1
|
Alonso-Vásquez T, Fagorzi C, Mengoni A, Oliva M, Cavalieri D, Pretti C, Cangioli L, Bacci G, Ugolini A. Metagenomic surveys show a widespread diffusion of antibiotic resistance genes in a transect from urbanized to marine protected area. MARINE POLLUTION BULLETIN 2025; 213:117640. [PMID: 39908950 DOI: 10.1016/j.marpolbul.2025.117640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 01/31/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
Ports are hot spots of pollution; they receive pollution from land-based sources, marine traffic and port infrastructures. Marine ecosystems of nearby areas can be strongly affected by pollution from port-related activities. Here, we investigated the microbiomes present in sea floor sediments along a transect from the harbour of Livorno (Central Italy) to a nearby marine protected area. Results of 16S rRNA amplicon sequencing and metagenome assembled genomes (MAGs) analyses indicated the presence of different trends of specific bacterial groups (e.g. phyla NB1-j, Acidobacteriota and Desulfobulbales) along the transect, correlating with the measured pollution levels. Human pathogenic bacteria and antibiotic resistance genes (ARGs) were also found. These results demonstrate a pervasive impact of human port activities and highlight the importance of microbiological surveillance of marine sediments, which may constitute a reservoir of ARGs and pathogenic bacteria.
Collapse
Affiliation(s)
- Tania Alonso-Vásquez
- Department of Biology, University of Florence, Sesto Fiorentino, 50019 Florence, Italy
| | - Camilla Fagorzi
- Department of Biology, University of Florence, Sesto Fiorentino, 50019 Florence, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Sesto Fiorentino, 50019 Florence, Italy
| | - Matteo Oliva
- Interuniversity Center of Marine Biology and Applied Ecology (CIBM) "G. Bacci", Livorno, Italy
| | - Duccio Cavalieri
- Department of Biology, University of Florence, Sesto Fiorentino, 50019 Florence, Italy
| | - Carlo Pretti
- Interuniversity Center of Marine Biology and Applied Ecology (CIBM) "G. Bacci", Livorno, Italy; Department of Veterinary Science, University of Pisa, San Piero a Grado, Pisa, Italy
| | - Lisa Cangioli
- Department of Biology, University of Florence, Sesto Fiorentino, 50019 Florence, Italy
| | - Giovanni Bacci
- Department of Biology, University of Florence, Sesto Fiorentino, 50019 Florence, Italy.
| | - Alberto Ugolini
- Department of Biology, University of Florence, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
2
|
Herruzo-Ruiz AM, Trombini C, Moreno-Garrido I, Blasco J, Alhama J, Michán C. Ions and nanoparticles of Ag and/or Cd metals in a model aquatic microcosm: Effects on the abundance, diversity and functionality of the sediment bacteriome. MARINE POLLUTION BULLETIN 2024; 204:116525. [PMID: 38852299 DOI: 10.1016/j.marpolbul.2024.116525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Metals can be adsorbed on particulate matter, settle in sediments and cause alterations in aquatic environments. This study assesses the effect of Ag and/or Cd, both in ionic and nanoparticle (NP) forms, on the microbiome of sediments. For that purpose, aquatic controlled-microcosm experiments were exposed to an environmentally relevant and at tenfold higher doses of each form of the metals. Changes in the bacteriome were inferred by 16S rDNA sequencing. Ionic Ag caused a significant decrease of several bacterial families, whereas the effect was opposite when mixed with Cd, e.g., Desulfuromonadaceae family; in both cases, the bacteriome functionalities were greatly affected, particularly the nitrogen and sulfur metabolism. Compared to ionic forms, metallic NPs produced hardly any change in the abundance of microbial families, although the α-biodiversity of the bacteriome was reduced, and the functionality altered, when exposed to the NPs´ mixture. Our goal is to understand how metals, in different forms and combinations, released into the environment may endanger the health of aquatic ecosystems. This work may help to understand how aquatic metal pollution alters the structure and functionality of the microbiome and biogeochemical cycles, and how these changes can be addressed.
Collapse
Affiliation(s)
- Ana M Herruzo-Ruiz
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain
| | - Chiara Trombini
- Dpt. Ecology and Coastal Management, ICMAN-CSIC, Campus Rio San Pedro, E-11510 Puerto Real (Cadiz), Spain
| | - Ignacio Moreno-Garrido
- Dpt. Ecology and Coastal Management, ICMAN-CSIC, Campus Rio San Pedro, E-11510 Puerto Real (Cadiz), Spain
| | - Julián Blasco
- Dpt. Ecology and Coastal Management, ICMAN-CSIC, Campus Rio San Pedro, E-11510 Puerto Real (Cadiz), Spain
| | - José Alhama
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain
| | - Carmen Michán
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain.
