1
|
Gorini F, Tonacci A, Sanmartin C, Venturi F. Phthalates and Non-Phthalate Plasticizers and Thyroid Dysfunction: Current Evidence and Novel Strategies to Reduce Their Spread in Food Industry and Environment. TOXICS 2025; 13:222. [PMID: 40137549 PMCID: PMC11945544 DOI: 10.3390/toxics13030222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Thyroid hormones (THs) play a crucial role in various biological functions, including metabolism, cell growth, and nervous system development, and any alteration involving the structure of the thyroid gland and TH secretion may result in thyroid disease. Growing evidence suggests that phthalate plasticizers, which are commonly used in a wide range of products (e.g., food packaging materials, children's toys, cosmetics, medical devices), can impact thyroid function, primarily affecting serum levels of THs and TH-related gene expression. Like phthalate compounds, recently introduced alternative plasticizers can leach from their source material into the environment, particularly into foods, although so far only a very limited number of studies have investigated their thyroid toxicity. This review aimed at summarizing the current knowledge on the role of phthalate and non-phthalate plasticizers in thyroid dysfunction and disease, describing the major biological mechanisms underlying this relationship. We will also focus on the food industry as one of the main players for the massive spread of such compounds in the human body, in turn conveyed by edible compounds. Given the increasing worldwide use of plasticizers and the essential role of THs in humans, novel strategies should be envisaged to reduce this burden on the thyroid and, in general, on human health.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | - Alessandro Tonacci
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | - Chiara Sanmartin
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (C.S.); (F.V.)
| | - Francesca Venturi
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (C.S.); (F.V.)
| |
Collapse
|
2
|
Vergauwen L, Bajard L, Tait S, Langezaal I, Sosnowska A, Roncaglioni A, Hessel E, van den Brand AD, Haigis AC, Novák J, Hilscherová K, Buławska N, Papaioannou N, Renieri E, Spilioti E, Spyropoulou A, Gutleb AC, Holbech H, Nikolopoulou D, Jacobs MN, Knapen D. A 2024 inventory of test methods relevant to thyroid hormone system disruption for human health and environmental regulatory hazard assessment. OPEN RESEARCH EUROPE 2024; 4:242. [PMID: 39931575 PMCID: PMC11809485 DOI: 10.12688/openreseurope.18739.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 02/13/2025]
Abstract
Thyroid hormone system disruption (THSD) is a growing concern in chemical hazard assessment due to its impact on human and environmental health and the scarce methods available for assessing the THSD potential of chemicals. In particular, the general lack of validated in silico and in vitro methods for assessing THS activity is of high concern. This manuscript provides an inventory of test methods relevant to THSD. Building on the Organisation for Economic Co-operation and Development (OECD) Guidance Document 150 and recent international developments, we highlight progress in in silico and in vitro methods, as well as in vivo assays. The provided inventory categorizes available methods according to the levels of the OECD Conceptual Framework, with an assessment of the validation status of each method. At Level 1, 12 in silico models that have been statistically validated and are directly related to THSD have been identified. At Level 2, 67 in vitro methods have been listed including those assessed in key initiatives such as the European Union Network of Laboratories for the Validation of Alternative Methods (EU-NETVAL) validation study to identify potential thyroid disruptors. At Levels 3-5, THSD-sensitive endpoints are being included in existing fish-based OECD Test Guidelines to complement amphibian assays. In total, the inventory counts 108 entries comprising established methods (e.g., OECD Test Guidelines) as well as citable methods that are under further development and in some cases are ready for validation or in the initial stages of validation. This work aims to support the ongoing development of strategies for regulatory hazard assessment, such as integrated approaches to testing and assessment (IATAs), for endocrine disruptors, addressing critical gaps in the current testing landscape for THSD in both human and environmental health contexts.
Collapse
Affiliation(s)
- Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, 2610, Belgium
| | - Lola Bajard
- RECETOX, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic
| | - Sabrina Tait
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Ingrid Langezaal
- European Commission Joint Research Centre Ispra, Ispra, Lombardy, 21027, Italy
| | - Anita Sosnowska
- Faculty of Chemistry, University of Gdansk, Gdańsk, 80-308, Poland
| | - Alessandra Roncaglioni
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Lombardy, 20156, Italy
| | - Ellen Hessel
- National Institute for Public Health and the Environment, Bilthoven, Utrecht, 3721, The Netherlands
| | - Annick D van den Brand
- National Institute for Public Health and the Environment, Bilthoven, Utrecht, 3721, The Netherlands
| | - Ann-Cathrin Haigis
- Zebrafishlab, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, 2610, Belgium
| | - Jiří Novák
- RECETOX, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic
| | - Klára Hilscherová
- RECETOX, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic
| | - Natalia Buławska
- Faculty of Chemistry, University of Gdansk, Gdańsk, 80-308, Poland
| | - Nafsika Papaioannou
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thessaloniki, 570 01, Greece
| | - Elisavet Renieri
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thessaloniki, 570 01, Greece
| | - Eliana Spilioti
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides’ Control and Phytopharmacy, Benaki Phytopathological Institute, Athens, Attica, 145 61, Greece
| | - Anastasia Spyropoulou
