1
|
Limić I, Butorac L, Jakovljević T, Lovreškov L, Bratinčević MV, Bakšić D, Jelić G. Atmospheric deposition patterns in bulk open field precipitation and throughfall in Aleppo pine forest and black pine forest on the eastern Adriatic coast. ENVIRONMENTAL RESEARCH 2024; 262:119723. [PMID: 39179141 DOI: 10.1016/j.envres.2024.119723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
The Mediterranean region, with its unique ecological characteristics, is particularly sensitive to global environmental changes, including climate change and impact of air pollution. Although Aleppo pine and black pine forests are the most abundant on the eastern Adriatic coast, atmospheric deposition in these forests is poorly studied. Changes in the chemical composition of precipitation as it passes through the tree canopy can lead to soil and groundwater eutrophication, and soil acidification, which affects plant vitality. In this study, the dynamics of ion deposition in Aleppo pine forest (Pinus halepensis Mill.) and black pine forest (Pinus nigra Arnold) on the eastern Adriatic coast are investigated, focusing on throughfall and bulk open field depositions. The aim of our research was to fill the gaps in understanding the influence of tree canopies on deposition fluxes in two different Mediterranean pine stands and to compare total inorganic nitrogen loads with critical loads. Over a period of two years, bulk open field precipitation and throughfall were sampled, measured and analysed using the ICP Forest methodology. The results indicate significant differences in ion deposition between bulk open field and throughfall, with throughfall showing higher values for almost all ions. The highest enrichment ratio was determined for K+. The comparison of the actual inorganic nitrogen load with the critical nitrogen load for Mediterranean pine forests revealed that the inorganic nitrogen load exceeded the critical load in the Aleppo pine forest. Ion deposition increased in the throughfall compared to bulk precipitation, which can be attributed to the seasonality of precipitation, including leaching and long dry periods. These findings enhance our understanding of ion deposition fluxes in vulnerable Mediterranean pine ecosystems and emphasize the need for long-term research on this topic in the actual changing environmental conditions.
Collapse
Affiliation(s)
- Ivan Limić
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000, Split, Croatia.
| | - Lukrecija Butorac
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000, Split, Croatia.
| | - Tamara Jakovljević
- Croatian Forest Research Institute, Cvjetno Naselje 41, 10450, Jastrebarsko, Croatia.
| | - Lucija Lovreškov
- Croatian Institute of Public Health, Borongajska cesta 83 g, 10000, Zagreb, Croatia.
| | | | - Darko Bakšić
- Faculty of Forestry and Wood Technology, Svetošimunska cesta 23, 10000, Zagreb, Croatia.
| | - Goran Jelić
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000, Split, Croatia.
| |
Collapse
|
2
|
Ruiz-Checa R, Pérez-Jordán H, García-Gómez H, Prieto-Benítez S, Gónzalez-Fernández I, Alonso R. Foliar nitrogen uptake in broadleaf evergreen Mediterranean forests: Fertilisation experiment with labelled nitrogen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171865. [PMID: 38518824 DOI: 10.1016/j.scitotenv.2024.171865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Atmospheric nitrogen (N) deposition in Mediterranean sclerophyllous forests of Holm oak (Quercus rotundifolia, Q. ilex) in Spain often exceeds empirical critical loads established for ecosystem conservation. There are still uncertainties on the capacity of canopy retention and uptake of the atmospheric N deposited of these forests. Studying and analysing all the forest nitrogen-cycle processes is essential to understand the potential effect of N deposition in these ecosystems. This study conducted a year-long short-term fertilisation experiment with labelled ammonium (15N-NH4) and nitrate (15N-NO3) to estimate foliar N absorption rates and assess the influence of leaf phenology and meteorological seasonal variations. Fertilising solutions were prepared to simulate low and high wet N deposition concentration, based on data reported from previous studies. Additionally, ecophysiological and meteorological measurements were collected to explore potential relationships between absorption rates, plant activity, and weather conditions. The results showed that Holm oak leaves were able to absorb both oxidised and reduced N compounds, with higher rates of NH4+ absorption. N recovery of both NH4+ and NO3- was higher in the low concentration treatments, suggesting reduced effectiveness of absorption as concentration increases. Foliar absorption rates were leaf-age dependent, with the highest values observed in young developing leaves. Foliar uptake showed seasonal changes with a clear reduction during the summer, linked to drought and dry weather conditions, and showing also smaller leaf net assimilation and stomatal conductance. During the rest of the year, foliar N absorption was not clearly associated to plant physiological activity but with environmental conditions. Our findings suggest that Holm oak canopies could absorb an important part of the incoming N deposition, but this process is compound, season and leaf phenology dependent. Further research is therefore needed to better understand and model this part of the N cycle.