| |
Collapse
|
3
|
Abdallah RZ, Elbehery AHA, Ahmed SF, Ouf A, Malash MN, Liesack W, Siam R. Deciphering the functional and structural complexity of the Solar Lake flat mat microbial benthic communities. mSystems 2024; 9:e0009524. [PMID: 38727215 PMCID: PMC11237645 DOI: 10.1128/msystems.00095-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/04/2024] [Indexed: 06/19/2024] Open
Abstract
The Solar Lake in Taba, Egypt, encompasses one of the few modern-day microbial mats' systems metabolically analogous to Precambrian stromatolites. Solar Lake benthic communities and their adaptation to the Lake's unique limnological cycle have not been described for over two decades. In this study, we revisit the flat mat and describe the summer's shallow water versus exposed microbial community; the latter occurs in response to the seasonal partial receding of water. We employed metagenomic NovaSeq-6000 shotgun sequencing and 16S rRNA, mcrA, and dsrB quantitative PCR. A total of 292 medium-to-high-quality metagenome-assembled genomes (MAGs) were reconstructed. At the structural level, Candidatus Aenigmatarchaeota, Micrarchaeota, and Omnitrophota MAGs were exclusively detected in the shallow-water mats, whereas Halobacteria and Myxococcota MAGs were specific to the exposed microbial mat. Functionally, genes involved in reactive oxygen species (ROS) detoxification and osmotic pressure were more abundant in the exposed than in the shallow-water microbial mats, whereas genes involved in sulfate reduction/oxidation and nitrogen fixation were ubiquitously detected. Genes involved in the utilization of methylated amines for methane production were predominant when compared with genes associated with alternative methanogenesis pathways. Solar Lake methanogen MAGs belonged to Methanosarcinia, Bathyarchaeia, Candidatus Methanofastidiosales, and Archaeoglobales. The latter had the genetic capacity for anaerobic methane oxidation. Moreover, Coleofasciculus chthonoplastes, previously reported to dominate the winter shallow-water flat mat, had a substantial presence in the summer. These findings reveal the taxonomic and biochemical microbial zonation of the exposed and shallow-water Solar Lake flat mat benthic community and their capacity to ecologically adapt to the summer water recession. IMPORTANCE Fifty-five years ago, the extremophilic "Solar Lake" was discovered on the Red Sea shores, garnering microbiologists' interest worldwide from the 1970s to 1990s. Nevertheless, research on the lake paused at the turn of the millennium. In our study, we revisited the Solar Lake benthic community using a genome-centric approach and described the distinct microbial communities in the exposed versus shallow-water mat unveiling microbial zonation in the benthic communities surrounding the Solar Lake. Our findings highlighted the unique structural and functional adaptations employed by these microbial mat communities. Moreover, we report new methanogens and phototrophs, including an intriguing methanogen from the Archaeoglobales family. We describe how the Solar Lake's flat mat microbial community adapts to stressors like oxygen intrusion and drought due to summer water level changes, which provides insights into the genomic strategies of microbial communities to cope with altered and extreme environmental conditions.
Collapse
Affiliation(s)
- Rehab Z Abdallah
- Biology department, The American University in Cairo, Cairo, Egypt
| | - Ali H A Elbehery
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Shimaa F Ahmed
- Biology department, The American University in Cairo, Cairo, Egypt
| | - Amged Ouf
- Biology department, The American University in Cairo, Cairo, Egypt
| | - Mohamed N Malash
- Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, Egypt
| | - Werner Liesack
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Rania Siam
- Biology department, The American University in Cairo, Cairo, Egypt
| |
Collapse
|
4
|
Kottuparambil S, Ashok A, López P, Amad MH, Duarte CM, Agusti S. High temperature and solar radiation in the Red Sea enhance the dissolution of crude oil from surface films. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42034-42048. [PMID: 38856854 PMCID: PMC11219460 DOI: 10.1007/s11356-024-33864-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The Red Sea is a hotspot of biodiversity susceptible to oil pollution. Besides, it is one of the warmest seas on the Earth with highly transparent waters. In this study, we estimated the oil dissolution rates under natural sunlight spectra and temperature conditions using coastal oil slicks collected after the 2019 Sabiti oil spill in the Red Sea. Optical analyses revealed the significant interactive effect of sunlight and temperature in enhancing the dissolution of oil into dissolved organic matter (DOM). The highest oil dissolution rate (38.68 g C m-3 d-1) was observed in full-spectrum sunlight. Oil dissolution significantly enhanced total organic carbon (TOC) and polycyclic aromatic hydrocarbons (PAHs) in seawater. High nucleic acid (HNA) bacteria, likely the oil degraders, proliferated from 30 to 70 - 90% after 4 days. The heavier stable carbon isotopic composition of methane (δ13C-CH4) and lighter stable carbon isotopic composition of carbon dioxide (δ13C-CO2) indicate the putative role of bacterial processes in the natural degradation of crude oil. The results indicated that the combined effect of temperature and solar radiation enhanced the biological and photochemical dissolution of oil on the Red Sea surface.