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides’ Control and Phytopharmacy, Benaki Phytopathological Institute, Athens, Attica, 145 61, Greece
| | - Arno C Gutleb
- Environmental Sustainability Assessment and Circularity (SUSTAIN) Unit, Luxembourg Institute of Science and Technology, Belvaux, 4422, Luxembourg
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Odense, 5230, Denmark
| | - Dimitra Nikolopoulou
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides’ Control and Phytopharmacy, Benaki Phytopathological Institute, Athens, Attica, 145 61, Greece
| | - Miriam N Jacobs
- Radiation, Chemical and Environmental Hazards, Harwell Innovation Campus, UK Health Security Agency, Chilton, OX11 0RQ, UK
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, 2610, Belgium
| |
Collapse
|
3
|
Šauer P, Bořík A, Staňová AV, Grabic R, Kodeš V, Amankwah BK, Kocour Kroupová H. Identification of hot spots and co-occurrence patterns of activities on thyroid hormone receptor and transthyretin binding in passive samplers from Czech surface waters. ENVIRONMENTAL RESEARCH 2024; 252:118891. [PMID: 38599450 DOI: 10.1016/j.envres.2024.118891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/26/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
One of the less studied in vitro biological activities in the aquatic environment are thyroid hormone receptor beta (TRβ)-mediated agonistic and antagonistic activities and transthyretin (TTR) binding activity. They were measured mostly using active sampling methods, but rarely found. It is unclear if these activities co-occur, and the drivers of the (anti-)TRβ activity are mostly unknown. Therefore, the main aim of the study was to determine (anti-)TRβ activities as well as transthyretin (TTR) binding activity in passive samplers from Czech surface waters in combination with the search for the effect drivers based on liquid chromatography-high resolution mass spectrometry (LC-HRMS) analysis by applying suspect screening. Passive samplers (polar organic chemical integrative samplers, POCIS) were deployed at twenty-one sites (all ends of watersheds and other important sites in Elbe River) in the Czech rivers. The (anti-)TRβ and TTR binding activity were measured using (anti-)TRβ-CALUX and TTR-TRβ-CALUX bioassays. Anti-TRβ activity was found at eight sites, and TTR binding activity co-occurred there at six of these sites. The co-occurrence of TRβ-mediated antagonistic activity and TTR binding indicate that they may have common effect drivers. No sample exhibited TRβ agonistic activity. The extract from the site Bílina River, the most burdened with anti-TRβ activity, was further successfully fractionated, and this activity was revealed in the fraction, where mid-polar compounds prevailed. However, the suspect LC-HRMS analysis did not reveal the chemical effect drivers. Our results showed that anti-TRβ activity can be found in surface waters by employing passive sampling and frequently co-occurs with TTR binding activity. Overall, the fractionation procedure and non-target data acquisition used in this study can serve as a basis for searching the effect drivers in future research.
Collapse
Affiliation(s)
- Pavel Šauer
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Vodňany, Czech Republic.
| | - Adam Bořík
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Vodňany, Czech Republic
| | - Andrea Vojs Staňová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Vodňany, Czech Republic; Comenius University in Bratislava, Faculty of Natural Sciences, Department of Analytical Chemistry, Ilkovičova 6, SK-842 15, Bratislava, Slovak Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Vodňany, Czech Republic
| | - Vít Kodeš
- Czech Hydrometeorological Institute, Na Šabatce 17, 143 06 Praha 4-Komořany, Czech Republic
| | - Beatrice Kyei Amankwah
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Vodňany, Czech Republic
| | - Hana Kocour Kroupová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Vodňany, Czech Republic
| |
Collapse
|
4
|
Zhang S, Chou L, Zhu W, Luo W, Zhang C, Qiu J, Li M, Tan H, Guo J, Wang C, Tu K, Xu K, Yu H, Zhang X, Shi W, Zhou Q. Identify organic contaminants of high-concern based on non-targeted toxicity testing and non-targeted LC-HRMS analysis in tap water and source water along the Yangtze River. WATER RESEARCH 2024; 253:121303. [PMID: 38382288 DOI: 10.1016/j.watres.2024.121303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/23/2024]
Abstract
Many organic pollutants were detected in tap water (TW) and source water (SW) along the Yangtze River. However, the potential toxic effects and the high-concern organics (HCOs) which drive the effect are still unknown. Here, a non-targeted toxicity testing method based on the concentration-dependent transcriptome and non-targeted LC-HRMS analysis combining tiered filtering were used to reveal the overall biological effects and chemical information. Subsequently, we developed a qualitative pathway-structure relationship (QPSR) model to effectively match the biological and chemical information and successfully identified HCOs in TW and SW along the Yangtze River by potential substructures of HCOs. Non-targeted toxicity testing found that the biological potency of both TW and SW was stronger in the downstream of the Yangtze River, and disruption of the endocrine system and cancer were the main drivers of the effect. In addition, non-targeted LC-HRMS analysis combined with retention time prediction results identified 3220 and 631 high-confidence compound structures in positive and negative ion modes, respectively. Then, QPSR model was further implied and identified a total of 103 HCOs, containing 35 industrial chemicals, 30 PPCPs, 26 pesticides, and 12 hormones in TW and SW, respectively. Among them, the neuroactive and hormonal compounds oxoamide, 8-iso-16-cyclohexyl-tetranor prostaglandin E2, E Keppra, and Tocris-0788 showed the highest frequency of detection, which were identified in more than 1/3 of the samples. The strategy of combining non-targeted toxicity testing and non-targeted LC-HRMS analysis will support comprehensive biological effect assessment, identification of HCOs, and risk control of mixtures.