Collapse
Affiliation(s)
- Raquel Ruiz-Checa
- Ecotoxicology of Air Pollution, CIEMAT (Edif.70), Avda. Complutense n° 40, Madrid 28040, Spain; Dept. of Biology, Geology, Physics and Inorganic Chemistry, Universidad Rey Juan Carlos, Móstoles 28933, Madrid, Spain.
| | - Hugo Pérez-Jordán
- Ecotoxicology of Air Pollution, CIEMAT (Edif.70), Avda. Complutense n° 40, Madrid 28040, Spain
| | - Héctor García-Gómez
- Ecotoxicology of Air Pollution, CIEMAT (Edif.70), Avda. Complutense n° 40, Madrid 28040, Spain
| | - Samuel Prieto-Benítez
- Ecotoxicology of Air Pollution, CIEMAT (Edif.70), Avda. Complutense n° 40, Madrid 28040, Spain
| | | | - Rocío Alonso
- Ecotoxicology of Air Pollution, CIEMAT (Edif.70), Avda. Complutense n° 40, Madrid 28040, Spain
| |
Collapse
|
3
|
Lusk MG, Garzon PS, Muni-Morgan A. Nitrogen forms and dissolved organic matter optical properties in bulk rainfall, canopy throughfall, and stormwater in a subtropical urban catchment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165243. [PMID: 37394069 DOI: 10.1016/j.scitotenv.2023.165243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/07/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
The study of nitrogen (N) transformation in urban ecosystems is crucial in the protection of coastal water bodies because excess N may fuel harmful algae blooms (HABs). The purpose of this investigation was to study and identify the forms and concentrations of N in rainfall, throughfall, and stormwater runoff for 4 storm events in a subtropical urban ecosystem and to use fluorescence spectroscopy to evaluate the optical properties and expected lability of dissolved organic matter (DOM) in the same samples. The rainfall contained both inorganic and organic N pools, and organic N as nearly 50 % of total dissolved N in the rainfall. As water moved through the urban water cycle, from rainfall to stormwater and from rainfall to throughfall, it was enriched in total dissolved N, with most of the enrichment coming from dissolved organic N. Throughfall fluxes of total dissolved N were as high as 0.67 kg ha-1, compared to 0.44 kg ha-1 from rainfall, suggesting that the urban tree canopy can facilitate anthropogenic subsidies of N to the urban water cycle. Through analysis of sample optical properties, we saw that the throughfall presented the highest humification index and the lowest biological index when compared to rainfall, suggesting throughfall likely consists of higher molecular weight compounds of greater recalcitrance. This study highlights the importance of the dissolved organic N fraction of urban rainfall, stormwater, and throughfall and shows how the chemical composition of dissolved organic nutrients can change as rainfall is transformed into throughfall in the urban tree canopy.
Collapse
Affiliation(s)
- Mary G Lusk
- Soil, Water, and Ecosystems Science Department, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, USA.
| | - Paula Sanchez Garzon
- Soil, Water, and Ecosystems Science Department, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, USA
| | - Amanda Muni-Morgan
- School of Natural Resources and Environment, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, USA
| |
Collapse
|
4
|
Pereira JN, Mantovani VA, de Mello CR, Fornaro A, Vieira-Filho M. Nitrogen atmospheric deposition driven by seasonal processes in a Brazilian region with agricultural background. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37174-37184. [PMID: 36571691 DOI: 10.1007/s11356-022-24870-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Understanding the seasonal patterns and influencing factors of nitrogen atmospheric deposition is essential to evaluate human impacts on the air quality and nitrogen biogeochemical cycle. However, evaluation of the nitrogen deposition flux, especially in South America agricultural regions, has not been fully investigated. In this paper, we quantified the atmospheric wet deposition fluxes of total dissolved nitrogen (TDN), dissolved organic nitrogen (DON), and dissolved inorganic nitrogen (DIN), in a region with agricultural and livestock predominance in the Southern Minas Gerais region, Brazil, from May 2018 to April 2019. Deposition fluxes of nitrogen species in the wet season (October-March) were on average 4.8-fold higher than those in the dry season, which revealed significant seasonal variations driven largely by the seasonality of rainfall and agricultural operations. We also found high NO3-/NH4+ ratios (average = 8.25), with higher values in dry season (NO3-/NH4+ = 12.8) in comparison with wet season (NO3-/NH4+ = 4.48), which revealed a higher relative contribution of NOx emissions from traffic sources in dry season. We also estimated the influence of atmospheric deposition of inorganic nitrogen (N-DIN) on environmental ecosystems, being 2.01 kgNha-1 year-1 with potential risk of acidification and eutrophication of 30%. Therefore, attention should be paid to the role of wet atmospheric deposition of nitrogen as a source of nitrogen environmental pollution in agricultural regions.
Collapse
Affiliation(s)
- Jaqueline Natiele Pereira
- Departamento de Engenharia Ambiental (DAM), Universidade Federal de Lavras (UFLA), Campus da UFLA, Lavras, Minas Gerais, 37200-000, Brazil
| | - Vanessa Alves Mantovani
- Departamento de Recursos Hídricos (DRH), Universidade Federal de Lavras (UFLA), Campus da UFLA, Lavras, Minas Gerais, 372000-000, Brazil
| | - Carlos Rogério de Mello
- Departamento de Recursos Hídricos (DRH), Universidade Federal de Lavras (UFLA), Campus da UFLA, Lavras, Minas Gerais, 372000-000, Brazil
| | - Adalgiza Fornaro
- Departamento de Ciências Atmosféricas (DCA), Instituto de Astronomia, Geofísica E Ciências Atmosféricas (IAG) da Universidade de São Paulo (USP), Rua Do Matão, Cidade Universitária, São Paulo, SP, 1226, 05508-090, Brazil
| | - Marcelo Vieira-Filho
- Departamento de Engenharia Ambiental (DAM), Universidade Federal de Lavras (UFLA), Campus da UFLA, Lavras, Minas Gerais, 37200-000, Brazil.