Collapse
Affiliation(s)
- Sreejith Kottuparambil
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia.
- Mubadala Arabian Center for Climate and Environmental Sciences (ACCESS), New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
| | - Ananya Ashok
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Patricia López
- King Abdullah University of Science and Technology (KAUST), Core Labs, 23955-6900, Thuwal, Saudi Arabia
| | - Maan H Amad
- King Abdullah University of Science and Technology (KAUST), Core Labs, 23955-6900, Thuwal, Saudi Arabia
| | - Carlos M Duarte
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Susana Agusti
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| |
Collapse
|
5
|
Yu C, Meng K, Zhu Z, Liu S, Zhou Z, Zhang H, Xu M. Impacts of cadmium accumulation on the diversity, assembly processes, and co-occurrence patterns of archaeal communities in marine sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171936. [PMID: 38527554 DOI: 10.1016/j.scitotenv.2024.171936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/05/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
There is limited understanding regarding the changes in the ecological processes and the mechanisms of archaeal community in response to heavy metal contamination in the marine sediments. In this study, sediment samples were collected from 46 locations near harbors, and the concentration of heavy metals and the diversity of archaeal communities were investigated to understand the impact of Cd on archaeal communities. The results demonstrated a significant correlation between the diversity of archaeal community and Cd concentration, particularly showing a linear decrease in the species richness with rising Cd concentration. ANME-1b was identified as a significantly enriched archaeal taxon in the higher Cd environment. Null model and neutral community model indicated that the ecological assembly of archaeal communities in marine sediments was primarily governed by the stochastic processes, with dispersal limitation being the primary factor. The contribution of deterministic process to the assembly of archaeal communities in higher Cd environments increased clearly, accompanied by a notable reduction in species migration rates and widths of ecological niche of archaeal populations. Co-occurrence network analysis revealed an obvious increase in species interactions in higher Cd environments, with an apparent rise in the proportion of competitive relationships and an increase in the number of keystone species. Moreover, archaeal species formed a more complex and stable community to cope with Cd stress. This study provides new insights into the impacts of heavy metals on the ecological processes of marine microorganisms and the underlying mechanisms.
Collapse
Affiliation(s)
- Chengfeng Yu
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; Coastal Zone Resources and Environment Engineering Research Center of Jiangsu Province, Nanjing 210023, China
| | - Kun Meng
- Jiangsu Yunfan Testing Technology Co., Ltd., Nanjing 210033, China
| | - Zhiyong Zhu
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; Coastal Zone Resources and Environment Engineering Research Center of Jiangsu Province, Nanjing 210023, China
| | - Shengzhi Liu
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; Coastal Zone Resources and Environment Engineering Research Center of Jiangsu Province, Nanjing 210023, China
| | - Ziyi Zhou
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; Coastal Zone Resources and Environment Engineering Research Center of Jiangsu Province, Nanjing 210023, China
| | - Huan Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Min Xu
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; Coastal Zone Resources and Environment Engineering Research Center of Jiangsu Province, Nanjing 210023, China.
| |
Collapse
|
6
|
Hao Z, Qian J, Zheng F, Lin B, Xu M, Feng W, Zou X. Human-influenced changes in pollution status and potential risk of sediment heavy metals in Xincun Bay, a typical lagoon of Hainan, China. MARINE POLLUTION BULLETIN 2024; 199:115949. [PMID: 38134869 DOI: 10.1016/j.marpolbul.2023.115949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Pollution status and ecological risks associated with sediment heavy metals (Cu, Pb, Zn, Cd, and Cr) were investigated around Xincun Bay, assessing their spatial variations and relationship with sediment physiochemical factors. Higher concentrations and associated risks were observed in the central region, where mariculture activities were concentrated, compared to non-maricultured areas. Despite with overall low concentrations, Cd had a higher ecological risk. Correlation and principal component analyses revealed similar sources for all metals in Xincun Bay. Heavy metal concentrations varied with expansion of mariculture operations in terms of quantity and scale, confirming the influence of mariculture activities. Sediments around mariculture had higher contents of clay, silt, and total organic carbon (TOC), and finer particle sizes. Quantitative analyses through correlation and linear regression indicated that TOC significantly regulated heavy metal concentration and distribution (p < 0.05). Considering its significant association with TOC, the influence of mean grain size should not be overlooked.