Collapse
Affiliation(s)
- Shaoqing Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Liben Chou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wenxuan Zhu
- Department of Mathematics, Statistics, and Computer Science, Macalester College, Saint Paul, MN 55105, USA
| | - Wenrui Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chi Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jingfan Qiu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Meishuang Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Haoyue Tan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jing Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chang Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Keng Tu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Kefan Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, China.
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
5
|
Yang J, Liu Y, Tan X, Xu C, Lin A. Safety assessment of drinking water sources along Yangtze River using vulnerability and risk analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:27294-27310. [PMID: 34981399 DOI: 10.1007/s11356-021-18297-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/20/2021] [Indexed: 05/12/2023]
Abstract
Recently, the safety of drinking water sources along Yangtze River Basin is received much attention. But few works have carried out large-scale and all-round safety assessment of drinking water sources on the main stream of the whole Yangtze River Basin. In this work, 97 drinking water sources in 8 provinces of the main stream of the Yangtze River were selected as the objects to clarify the spatial distribution of the safety risk levels of drinking water sources in the whole basin and analyze the causes of drinking water source risks. The results showed that 13.4%, 55.7%, 25.8%, 5.1%, and 0% of the 97 drinking water sources were classified as low, moderate, considerate, high, and very high respectively, according to the safety risk level. This indicated that the safety risk of drinking water sources in the mainstream of Yangtze River is generally low, but there are also a number of high safety risk drinking water sources. And the safety risk degree of the lower and upper reaches in the mainstream of Yangtze River is generally higher than that of the middle reaches. The current situation of drinking water sources along the mainstream of Yangtze River could be attributed to the superposition of human activities and natural background factors. This study could contribute to the government's targeted management and control of safety risk sources for drinking water sources along the Yangtze River Basin.
Collapse
Affiliation(s)
- Jingjing Yang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
- Chinese Academy of Environmental Planning, Beijing, 100012, People's Republic of China
| | - Yaxiu Liu
- Hangzhou Huanyan Technology Co., Ltd, Hangzhou, 310015, People's Republic of China
| | - Xiao Tan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Congbon Xu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
6
|
Cathey AL, Watkins DJ, Rosario ZY, Vélez C, Mukherjee B, Alshawabkeh AN, Cordero JF, Meeker JD. Biomarkers of Exposure to Phthalate Mixtures and Adverse Birth Outcomes in a Puerto Rico Birth Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:37009. [PMID: 35333099 PMCID: PMC8953418 DOI: 10.1289/ehp8990] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND Humans are exposed to complex mixtures of phthalate chemicals from a range of consumer products. Previous studies have reported significant associations between individual phthalate metabolites and pregnancy outcomes, but mixtures research is limited. OBJECTIVES We used the Puerto Rico Testsite for Exploring Contamination Threats longitudinal pregnancy cohort to investigate associations between phthalate metabolite mixtures and pregnancy outcomes. METHODS Women (n=462 carrying females, n=540 carrying males) provided up to three urine samples throughout gestation (median 18, 22, and 26 wk), which were analyzed for 13 phthalate metabolites. Pregnancy outcomes including preterm birth (PTB), spontaneous PTB, small and large for gestational age (SGA, LGA), birth weight z-score, and gestational age at delivery were abstracted from medical records. Environmental risk scores (ERS) were calculated as a weighted linear combination of the phthalates from ridge regression and adaptive elastic net, which are variable selection methods to handle correlated predictors. Birth outcomes were regressed on continuous ERS. We assessed gestational average and visit-specific ERS and stratified all analyses by fetal sex. Finally, we used Bayesian kernel machine regression (BKMR) to explore nonlinear associations and interactions between metabolites. RESULTS Differences in metabolite weights from ridge and elastic net were apparent between birth outcomes and between fetal sexes. An interquartile range increase in gestational average phthalate ERS was associated with increased odds of PTB [male odds ratio (OR)=1.56; 95% confidence interval (CI): 1.08, 2.27; female OR=1.91; 95% CI: 1.23, 2.98], spontaneous PTB (male OR=2.32; 95% CI: 1.46, 3.68; female OR=2.00; 95% CI: 1.04, 3.82), and reduced gestational age at birth (male β=-0.39 wk, 95% CI: -0.62, -0.15; female β=-0.29 wk, 95% CI: -0.52, -0.05). Analyses by study visit suggested that exposure at ∼22 wk (range 20-24 wk) was driving those associations. Bivariate plots from BKMR analysis revealed some nonlinear associations and metabolite interactions that were different between fetal sexes. DISCUSSION These results suggest that exposure to phthalate mixtures was associated with increased risk of early delivery and highlight the need to study mixtures by fetal sex. We also identified various metabolites displaying nonlinear relationships with measures of birth weight. https://doi.org/10.1289/EHP8990.