| |
Collapse
|
5
|
Zhang Q, Li Y, Wang M, Wang K, Meng F, Liu L, Zhao Y, Ma L, Zhu Q, Xu W, Zhang F. Atmospheric nitrogen deposition: A review of quantification methods and its spatial pattern derived from the global monitoring networks. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112180. [PMID: 33865187 DOI: 10.1016/j.ecoenv.2021.112180] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Atmospheric nitrogen (N) deposition is a vital component of the global N cycle. Excessive N deposition on the Earth's surface has adverse impacts on ecosystems and humans. Quantification of atmospheric N deposition is indispensable for assessing and addressing N deposition-induced environmental issues. In the present review, we firstly summarized the current methods applied to quantify N deposition (wet, dry, and total N deposition), their advantages and major limitations. Secondly, we illustrated the long-term N deposition monitoring networks worldwide and the results attained via such long-term monitoring. Results show that China faces heavier N deposition than the United States, European countries, and other countries in East Asia. Next, we proposed a framework for estimating the atmospheric wet and dry N deposition using a combined method of surface monitoring, modeling, and satellite remote sensing. Finally, we put forth the critical research challenges and future directions of the atmospheric N deposition. CAPSULE: A review of quantification methods and the global data on nitrogen deposition and a systematic framework was proposed for quantifying nitrogen deposition.
Collapse
Affiliation(s)
- Qi Zhang
- College of Resources and Environmental Sciences; National Academy of Agriculture Green Development; Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing 100193, China; Water Systems and Global Change Group, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Yanan Li
- College of Resources and Environmental Sciences; National Academy of Agriculture Green Development; Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing 100193, China; Water Systems and Global Change Group, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Mengru Wang
- Water Systems and Global Change Group, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Kai Wang
- College of Resources and Environmental Sciences; National Academy of Agriculture Green Development; Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing 100193, China
| | - Fanlei Meng
- College of Resources and Environmental Sciences; National Academy of Agriculture Green Development; Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing 100193, China
| | - Lei Liu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuanhong Zhao
- College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Lin Ma
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, China
| | - Qichao Zhu
- College of Resources and Environmental Sciences; National Academy of Agriculture Green Development; Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing 100193, China
| | - Wen Xu
- College of Resources and Environmental Sciences; National Academy of Agriculture Green Development; Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing 100193, China.
| | - Fusuo Zhang
- College of Resources and Environmental Sciences; National Academy of Agriculture Green Development; Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Mgelwa AS, Kabalika Z, Hu YL. Increasing importance of nitrate-nitrogen and organic nitrogen concentrations in bulk and throughfall precipitation across urban forests in southern China. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e00983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
7
|
Salemaa M, Kieloaho AJ, Lindroos AJ, Merilä P, Poikolainen J, Manninen S. Forest mosses sensitively indicate nitrogen deposition in boreal background areas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114054. [PMID: 32078876 DOI: 10.1016/j.envpol.2020.114054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/27/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Mosses take up nitrogen (N) mainly from precipitation through their surfaces, which makes them competent bioindicators of N deposition. We found positive relationships between the total N concentration (mossN%) of common terrestrial moss species (feather mosses Pleurozium schreberi and Hylocomium splendens, and a group of Dicranum species) and different forms of N deposition in 11-16 coniferous forests with low N deposition load in Finland. The mosses were collected either inside (Dicranum group) or both inside and outside (feather mosses) the forests. Deposition was monitored in situ as bulk deposition (BD) and stand throughfall (TF) and detected for ammonium (NH4+-N), nitrate (NO3--N), dissolved organic N (DON), and total N (Ntot, kg ha-1yr-1). Ntot deposition was lower in TF than BD indicating that tree canopies absorbed N from deposition in N limited boreal stands. However, mossN% was higher inside than outside the forests. In regression equations, inorganic N in BD predicted best the mossN% in openings, while DON in TF explained most variation of mossN% in forests. An asymptotic form of mossN% vs. TF Ntot curves in forests and free NH4+-N accumulation in tissues in the southern plots suggested mosses were near the N saturation state already at the Ntot deposition level of 3-5 kg ha-1yr-1. N leachate from ground litterfall apparently also contributed the N supply of mosses. Our study yielded new information on the sensitivity of boreal mosses to low N deposition and their response to different N forms in canopy TF entering moss layer. The equations predicting the Ntot deposition with mossN% showed a good fit both in forest sites and openings, especially in case of P. schreberi. However, the open site mossN% is a preferable predictor of N deposition in monitoring studies to minimize the effect of tree canopies and N leachate from litterfall on the estimates.