Collapse
Affiliation(s)
- Zhe Hao
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jian Qian
- Key Laboratory of Engineering Oceanography, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Fangqin Zheng
- Key Laboratory of Engineering Oceanography, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Bo Lin
- Key Laboratory of Engineering Oceanography, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Min Xu
- School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Weihua Feng
- Key Laboratory of Engineering Oceanography, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Xinqing Zou
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210093, China; Key Laboratory of Coast and Island Development (Nanjing University), Ministry of Education, Nanjing 210093, China.
| |
Collapse
|
7
|
Yu C, Zhu Z, Meng K, Zhang H, Xu M. Unveiling the impact and mechanisms of Cd-driven ecological assembly and coexistence of bacterial communities in coastal sediments of Yellow Sea. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132309. [PMID: 37639798 DOI: 10.1016/j.jhazmat.2023.132309] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/30/2023] [Accepted: 08/13/2023] [Indexed: 08/31/2023]
Abstract
The microbial community assembly processes and underlying mechanisms in response to heavy metal accumulation in coastal sediments remain underexplored. In this study, the heavy metal concentration in samples were found below the marine sediment quality standards. Through partial Mantel tests and linear regression analysis, Cd was identified as the major influencing factor, displaying strongest correlation with the bacterial community in the sediments. The class Desulfuromonadia was identified as a biomarker which showed enrichment in the sediments with high Cd content. Additionally, the results of null model and the neutral community model demonstrated the prominent role of stochastic processes in the assembly of bacterial community. However, with the increase in Cd concentration, the influence of selection processes intensified, resulting in a decline in species migration rate and subsequent reduction in ecological niche width. Furthermore, the intensified competition and an increase in keystone species among bacterial populations further enhanced the stability of the microbial co-occurrence network in response to high Cd concentration. This study offers an insight into the effects of heavy metal on microbial assembly and coexistence, which are conducive to marine ecosystem management and conservation.
Collapse
Affiliation(s)
- Chengfeng Yu
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; Coastal Zone Resources and Environment Engineering Research Center of Jiangsu Province, Nanjing 210023, China
| | - Zhiyong Zhu
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; Coastal Zone Resources and Environment Engineering Research Center of Jiangsu Province, Nanjing 210023, China
| | - Kun Meng
- Jiangsu Yunfan Testing Technology Co., Ltd., Nanjing 210033, China
| | - Huan Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; Coastal Zone Resources and Environment Engineering Research Center of Jiangsu Province, Nanjing 210023, China.
| | - Min Xu
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; Coastal Zone Resources and Environment Engineering Research Center of Jiangsu Province, Nanjing 210023, China.
| |
Collapse
|
8
|
Aldeguer-Riquelme B, Antón J, Santos F. Distribution, abundance, and ecogenomics of the Palauibacterales, a new cosmopolitan thiamine-producing order within the Gemmatimonadota phylum. mSystems 2023; 8:e0021523. [PMID: 37345931 PMCID: PMC10469786 DOI: 10.1128/msystems.00215-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/19/2023] [Indexed: 06/23/2023] Open
Abstract
The phylum Gemmatimonadota comprises mainly uncultured microorganisms that inhabit different environments such as soils, freshwater lakes, marine sediments, sponges, or corals. Based on 16S rRNA gene studies, the group PAUC43f is one of the most frequently retrieved Gemmatimonadota in marine samples. However, its physiology and ecological roles are completely unknown since, to date, not a single PAUC43f isolate or metagenome-assembled genome (MAG) has been characterized. Here, we carried out a broad study of the distribution, abundance, ecotaxonomy, and metabolism of PAUC43f, for which we propose the name of Palauibacterales. This group was detected in 4,965 16S rRNA gene amplicon datasets, mainly from marine sediments, sponges, corals, soils, and lakes, reaching up to 34.3% relative abundance, which highlights its cosmopolitan character, mainly salt-related. The potential metabolic capabilities inferred from 52 Palauibacterales MAGs recovered from marine sediments, sponges, and saline soils suggested a facultative aerobic and chemoorganotrophic metabolism, although some members may also oxidize hydrogen. Some Palauibacterales species might also play an environmental role as N2O consumers as well as suppliers of serine and thiamine. When compared to the rest of the Gemmatimonadota phylum, the biosynthesis of thiamine was one of the key features of the Palauibacterales. Finally, we show that polysaccharide utilization loci (PUL) are widely distributed within the Gemmatimonadota so that they are not restricted to Bacteroidetes, as previously thought. Our results expand the knowledge about this cryptic phylum and provide new insights into the ecological roles of the Gemmatimonadota in the environment. IMPORTANCE Despite advances in molecular and sequencing techniques, there is still a plethora of unknown microorganisms with a relevant ecological role. In the last years, the mostly uncultured Gemmatimonadota phylum is attracting scientific interest because of its widespread distribution and abundance, but very little is known about its ecological role in the marine ecosystem. Here we analyze the global distribution and potential metabolism of the marine Gemmatimonadota group PAUC43f, for which we propose the name of Palauibacterales order. This group presents a saline-related character and a chemoorganoheterotrophic and facultatively aerobic metabolism, although some species might oxidize H2. Given that Palauibacterales is potentially able to synthesize thiamine, whose auxotrophy is the second most common in the marine environment, we propose Palauibacterales as a key thiamine supplier to the marine communities. This finding suggests that Gemmatimonadota could have a more relevant role in the marine environment than previously thought.