Collapse
Affiliation(s)
- Amber L Cathey
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Zaira Y Rosario
- Graduate School of Public Health, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Carmen Vélez
- Graduate School of Public Health, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | | | - José F Cordero
- College of Public Health, University of Georgia, Athens, Georgia, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Molecular Methods as Potential Tools in Ecohydrological Studies on Emerging Contaminants in Freshwater Ecosystems. WATER 2020. [DOI: 10.3390/w12112962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Contaminants of emerging concern (CECs) present a threat to the functioning of freshwater ecosystems. Their spread in the environment can affect both plant and animal health. Ecohydrology serves as a solution for assessment approaches (i.e., threat identification, ecotoxicological assessment, and cause–effect relationship analysis) and solution approaches (i.e., the elaboration of nature-based solutions: NBSs), mitigating the toxic effect of CECs. However, the wide array of potential molecular analyses are not fully exploited in ecohydrological research. Although the number of publications considering the application of molecular tools in freshwater studies has been steadily growing, no paper has reviewed the most prominent studies on the potential use of molecular technologies in ecohydrology. Therefore, the present article examines the role of molecular methods and novel omics technologies as essential tools in the ecohydrological approach to CECs management in freshwater ecosystems. It considers DNA, RNA and protein-level analyses intended to provide an overall view on the response of organisms to stress factors. This is compliant with the principles of ecohydrology, which emphasize the importance of multiple indicator measurements and correlation analysis in order to determine the effects of contaminants, their interaction with other environmental factors and their removal using NBS in freshwater ecosystems.
Collapse
|
8
|
Molecular interactions of thyroxine binding globulin and thyroid hormone receptor with estrogenic compounds 4-nonylphenol, 4-tert-octylphenol and bisphenol A metabolite (MBP). Life Sci 2020; 253:117738. [PMID: 32360618 DOI: 10.1016/j.lfs.2020.117738] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023]
Abstract
AIM Endocrine disruption due to environmental chemical contaminants is a global human health issue. The aim of present study was to investigate the structural binding aspects of possible interference of commonly detected environmental contaminants on thyroid function. MATERIAL AND METHODS Three compounds, 4-tert-octylphenol (4-tert-OP), 4-nonylphenol (4-NP), and 4-methyl-2,4-bis(4-hydroxypentyl)pent-1-ene (MBP) were subjected to induced fit docking (IFD) against thyroxine binding globulin (TBG) and thyroid hormone receptor (THR). Structural analysis included molecular interactions of the amino acid residues and binding energy estimation between the ligands and the target proteins. KEY RESULTS All the ligands were successfully placed in the ligand binding pocket of TBG and THR using induced fit docking (IFD). The IFD results revealed high percentage of commonality in interacting amino acid residues between the aforementioned compounds and the native ligand for both TBG and THR. The results of our study further revealed that all the compounds have the potential to interfere with thyroid transport and signaling. However, MBP showed higher binding affinity for both TBG and THR, suggesting higher thyroid disruptive potential as compared to 4-t-OP and 4-NP. Furthermore, our results also suggest that the reported disruptive effects of BPA could actually be exerted through its metabolite; MBP. SIGNIFICANCE This work implies that all the three compounds 4-NP, 4-t-OP and especially MBP have the potential to interfere with thyroid hormone transport and signaling. This potentially leads to disruption of thyroid hormone function.
Collapse
|
9
|
Jones RR, Stavreva DA, Weyer PJ, Varticovski L, Inoue-Choi M, Medgyesi DN, Chavis N, Graubard BI, Cain T, Wichman M, Beane Freeman LE, Hager GL, Ward MH. Pilot study of global endocrine disrupting activity in Iowa public drinking water utilities using cell-based assays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136317. [PMID: 32018941 PMCID: PMC8459208 DOI: 10.1016/j.scitotenv.2019.136317] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/15/2019] [Accepted: 12/22/2019] [Indexed: 06/02/2023]
Abstract
Some anthropogenic substances in drinking water are known or suspected endocrine disrupting compounds (EDCs), but EDCs are not routinely measured. We conducted a pilot study of 10 public drinking water utilities in Iowa, where common contaminants (e.g., pesticides) are suspected EDCs. Raw (untreated) and finished (treated) drinking water samples were collected in spring and fall and concentrated using solid phase extraction. We assessed multiple endocrine disrupting activities using novel mammalian cell-based assays that express nuclear steroid receptors (aryl hydrocarbon [AhR], androgenic [AR], thyroid [TR], estrogenic [ER] and glucocorticoid [GR]). We quantified each receptor's activation relative to negative controls and compared activity by season and utility/sample characteristics. Among 62 samples, 69% had AhR, 52% AR, 3% TR, 2% ER, and 0% GR activity. AhR and AR activities were detected more frequently in spring (p =0 .002 and < 0.001, respectively). AR activity was more common in samples of raw water (p =0 .02) and from surface water utilities (p =0 .05), especially in fall (p =0 .03). Multivariable analyses suggested spring season, surface water, and nitrate and disinfection byproduct concentrations as determinants of bioactivity. Our results demonstrate that AR and AhR activities are commonly found in Iowa drinking water, and that their detection varies by season and utility/sample characteristics. Screening EDCs with cell-based bioassays holds promise for characterizing population exposure to diverse EDCs mixtures.
Collapse
Affiliation(s)
- Rena R Jones
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.