Collapse
Affiliation(s)
- Maija Salemaa
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790, Helsinki, Finland.
| | - Antti-Jussi Kieloaho
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790, Helsinki, Finland
| | - Antti-Jussi Lindroos
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790, Helsinki, Finland
| | - Päivi Merilä
- Natural Resources Institute Finland (Luke), Paavo Havaksentie 3, FI-90570, Oulu, Finland
| | - Jarmo Poikolainen
- Natural Resources Institute Finland (Luke), Paavo Havaksentie 3, FI-90570, Oulu, Finland
| | - Sirkku Manninen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, 00014, Helsingin yliopisto, Finland
| |
Collapse
|
8
|
Avila A, Molowny-Horas R, Camarero L. Stream chemistry response to changing nitrogen and sulfur deposition in two mountain areas in the Iberian Peninsula. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134697. [PMID: 31818551 DOI: 10.1016/j.scitotenv.2019.134697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Sulfur (S) and nitrogen (N) increasing anthropogenic emissions in the last century has arisen wide concern on the ecological effects of S and N deposition. In this paper, we use bulk deposition and stream water measurements in the central Pyrenees (PYR-C and PYR-AT sites) and Montseny (MSY-TM0) covering different time lengths in the period 1983-2017 to investigate how these mountain environments respond to ongoing changes of regional emissions to the atmosphere. PYR-C, in spite of its position far away from urban and industrial areas, presented higher SO4-S, NO3-N and NH4-N bulk deposition than the Montseny site closer to Barcelona and the inclusion of dry deposition only reversed this pattern for NO3-N. This indicates that distance to pollution sources does not protect these mountain sites from a considerable impact of pollution. Time-trends in SO42- and NO3- concentrations in bulk deposition were similar between sites: SO42- monotonically decreased, while NO3- increased until the mid-2000 s and decreased thereafter. In the period 1983 to 2017, SO2 emissions in Europe (EU-28) decreased by 95%, while in the SO42- concentrations in bulk deposition declined by 35-50% in Pyrenees and Montseny respectively and SO42- concentrations in the streams by 25-35%, respectively. Other sources of SO42- (e.g. episodic African dust) may explain the different reduction rate between anthropogenic emissions and bulk deposition. Net S budget was positive for MSY-TM0 (indicating flushing from the catchment) and negative for the PYR-C site (indicating retention), while it was close to zero for the other Pyrenean site, but in the PYR-C site net retention showed a significant increasing trend tending to lower retention in recent years. Bulk N deposition in the Pyrenees was lower but stream concentrations and export was higher than at Montseny, this leading to less N retention in the Pyrenean sites. However, the MSY-TM0 site showed a trend towards less N retention in recent years. This was driven by higher exports during the wet months, which would correspond to a first stage of N saturation according Stoddard's classification.
Collapse
Affiliation(s)
- A Avila
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia E08193, Spain.
| | - R Molowny-Horas
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia E08193, Spain
| | - L Camarero
- CEAB-CSIC, C/Accés Cala Sant Francesc 14, Blanes, Catalonia E17300, Spain
| |
Collapse
|
9
|
García-Gómez H, Izquieta-Rojano S, Aguillaume L, González-Fernández I, Valiño F, Elustondo D, Santamaría JM, Àvila A, Bytnerowicz A, Bermejo V, Alonso R. Joining empirical and modelling approaches to estimate dry deposition of nitrogen in Mediterranean forests. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:427-436. [PMID: 30212797 DOI: 10.1016/j.envpol.2018.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
In Mediterranean areas, dry deposition is a major component of the total atmospheric N input to natural habitats, particularly to forest ecosystems. An innovative approach, combining the empirical inferential method (EIM) for surface deposition of NO3- and NH4+ with stomatal uptake of NH3, HNO3 and NO2 derived from the DO3SE (Deposition of Ozone and Stomatal Exchange) model, was used to estimate total dry deposition of inorganic N air pollutants in four holm oak forests under Mediterranean conditions in Spain. The estimated total deposition varied among the sites and matched the geographical patterns previously found in model estimates: higher deposition was determined at the northern site (28.9 kg N ha-1 year-1) and at the northeastern sites (17.8 and 12.5 kg N ha-1 year-1) than at the central-Spain site (9.4 kg N ha-1 year-1). On average, the estimated dry deposition of atmospheric N represented 77% ± 2% of the total deposition of N, of which surface deposition of gaseous and particulate atmospheric N averaged 10.0 ± 2.9 kg N ha-1 year-1 for the four sites (58% of the total deposition), and stomatal deposition of N gases averaged 3.3 ± 0.8 kg N ha-1 year-1 (19% of the total deposition). Deposition of atmospheric inorganic N was dominated by the surface deposition of oxidized N in all the forests (means of 54% and 42% of the dry and total deposition, respectively). The relative contribution of NO2 to dry deposition averaged from 19% in the peri-urban forests to 11% in the most natural site. During the monitoring period, the empirical critical loads provisionally proposed for ecosystem protection (10-20 kg N ha-1 year-1) was exceeded in three of the four studied forests.