Collapse
Affiliation(s)
- Borja Aldeguer-Riquelme
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
| | - Josefa Antón
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
- Multidisciplinary Institute of Environmental Studies Ramón Margalef, University of Alicante, Alicante, Spain
| | - Fernando Santos
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
| |
Collapse
|
9
|
Ashok A, Agusti S. Contrasting sensitivity among oligotrophic marine microbial communities to priority PAHs. CHEMOSPHERE 2022; 309:136490. [PMID: 36210574 DOI: 10.1016/j.chemosphere.2022.136490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Oligotrophic areas represent a large proportion of the oceans, wherein microbial food webs largely determine carbon flux dynamics and biogeochemical cycles. However, little is known regarding the sensitivity of microbial planktonic communities to pollutants in such areas. Organic pollutants such as polycyclic aromatic hydrocarbons (PAH/s) are toxic oil derivatives that occur as complex mixtures and reach marine environments through different sources. Therefore, our study analyzed the PAH tolerance of natural photosynthetic and heterotrophic bacteria and eukaryotes from the oligotrophic Red Sea, which is uniquely susceptible to high oil contamination. Natural communities sampled from the surface layer were exposed to a concentration gradient of a mixture of 16 priority PAHs at in situ conditions for 48 h. The populations of the dominant picocyanobacteria Synechococcus sp., picophytoeukaryotes, and low nucleic acid (LNA) bacteria decreased upon exposure to PAHs in a strong dose-dependent manner. Chlorophyll-a, which was measured as an indicator of the total autotrophic community response, also decreased substantially. High nucleic acid (HNA) bacteria, however, exhibited lower growth inhibition (<50%). The lethal concentration (LC10) thresholds to the 16-PAH mixture demonstrated contrasting sensitivities among the microbial communities studied increasing from picoeukaryotes (5.98 ± 2.08 μg L-1) < chlorophyll-a (19.51 ± 8.11 μg L-1) < LNA bacteria (23.63 ± 10.64 μg L-1) < Synechococcus sp. (26.77 ± 13.34 μg L-1) < HNA bacteria (97.13 ± 17.28 μg L-1). The sensitivity of Red Sea Synechococcus and picophytoeukaryotes to the 16-PAH mixture was between 2 and 6.5 times higher compared to single PAH compounds tested previously. However, some populations of HNA bacteria and Synechococcus sp., were highly tolerant, suggesting an adaptation to chronic pollution. Concerningly, the LC10 toxicity thresholds approached the ambient PAH concentrations in the Red Sea, suggesting that environmental oil pollution actively shapes the microbial community structures in the region.
Collapse
Affiliation(s)
- Ananya Ashok
- Red Sea Research Center, King Abdullah University of Science and Technology, Saudi Arabia.
| | - Susana Agusti
- Red Sea Research Center, King Abdullah University of Science and Technology, Saudi Arabia
| |
Collapse
|
10
|
Abstract
Anthropogenic organophosphorus compounds (AOPCs), such as phosphotriesters, are used extensively as plasticizers, flame retardants, nerve agents, and pesticides. To date, only a handful of soil bacteria bearing a phosphotriesterase (PTE), the key enzyme in the AOPC degradation pathway, have been identified. Therefore, the extent to which bacteria are capable of utilizing AOPCs as a phosphorus source, and how widespread this adaptation may be, remains unclear. Marine environments with phosphorus limitation and increasing levels of pollution by AOPCs may drive the emergence of PTE activity. Here, we report the utilization of diverse AOPCs by four model marine bacteria and 17 bacterial isolates from the Mediterranean Sea and the Red Sea. To unravel the details of AOPC utilization, two PTEs from marine bacteria were isolated and characterized, with one of the enzymes belonging to a protein family that, to our knowledge, has never before been associated with PTE activity. When expressed in Escherichia coli with a phosphodiesterase, a PTE isolated from a marine bacterium enabled growth on a pesticide analog as the sole phosphorus source. Utilization of AOPCs may provide bacteria a source of phosphorus in depleted environments and offers a prospect for the bioremediation of a pervasive class of anthropogenic pollutants.