| | - Diana A Stavreva
- Laboratory of Receptor Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Peter J Weyer
- Center for Health Effects of Environmental Contamination, University of Iowa, Iowa City, IA, United States
| | - Lyuba Varticovski
- Laboratory of Receptor Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Maki Inoue-Choi
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Danielle N Medgyesi
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Nicole Chavis
- Milken Institute of Public Health, George Washington University, Washington, DC, United States
| | - Barry I Graubard
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Terence Cain
- State Hygienic Laboratory, University of Iowa, Coralville, IA, United States
| | - Michael Wichman
- State Hygienic Laboratory, University of Iowa, Coralville, IA, United States
| | - Laura E Beane Freeman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Gordon L Hager
- Laboratory of Receptor Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Mary H Ward
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
10
|
Thyroid-Disrupting Activities of Groundwater from a Riverbank Filtration System in Wuchang City, China: Seasonal Distribution and Human Health Risk Assessment. J CHEM-NY 2020. [DOI: 10.1155/2020/2437082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The recombinant thyroid hormone receptor (TR) gene yeast assay was used to evaluate thyroid disruption caused by groundwater from the riverbank filtration (RBF) system in Wuchang City, China. To investigate seasonal fluctuations, groundwater was collected during three seasons. Although no TR agonistic activity was found, many water samples exhibited TR antagonistic activity. The bioassay-derived amiodarone hydrochloride (AH) equivalents ranged from 2.99 to 274.40 μg/L. Water samples collected from the riverbank filtration system during the dry season had higher TR antagonistic activity. All samples presented adverse 3,3′,5-triiodo-L-thyronine (T3) equivalent levels, ranging from −2.00 to −2.12 μg/kg. Following exposure to water samples with substantial TR antagonist activity, predicted hormonal changes in humans of different gender and age ranged from 0.65 to 1.48 μg/kg of T3, being 47% to 231% of normal. No obvious difference was found between genders or among age groups. Overall, the results revealed that the RBF system could remove the thyroid-disrupting chemicals in the river water to some extent. Considering the varying degrees of risk to human health, further treatment is needed to remove the potential thyroid-disrupting chemicals in pumping water after riverbank filtration to ensure drinking water safety.
Collapse
|
11
|
Cathey AL, Watkins D, Rosario ZY, Vélez C, Alshawabkeh AN, Cordero JF, Meeker JD. Associations of Phthalates and Phthalate Replacements With CRH and Other Hormones Among Pregnant Women in Puerto Rico. J Endocr Soc 2019; 3:1127-1149. [PMID: 31093596 PMCID: PMC6510018 DOI: 10.1210/js.2019-00010] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/05/2019] [Indexed: 11/25/2022] Open
Abstract
CONTEXT Phthalates are endocrine-disrupting chemicals that may be associated with adverse birth outcomes. Dysregulation of maternal endocrine homeostasis could be a possible biological pathway between phthalates and birth outcomes. OBJECTIVE Examine associations between 19 maternal urinary phthalate or phthalate replacement metabolites and 9 serum hormones measured over two time points during pregnancy. DESIGN Longitudinal study conducted in the PROTECT pregnancy cohort. SETTING Puerto Rico. PATIENTS Six hundred seventy-seven women in the first trimester of pregnancy. MAIN OUTCOME MEASURES SERUM CRH, estriol, SHBG, progesterone, TSH, total T3, free T4, total T4, and testosterone. RESULTS T3 was significantly associated with most metabolites. CRH was inversely associated with mono carboxyisononyl phthalate [MCNP; percent change (%Δ), -4.08; 95% CI, -7.24, -0.804], mono-3-carboxypropyl phthalate (MCPP; %Δ, -5.25; 95% CI, -8.26, -2.14), mono-2-ethyl-5-carboxypentyl phthalate (MECPP; %Δ, -18.4; 95% CI, -30.4, -4.37), mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP; %Δ, -13.4; 95% CI, -22.7, -2.92), and mono-2-ethyl-5-oxohexyl phthalate (MEOHP; %Δ, -12.7; 95% CI, -22.2, -2.20). Positive associations were found between numerous phthalate metabolites and free T4, T4, and the T3/T4 ratio. Testosterone was positively associated with mono hydroxybutyl phthalate (MHBP; %Δ, 4.71; 95% CI, 0.27, 9.35) and inversely associated with monoethyl phthalate (MEP; %Δ, -14.5; 95% CI, -24.3, -3.42), and relationships with MCNP and mono carboxyisooctyl phthalate (MCOP) were significantly modified by study visit. Finally, an inverse association was found between mono-2-ethyl-5-hydrohexyl terephthalate (MEHHTP), a terephthalate metabolite, and progesterone at visit 3 only (%Δ, -13.1; 95% CI, -22.3, -2.75). CONCLUSIONS These results indicate that exposure to phthalates may differentially impact the maternal endocrine system at different points during pregnancy, and that exposures to phthalate replacement chemicals may be particularly important to consider in future human health studies.
Collapse
Affiliation(s)
- Amber L Cathey
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Deborah Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Zaira Y Rosario
- Graduate School of Public Health, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Carmen Vélez
- Graduate School of Public Health, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | | | - José F Cordero
- College of Public Health, Athens, University of Georgia, Athens, Georgia
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| |
Collapse
|
12
|
Oliveira KJ, Chiamolera MI, Giannocco G, Pazos-Moura CC, Ortiga-Carvalho TM. Thyroid Function Disruptors: from nature to chemicals. J Mol Endocrinol 2018; 62:JME-18-0081. [PMID: 30006341 DOI: 10.1530/jme-18-0081] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/03/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022]
Abstract
The modern concept of thyroid disruptors includes man-made chemicals and bioactive compounds from food that interfere with any aspect of the hypothalamus-pituitary-thyroid axis, thyroid hormone biosynthesis and secretion, blood and transmembrane transport, metabolism and local action of thyroid hormones. This review highlights relevant disruptors that effect populations through their diet: directly from food itself (fish oil and polyunsaturated fatty acids, pepper, coffee, cinnamon and resveratrol/grapes), through vegetable cultivation (pesticides) and from containers for food storage and cooking (bisphenol A, phthalates and polybrominated diphenyl ethers). Due to the vital role of thyroid hormones during every stage of life, we review effects from the gestational period through to adulthood, including evidence from in vitro studies, rodent models, human trials and epidemiological studies.