Collapse
Affiliation(s)
- Héctor García-Gómez
- Ecotoxicology of Air Pollution, CIEMAT, Av. Complutense 40, Ed.70, 28040, Madrid, Spain.
| | | | - Laura Aguillaume
- CREAF, Campus de Bellaterra (UAB), Edifici C, 08193, Cerdanyola del Vallés, Spain
| | | | - Fernando Valiño
- Ecotoxicology of Air Pollution, CIEMAT, Av. Complutense 40, Ed.70, 28040, Madrid, Spain
| | - David Elustondo
- LICA, Universidad de Navarra, Irunlarrea 1, 31008, Pamplona, Spain
| | | | - Anna Àvila
- Universitat Autónoma de Barcelona (UAB), Campus de Bellaterra, 08193, Cerdanyola del Vallès, Spain
| | | | - Victoria Bermejo
- Ecotoxicology of Air Pollution, CIEMAT, Av. Complutense 40, Ed.70, 28040, Madrid, Spain
| | - Rocío Alonso
- Ecotoxicology of Air Pollution, CIEMAT, Av. Complutense 40, Ed.70, 28040, Madrid, Spain
| |
Collapse
|
10
|
Vivanco MG, Theobald MR, García-Gómez H, Garrido JL, Prank M, Aas W, Adani M, Alyuz U, Andersson C, Bellasio R, Bessagnet B, Bianconi R, Bieser J, Brandt J, Briganti G, Cappelletti A, Curci G, Christensen JH, Colette A, Couvidat F, Cuvelier C, D’Isidoro M, Flemming J, Fraser A, Geels C, Hansen KM, Hogrefe C, Im U, Jorba O, Kitwiroon N, Manders A, Mircea M, Otero N, Pay MT, Pozzoli L, Solazzo E, Tsyro S, Unal A, Wind P, Galmarini S, Pozzer A. Modeled deposition of nitrogen and sulfur in Europe estimated by 14 air quality model systems: evaluation, effects of changes in emissions and implications for habitat protection. ATMOSPHERIC CHEMISTRY AND PHYSICS 2018; 18:10199-10218. [PMID: 30450115 PMCID: PMC6235743 DOI: 10.5194/acp-18-10199-2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The evaluation and intercomparison of air quality models is key to reducing model errors and uncertainty. The projects AQMEII3 and EURODELTA-Trends, in the framework of the Task Force on Hemispheric Transport of Air Pollutants and the Task Force on Measurements and Modelling, respectively (both task forces under the UNECE Convention on the Long Range Transport of Air Pollution, LTRAP), have brought together various regional air quality models to analyze their performance in terms of air concentrations and wet deposition, as well as to address other specific objectives. This paper jointly examines the results from both project communities by intercomparing and evaluating the deposition estimates of reduced and oxidized nitrogen (N) and sulfur (S) in Europe simulated by 14 air quality model systems for the year 2010. An accurate estimate of deposition is key to an accurate simulation of atmospheric concentrations. In addition, deposition fluxes are increasingly being used to estimate ecological impacts. It is therefore important to know by how much model results differ and how well they agree with observed values, at least when comparison with observations is possible, such as in the case of wet deposition. This study reveals a large variability between the wet deposition estimates of the models, with some performing acceptably (according to previously defined criteria) and others underestimating wet deposition rates. For dry deposition, there are also considerable differences between the model estimates. An ensemble of the models with the best performance for N wet deposition was made and used to explore the implications of N deposition in the conservation of protected European habitats. Exceedances of empirical critical loads were calculated for the most common habitats at a resolution of 100 × 100 m2 within the Natura 2000 network, and the habitats with the largest areas showing exceedances are determined. Moreover, simulations with reduced emissions in selected source areas indicated a fairly linear relationship between reductions in emissions and changes in the deposition rates of N and S. An approximate 20 % reduction in N and S deposition in Europe is found when emissions at a global scale are reduced by the same amount. European emissions are by far the main contributor to deposition in Europe, whereas the reduction in deposition due to a decrease in emissions in North America is very small and confined to the western part of the domain. Reductions in European emissions led to substantial decreases in the protected habitat areas with critical load exceedances (halving the exceeded area for certain habitats), whereas no change was found, on average, when reducing North American emissions in terms of average values per habitat.