Collapse
|
11
|
Di Cesare A, Pjevac P, Eckert E, Curkov N, Miko Šparica M, Corno G, Orlić S. The role of metal contamination in shaping microbial communities in heavily polluted marine sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114823. [PMID: 32512474 DOI: 10.1016/j.envpol.2020.114823] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/25/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Microorganisms in coastal sediments are fundamental for ecosystem functioning, and regulate processes relevant in global biogeochemical cycles. Still, our understanding of the effects anthropogenic perturbation and pollution can have on microbial communities in marine sediments is limited. We surveyed the microbial diversity, and the occurrence and abundance of metal and antibiotic resistance genes is sediments collected from the Pula Bay (Croatia), one of the most significantly polluted sites along the Croatian coast. With a collection of 14 samples from the bay area, we were able to generate a detailed status quo picture of a site that only recently started a cleaning and remediation process (closing of sewage pipes and reduction of industrial activity). The concentrations of heavy metals in Pula Bay sediments are significantly higher than in pristine sediments from the Adriatic Sea, and in some cases, manifold exceed international sediment quality guidelines. While the sedimentary concentrations of heavy metals did significantly influence the abundance of the tested metal resistance genes, no strong effect of heavy metal pollution on the overall microbial community composition was observed. Like in many other marine sediments, Gammaproteobacteria, Bacteroidota and Desulfobacterota dominated the microbial community composition in most samples, and community assembly was primarily driven by water column depth and nutrient (carbon and nitrogen) availability, regardless of the degree of heavy metal pollution.
Collapse
Affiliation(s)
- Andrea Di Cesare
- MEG-Molecular Ecology Group, Water Research Institute, CNR-IRSA, Largo Tonolli 50, 28922, Verbania, Italy
| | - Petra Pjevac
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria; Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, 1090, Vienna, Austria
| | - Ester Eckert
- MEG-Molecular Ecology Group, Water Research Institute, CNR-IRSA, Largo Tonolli 50, 28922, Verbania, Italy
| | - Neven Curkov
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Zagreb, Croatia
| | | | - Gianluca Corno
- MEG-Molecular Ecology Group, Water Research Institute, CNR-IRSA, Largo Tonolli 50, 28922, Verbania, Italy
| | - Sandi Orlić
- Ruđer Bošković Institute, Division of Material Chemistry, Zagreb, Croatia; Center of Excellence for Science and Technology Integrating Mediterranean Region, Microbial Ecology, Zagreb, Croatia.
| |
Collapse
|
12
|
Mohamed ZA. Potentially harmful microalgae and algal blooms in the Red Sea: Current knowledge and research needs. MARINE ENVIRONMENTAL RESEARCH 2018; 140:234-242. [PMID: 29970250 DOI: 10.1016/j.marenvres.2018.06.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
Harmful algal blooms (HABs) have increased throughout the world's coastal oceans during the last century mostly due to water eutrophication and climate change. These blooms are often accompanied by extreme extensive negative impacts to fisheries, coastal resources, public health and local economies. However, limited studies have reported HAB events in Red Sea coastal waters. This article reviews potentially harmful microalgae in the Red Sea, based on available published information during the last 3 decades. Five harmful algal blooms were recorded in the Red Sea; of which 3 blooms are formed by dinoflagellates (Noctiluca scintillans, Pyrodinuium bahamense, Protoperidinium quinquecorne), one by raphidophytes (Heterosigma akashiwo) and one by cyanobacteria (Trichodesmium erythraeum). Additionally, mangrove swamps in the Red Sea were occupied by cyanobacterial mats, which contain microcystin and saxitoxin-producing species. The existing data in this review could be a catalyst for the establishment of monitoring and management program for HABs and their toxins in Red Sea coastal waters. This review also identifies current research gaps and suggests future research directions.
Collapse
Affiliation(s)
- Zakaria A Mohamed
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag 82524, Egypt.
| |
Collapse
|
13
|
Leite DCA, Salles JF, Calderon EN, Castro CB, Bianchini A, Marques JA, van Elsas JD, Peixoto RS. Coral Bacterial-Core Abundance and Network Complexity as Proxies for Anthropogenic Pollution. Front Microbiol 2018; 9:833. [PMID: 29755445 PMCID: PMC5934943 DOI: 10.3389/fmicb.2018.00833] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/12/2018] [Indexed: 02/01/2023] Open
Abstract
Acclimatization via changes in the stable (core) or the variable microbial diversity and/or abundance is an important element in the adaptation of coral species to environmental changes. Here, we explored the spatial-temporal dynamics, diversity and interactions of variable and core bacterial populations associated with the coral Mussismilia hispida and the surrounding water. This survey was performed on five reefs along a transect from the coast (Reef 1) to offshore (Reef 5), representing a gradient of influence of the river mouth, for almost 12 months (4 sampling times), in the dry and rainy seasons. A clear increasing gradient of organic-pollution proxies (nitrogen content and fecal coliforms) was observed from Reef 1 to Reef 5, during both seasons, and was highest at the Buranhém River mouth (Reef 1). Conversely, a clear inverse gradient of the network analysis of the whole bacterial communities also revealed more-complex network relationships at Reef 5. Our data also indicated a higher relative abundance of members of the bacterial core, dominated by Acinetobacter sp., at Reef 5, and higher diversity of site-stable bacterial populations, likely related to the higher abundance of total coliforms and N content (proxies of sewage or organic pollution) at Reef 1, during the rainy season. Thus, the less “polluted” areas may show a more-complex network and a high relative abundance of members of the bacterial core (almost 97% in some cases), resulting in a more-homogeneous and well-established bacteriome among sites/samples, when the influence of the river is stronger (rainy seasons).