Collapse
Affiliation(s)
- Karen J Oliveira
- K Oliveira, Laboratório de Fisiologia Endócrina e Metabologia, Physiology and Pharmacology, Federal Fluminense University, Niteroi, Brazil
| | - Maria Izabel Chiamolera
- M Chiamolera, Endocrinology, Universidade Federal de Sao Paulo Escola Paulista de Medicina, Sao Paulo, Brazil
| | - Gisele Giannocco
- G Giannocco, Laboratório de Endocrinologia Molecular e Translacional, Universidade Federal de Sao Paulo Escola Paulista de Medicina, Sao Paulo, Brazil
| | - Carmen Cabanelas Pazos-Moura
- C Pazos-Moura, Laboratório de Endocrinologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tania Maria Ortiga-Carvalho
- T Ortiga-Carvalho, Laboratório de Endocrinologia Translacional, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Wu W, Zhou F, Wang Y, Ning Y, Yang JY, Zhou YK. Exposure to phthalates in children aged 5-7years: Associations with thyroid function and insulin-like growth factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:950-956. [PMID: 27884522 DOI: 10.1016/j.scitotenv.2016.06.146] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/18/2016] [Accepted: 06/18/2016] [Indexed: 06/06/2023]
Abstract
This study aimed to evaluate the associations between phthalate concentrations and thyroid function in preschool children. We collected demographic data and biological samples from 216 children aged 5-7years. We calculated urinary concentrations of eight mono-phthalate metabolites (mPAEs) separately for children from urban and rural areas and investigated their associations with thyroid function and growth hormones. mPAE concentrations were higher in children from the urban area than in those from the rural area, and most mPAEs were positively associated with free triiodothyronine and free thyroxine. The insulin-like growth factor 1 (IGF-1) concentration decreased 0.082ng/mL (95% confidence interval [CI]: -1.34, -0.113) with each 1ng/mL increase in monomethyl phthalate (MMP) and 0.132ng/mL (95% CI: -0.209, -0.055) with each 1ng/mL increase in mono-n-butyl phthalate. The insulin-like growth factor binding protein 3 concentration decreased by 0.01mg/L (95% CI: -0.001, -0.000) or 0.01mg/L (95% CI: -0.003, -0.000) with each 1ng/mL increase in MMP or monoethyl phthalate, respectively. Exposure to some phthalates at 5-7years of age might interfere with thyroid hormones and growth.
Collapse
Affiliation(s)
- Wei Wu
- MOE Key Laboratory of Environment & Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan 430065, China
| | - Feng Zhou
- MOE Key Laboratory of Environment & Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Wang
- MOE Key Laboratory of Environment & Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yong Ning
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan 430065, China
| | - Jian-Ye Yang
- Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Yi-Kai Zhou
- MOE Key Laboratory of Environment & Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
14
|
Liu YH, Zhang SH, Ji GX, Wu SM, Guo RX, Cheng J, Yan ZY, Chen JQ. Occurrence, distribution and risk assessment of suspected endocrine-disrupting chemicals in surface water and suspended particulate matter of Yangtze River (Nanjing section). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 135:90-97. [PMID: 27721125 DOI: 10.1016/j.ecoenv.2016.09.035] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 06/06/2023]
Abstract
The occurrence and distribution of eight selected endocrine-disrupting chemicals were investigated in samples of surface water and suspended particulate matter (SPM) in Nanjing section of Yangtze River over a year (the flow period, the wet period and the dry period). All target compounds were detected at least once in surface water with 4-tert-butylphenol (4-TBP), nonyphenol (NP) and bisphenol A (BPA) as the dominant compounds, with concentrations in the range of 225-1121ng/L, 1.4-858ng/L and 1.7-563ng/L, respectively. Except for December, all selected compounds for the other sampling times were not found in all sampling points. NP (mean concentration 69.8µg/g) and BPA (mean concentration 51.8µg/g) were also the dominant estrogens in SPM. In addition, the highest total compounds concentrations were found in December in both phases, which could be due to the low flow conditions and temperature during this season. Meanwhile, a significant positive correlation was found between the total compounds concentrations in the water phase and those in SPM phase. Risk assessment based on the calculated risk quotients (RQ) showed that low and moderate risk for the aquatic environment from presence of the target compounds at all sampling points with exception of 4-TBP and NP which might pose a high risk to aquatic organisms.
Collapse
Affiliation(s)
- Yan-Hua Liu
- Key laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Sheng-Hu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China
| | - Gui-Xiang Ji
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China
| | - Sheng-Min Wu
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China
| | - Rui-Xin Guo
- Key laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Jie Cheng
- Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310013, China
| | - Zheng-Yu Yan
- Key laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Science, China Pharmaceutical University, Nanjing 211198, China.