Collapse
Affiliation(s)
| | | | | | | | - Marje Prank
- Finnish Meteorological Institute, Helsinki, FI00560, Finland
- Cornell University, Ithaca, NY, 14850, USA
| | - Wenche Aas
- NILU-Norwegian Institute for Air Research, Kjeller, 2007, Norway
| | - Mario Adani
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Martiri di Monte Sole 4, 40129 Bologna, Italy
| | - Ummugulsum Alyuz
- Bahcesehir University Engineering and Natural Sciences Faculty. 34353 Besiktas Istanbul, Turkey
| | - Camilla Andersson
- SMHI, Swedish Meteorological and Hydrological Institute Norrköping, Norrköping, Sweden
| | | | - Bertrand Bessagnet
- INERIS, Institut National de l’Environnement Industriel et des Risques, Parc Alata, 60550 Verneuil-en-Halatte, France
| | | | - Johannes Bieser
- Institute of Coastal Research, Chemistry Transport Modelling Group, Helmholtz-Zentrum Geesthacht, Germany
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, 4000, Denmark
| | - Gino Briganti
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Martiri di Monte Sole 4, 40129 Bologna, Italy
| | - Andrea Cappelletti
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Martiri di Monte Sole 4, 40129 Bologna, Italy
| | - Gabriele Curci
- Department of Physical and Chemical Sciences, University of L’Aquila, L’Aquila, Italy
| | | | - Augustin Colette
- INERIS, Institut National de l’Environnement Industriel et des Risques, Parc Alata, 60550 Verneuil-en-Halatte, France
| | - Florian Couvidat
- INERIS, Institut National de l’Environnement Industriel et des Risques, Parc Alata, 60550 Verneuil-en-Halatte, France
| | - Cornelis Cuvelier
- Ex European Commission, Joint Research Centre (JRC), 21020 Ispra (Va), Italy
| | - Massimo D’Isidoro
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Martiri di Monte Sole 4, 40129 Bologna, Italy
| | | | - Andrea Fraser
- Ricardo Energy & Environment, Gemini Building, Fermi Avenue, Harwell, Oxon, OX11 0QR, UK
| | - Camilla Geels
- Department of Environmental Science, Aarhus University, Roskilde, 4000, Denmark
| | - Kaj M. Hansen
- Department of Environmental Science, Aarhus University, Roskilde, 4000, Denmark
| | - Christian Hogrefe
- Computational Exposure Division, National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Ulas Im
- Department of Environmental Science, Aarhus University, Roskilde, 4000, Denmark
| | - Oriol Jorba
- BSC, Barcelona Supercomputing Center, Centro National de Supercomputacidn, Nexus II Building, Jordi Girona, 29, 08034 Barcelona, Spain
| | | | - Astrid Manders
- Netherlands Organization for Applied Scientific Research (TNO), Utrecht, the Netherlands
| | - Mihaela Mircea
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Martiri di Monte Sole 4, 40129 Bologna, Italy
| | - Noelia Otero
- IASS, Institute for Advanced Sustainability Studies, Potsdam, Germany
| | - Maria-Teresa Pay
- BSC, Barcelona Supercomputing Center, Centro National de Supercomputacidn, Nexus II Building, Jordi Girona, 29, 08034 Barcelona, Spain
| | - Luca Pozzoli
- European Commission, Joint Research Centre (JRC), Ispra (VA), Italy
| | - Efisio Solazzo
- European Commission, Joint Research Centre (JRC), Ispra (VA), Italy
| | - Svetlana Tsyro
- Climate Modelling and Air Pollution Division, Research and Development Department, Norwegian Meteorological Institute (MET Norway), P.O. Box 43, Blindern, 0313 Oslo, Norway
| | - Alper Unal
- Eurasia Institute of Earth Sciences, Istanbul Technical University, Turkey
| | - Peter Wind
- Climate Modelling and Air Pollution Division, Research and Development Department, Norwegian Meteorological Institute (MET Norway), P.O. Box 43, Blindern, 0313 Oslo, Norway
- Faculty of Science and Technology, University of Tromsø, Tromsø, Norway
| | | | | |
Collapse
|
11
|
Avila A, Aguillaume L, Izquieta-Rojano S, García-Gómez H, Elustondo D, Santamaría JM, Alonso R. Quantitative study on nitrogen deposition and canopy retention in Mediterranean evergreen forests. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:26213-26226. [PMID: 28386886 DOI: 10.1007/s11356-017-8861-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/17/2017] [Indexed: 06/07/2023]
Abstract
To assess the impact of nitrogen (N) pollutants on forest ecosystems, the role of the interactions in the canopy needs to be understood. A great number of studies have addressed this issue in heavily N-polluted regions in north and central Europe. Much less information is available for the Iberian Peninsula, and yet this region is home to mountain forests and alpine grasslands that may be at risk due to excessive N deposition. To establish the basis for ecology-based policies, there is a need to better understand the forest response to this atmospheric impact. To fill this gap, in this study, we measured N deposition (as bulk, wet, and throughfall fluxes of dissolved inorganic nitrogen) and air N gas concentrations from 2011 to 2013 at four Spanish holm oak (Quercus ilex) forests located in different pollution environments. One site was in an area of intensive agriculture, two sites were influenced by big cities (Madrid and Barcelona, respectively), and one site was in a rural mountain environment 40 km north of Barcelona. Wet deposition ranged between 0.54 and 3.8 kg N ha-1 year-1 for ammonium (NH4+)-N and between 0.65 and 2.1 kg N ha-1 year-1 for nitrate (NO3-)-N, with the lowest deposition at the Madrid site for both components. Dry deposition was evaluated with three different approaches: (1) a canopy budget model based in throughfall measurements, (2) a branch washing method, and (3) inferential calculations. Taking the average dry deposition from these methods, dry deposition represented 51-67% (reduced N) and 72-75% (oxidized N) of total N deposition. Canopies retained both NH4+-N and NO3-N, with a higher retention at the agricultural and rural sites (50-60%) than at sites located close to big cities (20-35%, though more uncertainty was found for the site near Madrid), thereby highlighting the role of the forest canopy in processing N pollutant emissions.