Collapse
Affiliation(s)
- Deborah C A Leite
- Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joana F Salles
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Emiliano N Calderon
- Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Coral Vivo, Santa Cruz Cabrália, Brazil
| | - Clovis B Castro
- Instituto Coral Vivo, Santa Cruz Cabrália, Brazil.,Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adalto Bianchini
- Instituto Coral Vivo, Santa Cruz Cabrália, Brazil.,Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Joseane A Marques
- Programa de Pós-Graduação em Oceanografia Biológica, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Jan Dirk van Elsas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Raquel S Peixoto
- Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Museu Aquário Marinho do Rio de Janeiro-AquaRio - Rio de Janeiro Marine Aquarium Research Center, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Dibutyl phthalate alters the metabolic pathways of microbes in black soils. Sci Rep 2018; 8:2605. [PMID: 29422490 PMCID: PMC5805725 DOI: 10.1038/s41598-018-21030-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 01/29/2018] [Indexed: 01/08/2023] Open
Abstract
Dibutyl phthalate (DBP) is well known as a high-priority pollutant. This study explored the impacts of DBP on the metabolic pathways of microbes in black soils in the short term (20 days). The results showed that the microbial communities were changed in black soils with DBP. In nitrogen cycling, the abundances of the genes were elevated by DBP. DBP contamination facilitated 3'-phosphoadenosine-5'-phosphosulfate (PAPS) formation, and the gene flux of sulfate metabolism was increased. The total abundances of ABC transporters and the gene abundances of the monosaccharide-transporting ATPases MalK and MsmK were increased by DBP. The total abundance of two-component system (TCS) genes and the gene abundances of malate dehydrogenase, histidine kinase and citryl-CoA lyase were increased after DBP contamination. The total abundance of phosphotransferase system (PTS) genes and the gene abundances of phosphotransferase, Crr and BglF were raised by DBP. The increased gene abundances of ABC transporters, TCS and PTS could be the reasons for the acceleration of nitrogen, carbon and sulfate metabolism. The degrading-genes of DBP were increased markedly in soil exposed to DBP. In summary, DBP contamination altered the microbial community and enhanced the gene abundances of the carbon, nitrogen and sulfur metabolism in black soils in the short term.
Collapse
|
15
|
Li H, Meng L, Shen T, Zhang J, Bao M, Sun P. The formation process and responsive impacts of single oil droplet in submerged process. MARINE POLLUTION BULLETIN 2017; 124:139-146. [PMID: 28754572 DOI: 10.1016/j.marpolbul.2017.06.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 04/16/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
Simulated column was applied to research forming progress of single oil droplet in submerged process, floating progress, and study effects of environment factors and dispersants on the concentration of oil hydrocarbon in water as well as changing rules of oil droplet sizes. As expected, particular formation mechanism of single oil droplet was presented. When necking down length L is 0.5 time of oil droplet diameter (d) after expansion phase, necking down becomes long and thin; when L=2d, necking down begins to break. In floating progress, the shape changes oval and its motion trail becomes an auger-type. Fluctuation occurs at horizontal direction. Dispersants decrease oil droplet size by its dispersion effect, and cut down effect of Van Der Waals force among oil droplets. More broadly, these findings provide rare empirical evidence expounding formation mechanism of single oil droplet to increasing ability of oil spill response.
Collapse
Affiliation(s)
- Haoshuai Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Long Meng
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Tiantian Shen
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Jianrui Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Peiyan Sun
- Key Laboratory of Marine Spill Oil Identification and Damage Assessment Technology, North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao 266033, China.