| | - Jian-Qiu Chen
- Key laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Science, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
15
|
Li B, Xu X, Zhu Y, Cao J, Zhang Y, Huo X. Neonatal phthalate ester exposure induced placental MTs, FATP1 and HFABP mRNA expression in two districts of southeast China. Sci Rep 2016; 6:21004. [PMID: 26867681 PMCID: PMC4751481 DOI: 10.1038/srep21004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 01/11/2016] [Indexed: 02/05/2023] Open
Abstract
Plastic production releases phthalate esters (PAEs), which can alter the expression of metallothioneins (MTs), fatty acid transport protein 1 (FATP1) and heart fatty acid binding protein (HFABP). A total of 187 mother-infant pairs were recruited, 127 from Chenghai (high exposed group) and 60 from Haojiang (low exposed group), to investigate the association between neonatal PAE exposure and mRNA expression of placental MTs, FATP1 and HFABP. Umbilical cord blood and placenta samples were collected for measuring five PAE concentrations and detecting mRNA levels of MTs, FATP1 and HFABP. Butylbenzyl phthalate (BBP), di(2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DNOP) were significantly higher in the high exposed group compared to the low exposed group. FATP1 and HFABP mRNA in the high exposed group were higher than that in the low exposed group while MT-1A was contrary. Both dimethyl phthalate (DMP) and DEHP were correlated with higher MT and MT-2A expression, while diethyl phthalate (DEP) was also positively correlated with MT-1A and FATP1 expression in female infants. DEHP exposure was negatively correlated with birth weight and gestational age in male infants. These results show that neonatal PAE exposure alters the mRNA expression of placental MTs and FATP1, which are related to fetal growth and development.
Collapse
Affiliation(s)
- Bin Li
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Rd., Shantou, 515041, Guangdong, China
- The Second Affiliated Hospital of Shantou University Medical College, 69 Xiabei Rd., Shantou, 515041, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Rd., Shantou, 515041, Guangdong, China
- Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Rd., Shantou, 515041, Guangdong, China
| | - Yueqin Zhu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Rd., Shantou, 515041, Guangdong, China
| | - Junjun Cao
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Rd., Shantou, 515041, Guangdong, China
| | - Yuling Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Rd., Shantou, 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Rd., Shantou, 515041, Guangdong, China
| |
Collapse
|
16
|
Zhang Y, Li Y, Qin Z, Wang H, Li J. A screening assay for thyroid hormone signaling disruption based on thyroid hormone-response gene expression analysis in the frog Pelophylax nigromaculatus. J Environ Sci (China) 2015; 34:143-154. [PMID: 26257357 DOI: 10.1016/j.jes.2015.01.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 12/30/2014] [Accepted: 01/16/2015] [Indexed: 06/04/2023]
Abstract
Amphibian metamorphosis provides a wonderful model to study the thyroid hormone (TH) signaling disrupting activity of environmental chemicals, with Xenopus laevis as the most commonly used species. This study aimed to establish a rapid and sensitive screening assay based on TH-response gene expression analysis using Pelophylax nigromaculatus, a native frog species distributed widely in East Asia, especially in China. To achieve this, five candidate TH-response genes that were sensitive to T3 induction were chosen as molecular markers, and T3 induction was determined as 0.2 nmol/L T3 exposure for 48 hr. The developed assay can detect the agonistic activity of T3 with a lowest observed effective concentration of 0.001 nmol/L and EC50 at around 0.118-1.229 nmol/L, exhibiting comparable or higher sensitivity than previously reported assays. We further validated the efficiency of the developed assay by detecting the TH signaling disrupting activity of tetrabromobisphenol A (TBBPA), a known TH signaling disruptor. In accordance with previous reports, we found a weak TH agonistic activity for TBBPA in the absence of T3, whereas a TH antagonistic activity was found for TBBPA at higher concentrations in the presence of T3, showing that the P. nigromaculatus assay is effective for detecting TH signaling disrupting activity. Importantly, we observed non-monotonic dose-dependent disrupting activity of TBBPA in the presence of T3, which is difficult to detect with in vitro reporter gene assays. Overall, the developed P. nigromaculatus assay can be used to screen TH signaling disrupting activity of environmental chemicals with high sensitivity.
Collapse
Affiliation(s)
- Yinfeng Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.; Department of Environmental Bio-Technology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yuanyuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China..
| | - Huili Wang
- Department of Environmental Bio-Technology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jianzhong Li
- Department of Environmental Bio-Technology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
17
|
Yang J, Chan KM. Evaluation of the toxic effects of brominated compounds (BDE-47, 99, 209, TBBPA) and bisphenol A (BPA) using a zebrafish liver cell line, ZFL. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 159:138-147. [PMID: 25544063 DOI: 10.1016/j.aquatox.2014.12.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 06/04/2023]
Abstract
The toxic effects of three polybrominated diphenyl ether (PBDE) congeners (BDE-47, -99, and -209), tetrabromobisphenol A (TBBPA) and bisphenol A (BPA), were evaluated by determining their 24h and 96 h median lethal concentrations using a zebrafish liver cell line, ZFL. It was found that BDE-47, BDE-99 and TBBPA showed comparative cytotoxicity within the range of 1.2-4.2 μM, and were more toxic than BPA (367.1 μM at 24 h and 357.6 μM at 96 h). However, BDE-209 induced only 15% lethality with exposures up to 25 μM. The molecular stresses of BDE-47, -99, TBBPA and BPA involved in thyroid hormone (TH) homeostasis and hepatic metabolism were also investigated. Using a reporter gene system to detect zebrafish thyroid hormone receptor β (zfTRβ) transcriptional activity, the median effective concentration of triiodothyronine (T3) was determined to be 9.2×10(-11) M. BDE-47, BDE-99, TBBPA and BPA alone, however, did not exhibit zfTRβ agonistic activity. BPA displayed T3 (0.1 nM) induced zfTRβ antagonistic activity with a median inhibitory concentration of 19.3 μM. BDE-47, BDE-99 and TBBPA displayed no antagonistic effects of T3-induced zfTRβ activity. Target gene expressions were also examined under acute exposures. The significant inhibition of different types of deiodinases by all of the test chemicals indicated TH circulation disruption. All four chemicals, especially BPA, were able to affect transcripts of phase II hepatic metabolizing enzymes (UGT2A1, SULT1) in vitro. In conclusion, the zfTRβ reporter gene system developed here helps delineate an in vitro model to enable the analysis of the TH disruption effects of environmental pollutants in fish. BPA and the brominated compounds tested were able to disrupt the TH system at the gene expression level, probably through the deiodination pathways.