Collapse
Affiliation(s)
- Anna Avila
- CREAF, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | - Laura Aguillaume
- CREAF, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | | | | | | | | | - Rocío Alonso
- Ecotoxicology of Air Pollution, CIEMAT, 28040, Madrid, Spain
| |
Collapse
|
12
|
Ochoa-Hueso R, Munzi S, Alonso R, Arróniz-Crespo M, Avila A, Bermejo V, Bobbink R, Branquinho C, Concostrina-Zubiri L, Cruz C, Cruz de Carvalho R, De Marco A, Dias T, Elustondo D, Elvira S, Estébanez B, Fusaro L, Gerosa G, Izquieta-Rojano S, Lo Cascio M, Marzuoli R, Matos P, Mereu S, Merino J, Morillas L, Nunes A, Paoletti E, Paoli L, Pinho P, Rogers IB, Santos A, Sicard P, Stevens CJ, Theobald MR. Ecological impacts of atmospheric pollution and interactions with climate change in terrestrial ecosystems of the Mediterranean Basin: Current research and future directions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 227:194-206. [PMID: 28460237 DOI: 10.1016/j.envpol.2017.04.062] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 04/09/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
Mediterranean Basin ecosystems, their unique biodiversity, and the key services they provide are currently at risk due to air pollution and climate change, yet only a limited number of isolated and geographically-restricted studies have addressed this topic, often with contrasting results. Particularities of air pollution in this region include high O3 levels due to high air temperatures and solar radiation, the stability of air masses, and dominance of dry over wet nitrogen deposition. Moreover, the unique abiotic and biotic factors (e.g., climate, vegetation type, relevance of Saharan dust inputs) modulating the response of Mediterranean ecosystems at various spatiotemporal scales make it difficult to understand, and thus predict, the consequences of human activities that cause air pollution in the Mediterranean Basin. Therefore, there is an urgent need to implement coordinated research and experimental platforms along with wider environmental monitoring networks in the region. In particular, a robust deposition monitoring network in conjunction with modelling estimates is crucial, possibly including a set of common biomonitors (ideally cryptogams, an important component of the Mediterranean vegetation), to help refine pollutant deposition maps. Additionally, increased attention must be paid to functional diversity measures in future air pollution and climate change studies to establish the necessary link between biodiversity and the provision of ecosystem services in Mediterranean ecosystems. Through a coordinated effort, the Mediterranean scientific community can fill the above-mentioned gaps and reach a greater understanding of the mechanisms underlying the combined effects of air pollution and climate change in the Mediterranean Basin.
Collapse
Affiliation(s)
- Raúl Ochoa-Hueso
- Autonomous University of Madrid, Department of Ecology, 2 Darwin Street, Madrid 28049, Spain.
| | - Silvana Munzi
- cE3c Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Piso 5, 1749-016 Lisbon, Portugal
| | - Rocío Alonso
- Air Pollution Division, CIEMAT, Avda. Complutense 22 (edif. 70), Madrid 28040, Spain
| | - María Arróniz-Crespo
- Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| | - Anna Avila
- Center for Ecological Research and Forestry Applications (CREAF), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Victoria Bermejo
- Air Pollution Division, CIEMAT, Avda. Complutense 22 (edif. 70), Madrid 28040, Spain
| | - Roland Bobbink
- B-WARE Research Centre, Radboud University, PO Box 9010, 6525 ED Nijmegen, The Netherlands
| | - Cristina Branquinho
- cE3c Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Piso 5, 1749-016 Lisbon, Portugal
| | - Laura Concostrina-Zubiri
- cE3c Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Piso 5, 1749-016 Lisbon, Portugal
| | - Cristina Cruz
- cE3c Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Piso 5, 1749-016 Lisbon, Portugal
| | - Ricardo Cruz de Carvalho
- cE3c Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Piso 5, 1749-016 Lisbon, Portugal
| | | | - Teresa Dias
- cE3c Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Piso 5, 1749-016 Lisbon, Portugal
| | - David Elustondo
- LICA, Department of Chemistry and Soil Science, University of Navarre, Irunlarrea, 1-31008 Pamplona, Spain
| | - Susana Elvira
- Air Pollution Division, CIEMAT, Avda. Complutense 22 (edif. 70), Madrid 28040, Spain
| | - Belén Estébanez
- Departamento de Biología, Unidad de Botánica, Universidad Autónoma de Madrid, C/ Darwin 2, 28049, Madrid, Spain
| | - Lina Fusaro
- Dept. of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, Italy
| | - Giacomo Gerosa
- Dept. of Mathematics and Physics, Catholic University of Brescia, Via dei Musei 41, Brescia, Italy
| | - Sheila Izquieta-Rojano
- LICA, Department of Chemistry and Soil Science, University of Navarre, Irunlarrea, 1-31008 Pamplona, Spain
| | - Mauro Lo Cascio
- Department of Science for Nature and Natural Resources, University of Sassari, Via Enrico De Nicola 1, 07100 Sassari, Italy
| | - Riccardo Marzuoli
- Dept. of Mathematics and Physics, Catholic University of Brescia, Via dei Musei 41, Brescia, Italy
| | - Paula Matos
- cE3c Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Piso 5, 1749-016 Lisbon, Portugal
| | - Simone Mereu
- Department of Science for Nature and Natural Resources, University of Sassari, Via Enrico De Nicola 1, 07100 Sassari, Italy
| | - José Merino
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Ctra. de Utrera km. 1, 41013 Sevilla, Spain
| | - Lourdes Morillas
- Department of Science for Nature and Natural Resources, University of Sassari, Via Enrico De Nicola 1, 07100 Sassari, Italy