| |
Collapse
|
16
|
Der Sarkissian C, Pichereau V, Dupont C, Ilsøe PC, Perrigault M, Butler P, Chauvaud L, Eiríksson J, Scourse J, Paillard C, Orlando L. Ancient DNA analysis identifies marine mollusc shells as new metagenomic archives of the past. Mol Ecol Resour 2017; 17:835-853. [PMID: 28394451 DOI: 10.1111/1755-0998.12679] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/24/2017] [Accepted: 04/03/2017] [Indexed: 02/05/2023]
Abstract
Marine mollusc shells enclose a wealth of information on coastal organisms and their environment. Their life history traits as well as (palaeo-) environmental conditions, including temperature, food availability, salinity and pollution, can be traced through the analysis of their shell (micro-) structure and biogeochemical composition. Adding to this list, the DNA entrapped in shell carbonate biominerals potentially offers a novel and complementary proxy both for reconstructing palaeoenvironments and tracking mollusc evolutionary trajectories. Here, we assess this potential by applying DNA extraction, high-throughput shotgun DNA sequencing and metagenomic analyses to marine mollusc shells spanning the last ~7,000 years. We report successful DNA extraction from shells, including a variety of ancient specimens, and find that DNA recovery is highly dependent on their biomineral structure, carbonate layer preservation and disease state. We demonstrate positive taxonomic identification of mollusc species using a combination of mitochondrial DNA genomes, barcodes, genome-scale data and metagenomic approaches. We also find shell biominerals to contain a diversity of microbial DNA from the marine environment. Finally, we reconstruct genomic sequences of organisms closely related to the Vibrio tapetis bacteria from Manila clam shells previously diagnosed with Brown Ring Disease. Our results reveal marine mollusc shells as novel genetic archives of the past, which opens new perspectives in ancient DNA research, with the potential to reconstruct the evolutionary history of molluscs, microbial communities and pathogens in the face of environmental changes. Other future applications include conservation of endangered mollusc species and aquaculture management.
Collapse
Affiliation(s)
- Clio Der Sarkissian
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen K, Denmark
| | - Vianney Pichereau
- Lemar UMR6539 CNRS/UBO/IRD/Ifremer, Université de Brest, IUEM, Plouzané, France
| | | | - Peter C Ilsøe
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen K, Denmark
| | - Mickael Perrigault
- Lemar UMR6539 CNRS/UBO/IRD/Ifremer, Université de Brest, IUEM, Plouzané, France
| | - Paul Butler
- CGES, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, UK
| | - Laurent Chauvaud
- Lemar UMR6539 CNRS/UBO/IRD/Ifremer, Université de Brest, IUEM, Plouzané, France
| | - Jón Eiríksson
- Institute of Earth Sciences, University of Iceland, Askja, Reykjavík, Iceland
| | - James Scourse
- CGES, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, UK
| | - Christine Paillard
- Lemar UMR6539 CNRS/UBO/IRD/Ifremer, Université de Brest, IUEM, Plouzané, France
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen K, Denmark
- Université de Toulouse, University Paul Sabatier (UPS), Laboratoire AMIS, CNRS UMR 5288, Toulouse, France
| |
Collapse
|
17
|
El Nemr A, El-Said GF, Ragab S, Khaled A, El-Sikaily A. The distribution, contamination and risk assessment of heavy metals in sediment and shellfish from the Red Sea coast, Egypt. CHEMOSPHERE 2016; 165:369-380. [PMID: 27668715 DOI: 10.1016/j.chemosphere.2016.09.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
Zn, Cu, Ni, V, Al, Pb, Cd, Hg, lipid and water contents were determined in the soft tissues of different shellfish species collected along the Red Sea shoreline. Metal contents showed a descending order of Zn > Cu > Ni > Al > V > Pb > Cd > Hg. The leachable concentrations found in the sediments gathered from the studied locations gave another descending order: Al > Zn > Ni > Pb > V > Cu > Cd. The determined leachable heavy metal contents in the sediment did not exceed the NOAA and CCME (Anonymous 1999) sediment quality guidelines. Accordingly, the sediments along the Egyptian Red Sea area did not pose any adverse impacts on the biological life. According to the hazard quotient (HQ) calculations for heavy metal contents in the soft tissue of shellfish, mercury did not pose any risk on human health; whereas, the other determined heavy metals gave HQ values of 1 < HQ < 10 and showed a possibility of risk on the long term. Cu is above the desirable levels in mussels. The RQ calculations of toddlers and adults reflected that Cu was the only heavy metal that had an adverse effect on toddlers' health. Based on the human organizations (EPA, BOE, MAFF, and NHMRC) that proposed safety concentrations of heavy metals, the studied shellfish were somewhat safe for human consumption.
Collapse
Affiliation(s)
- Ahmed El Nemr
- Environmental Division, National Institute of Oceanography and Fisheries, Kayet Bey, El-Anfoushy, Alexandria, Egypt.
| | - Ghada F El-Said
- Environmental Division, National Institute of Oceanography and Fisheries, Kayet Bey, El-Anfoushy, Alexandria, Egypt
| | - Safaa Ragab
- Environmental Division, National Institute of Oceanography and Fisheries, Kayet Bey, El-Anfoushy, Alexandria, Egypt
| | - Azza Khaled
- Environmental Division, National Institute of Oceanography and Fisheries, Kayet Bey, El-Anfoushy, Alexandria, Egypt
| | - Amany El-Sikaily
- Environmental Division, National Institute of Oceanography and Fisheries, Kayet Bey, El-Anfoushy, Alexandria, Egypt
| |
Collapse
|