastic, ΣPCP, ΣAA, and ΣPhthalates levels were positively associated with antral follicle count (AFC) (p<0.05) in oocyte donors when adjusted for age, BMI, and race/ethnicity. RNA-seq analysis revealed 248 differentially expressed genes (DEGs) in cumulus cells of adolescents within the top quartile (n=4) of FF ΣPhthalates levels compared to the adolescents within the bottom half (n=9). Genes enriched in pathways involved in cell motility and development were significantly downregulated. Conclusion Adolescents undergoing fertility preservation cycles demonstrate higher levels of phthalate metabolites in their follicular fluid compared to oocyte donors. Phthalate metabolite levels in FF are associated with higher AFC levels in oocyte donors. Higher phthalate levels in FF are associated with alterations in the cumulus cells transcriptome in adolescents.
Collapse
Affiliation(s)
- Dilan Gokyer
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Mary J. Laws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, IL
| | - Anna Kleinhans
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, IL
| | - Joan K. Riley
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, IL
| | - Jodi A. Flaws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, IL
| | - Elnur Babayev
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, IL
| |
Collapse
|