| | - Alice Nunes
- cE3c Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Piso 5, 1749-016 Lisbon, Portugal
| | - Elena Paoletti
- IPSP-CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Luca Paoli
- Department of Life Sciences, University of Siena, Via Mattioli 4, I-53100 Siena, Italy
| | - Pedro Pinho
- cE3c Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Piso 5, 1749-016 Lisbon, Portugal; CERENA-IST-UL, Centro de Recursos Naturais e Ambiente, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Isabel B Rogers
- Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, UK
| | - Arthur Santos
- cE3c Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Piso 5, 1749-016 Lisbon, Portugal
| | - Pierre Sicard
- ACRI-ST, 260 route du Pin Montard, BP 234, 06904 Sophia Antipolis Cedex, France
| | - Carly J Stevens
- Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, UK
| | - Mark R Theobald
- Air Pollution Division, CIEMAT, Avda. Complutense 22 (edif. 70), Madrid 28040, Spain
| |
Collapse
|
13
|
Hu Z, Wang G, Sun X. Precipitation and air temperature control the variations of dissolved organic matter along an altitudinal forest gradient, Gongga Mountains, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:10391-10400. [PMID: 28281058 DOI: 10.1007/s11356-017-8719-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 02/28/2017] [Indexed: 06/06/2023]
Abstract
Dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) contribute significantly to C and N cycling in forest ecosystems. Little information is available on the variations in the DOC and DON concentrations and depositions in bulk and stand precipitation within forests along an altitudinal gradient. To determine the temporal variations in the DOC and DON concentrations and depositions in different forests and the spatial variations along the elevation gradient, the DOC and DON concentrations and depositions were measured in bulk precipitation, throughfall, and stemflow within three forest types, i.e., broadleaf forest (BLF), broadleaf-coniferous forest (BCF), and coniferous forest (CF), during the wet season (May to October) on Gongga Mountain, China, in 2015. The concentrations of bulk precipitation in BLF, BCF, and CF were 3.92, 4.04, and 2.65 mg L-1, respectively, for DOC and were 0.38, 0.26, and 0.29 mg L-1, respectively, for DON. BCF had the highest DOC deposition both in bulk precipitation (45.12 kg ha-1) and stand precipitation (98.52 kg ha-1), whereas the highest DON deposition was in BLF (3.62 kg ha-1 bulk precipitation and 4.11 kg ha-1 stand precipitation) during the study period. The meteorological conditions of precipitation and air temperature significantly influenced the dissolved organic matter (DOM) depositions along the elevation gradient. The leaf area index did not show any correlation with DOM depositions during the growing season.
Collapse
Affiliation(s)
- Zhaoyong Hu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Genxu Wang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Xiangyang Sun
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| |
Collapse
|
14
|
García-Gomez H, Izquieta-Rojano S, Aguillaume L, González-Fernández I, Valiño F, Elustondo D, Santamaría JM, Àvila A, Fenn ME, Alonso R. Atmospheric deposition of inorganic nitrogen in Spanish forests of Quercus ilex measured with ion-exchange resins and conventional collectors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 216:653-661. [PMID: 27344084 DOI: 10.1016/j.envpol.2016.06.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/29/2016] [Accepted: 06/15/2016] [Indexed: 06/06/2023]
Abstract
Atmospheric nitrogen deposition is one of the main threats for biodiversity and ecosystem functioning. Measurement techniques like ion-exchange resin collectors (IECs), which are less expensive and time-consuming than conventional methods, are gaining relevance in the study of atmospheric deposition and are recommended to expand monitoring networks. In the present work, bulk and throughfall deposition of inorganic nitrogen were monitored in three different holm oak forests in Spain during two years. The results obtained with IECs were contrasted with a conventional technique using bottle collectors and with a literature review of similar studies. The performance of IECs in comparison with the conventional method was good for measuring bulk deposition of nitrate and acceptable for ammonium and total dissolved inorganic nitrogen. Mean annual bulk deposition of inorganic nitrogen ranged 3.09-5.43 kg N ha(-1) according to IEC methodology, and 2.42-6.83 kg N ha(-1) y(-1) using the conventional method. Intra-annual variability of the net throughfall deposition of nitrogen measured with the conventional method revealed the existence of input pulses of nitrogen into the forest soil after dry periods, presumably originated from the washing of dry deposition accumulated in the canopy. Important methodological recommendations on the IEC method and discussed, compiled and summarized.
Collapse
Affiliation(s)
- Héctor García-Gomez
- Ecotoxicology of Air Pollution, CIEMAT, Av. Complutense 40, Ed.70, 28040 Madrid, Spain
| | | | - Laura Aguillaume
- CREAF, Campus de Bellaterra (UAB), Edifici C, 08193 Cerdanyola del Vallès, Spain
| | | | - Fernando Valiño
- Ecotoxicology of Air Pollution, CIEMAT, Av. Complutense 40, Ed.70, 28040 Madrid, Spain
| | - David Elustondo
- LICA, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | | | - Anna Àvila
- Universitat Autònoma de Barcelona (UAB), Campus de Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Mark E Fenn
- USDA Forest Service, Riverside, CA 92507, USA
| | - Rocío Alonso
- Ecotoxicology of Air Pollution, CIEMAT, Av. Complutense 40, Ed.70, 28040 Madrid, Spain
| |
Collapse
|