Collapse
Affiliation(s)
- Jie Yang
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong Special Administrative Region
| | - King Ming Chan
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong Special Administrative Region.
| |
Collapse
|
18
|
Chen CH, Chou PH, Kawanishi M, Yagi T. Occurrence of xenobiotic ligands for retinoid X receptors and thyroid hormone receptors in the aquatic environment of Taiwan. MARINE POLLUTION BULLETIN 2014; 85:613-618. [PMID: 24461695 DOI: 10.1016/j.marpolbul.2014.01.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 12/20/2013] [Accepted: 01/07/2014] [Indexed: 06/03/2023]
Abstract
Various synthetic compounds are frequently discharged into the environment via human activities. Among them, certain contaminants may disrupt normal physiological functions of wildlife and humans via interactions with nuclear receptors. To protect human health and the environment, it is important to detect environmental ligands for human nuclear receptors. In this study, yeast-based reporter gene assays were used to investigate the occurrence of xenobiotic ligands for retinoid X receptors (RXR) and thyroid hormone receptors (TR) in the aquatic environment of Taiwan. Experimental results revealed that RXR agonist/antagonist activity was detected in river water and sediment samples. In particular, high RXR agonist/antagonist activity was found in the samples collected near river mouths. Additionally, few samples also elicited significant TR antagonist activity. Our findings show that the aquatic environment of Taiwan was contaminated with RXR and TR ligands. Further study is necessary to identify these xenobiotic RXR and TR agonists and antagonists.
Collapse
Affiliation(s)
- Chien-Hsun Chen
- Department of Environmental Engineering, National Cheng Kung University, 1, University Road, Tainan City 70101, Taiwan
| | - Pei-Hsin Chou
- Department of Environmental Engineering, National Cheng Kung University, 1, University Road, Tainan City 70101, Taiwan.
| | - Masanobu Kawanishi
- Graduate School of Science and Radiation Research Center, Osaka Prefecture University, 1-2 Gakuen-cho, Sakai, Osaka 599-8570, Japan
| | - Takashi Yagi
- Graduate School of Science and Radiation Research Center, Osaka Prefecture University, 1-2 Gakuen-cho, Sakai, Osaka 599-8570, Japan
| |
Collapse
|
19
|
Dong RR, Yang SJ, Feng RJ, Fang LL, Sun YL, Zhang YG, Xie XJ, Wang DS. Complete feminization of catfish by feeding Limnodilus, an annelid worm collected in contaminated streams. ENVIRONMENTAL RESEARCH 2014; 133:371-379. [PMID: 24952460 DOI: 10.1016/j.envres.2014.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/10/2014] [Accepted: 05/16/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Feminization of animals derived from areas polluted by endocrine disrupting chemicals (EDCs) has been observed in all classes of vertebrates. However, feminization of artificially reared offspring by feeding of specific living organisms has never been reported. METHODS Different food (including Limnodilus spp collected from the wild) and time treatment were applied to southern catfish. In addition, EDCs in Limnodilus spp., an annelid worm collected from wild contaminated small streams, was detected by LC-MS (Liquid chromatography-mass spectrometry). Serum estradiol-17β and vitellogenin (VTG) levels and gonadal Sf1, Dmrt1, Foxl2, Cyp19a1a expression levels in the catfish were measured through Estradiol/VTG EIA Kit and real-time PCR. RESULTS Here we report that feeding of Limnodilus spp. resulted in complete feminization of southern catfish, which has a 1:1 sex ratio in wild conditions. Furthermore, HPLC analysis showed that the extraction of Limnodilus spp. contained EDCs, including bisphenol A (BPA), diethylstilbestrol (DES), 4-tert-octylphenol (4-t-OP) and 4-nonylphenol (4-NP), which were further confirmed by LC-MS. Feeding southern catfish using commercial diets sprayed with EDCs cocktail also resulted in 100% female, whereas the control fish displayed approximate 1:1 sex ratio. Limnodilus spp. fed fish displayed similar serum estradiol-17β and VTG levels and gonadal Sf1, Dmrt1, Foxl2, Cyp19a1a expression levels to those of female control. CONCLUSION These results demonstrated that EDCs in Limnodilus spp. cause southern catfish feminization by affecting aromatase expression and endogenous estrogen level. This is the first report showing that feeding of any living organism resulted in complete feminization of a vertebrate.
Collapse
Affiliation(s)
- Ran-ran Dong
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, China
| | - Shi-jie Yang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, China; Department of Hematology, Xinqiao Hospital, The Third Military Medical University, Xinqiao Street, Chongqing, China
| | - Rui-juan Feng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, China
| | - Ling-ling Fang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, China
| | - Yun-lv Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, China
| | - Yao-guang Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, China
| | - Xiao-jun Xie
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, China
| | - De-shou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, China.
| |
Collapse
|