1
|
Adetutu A, Adegbola PI, Aborisade AB. Low Dose of Nickel and Benzo [a] Anthracene in Rat-Diet, Induce Apoptosis, Fibrosis, and Initiate Carcinogenesis in Liver via NF-Ƙβ Pathway. Biol Trace Elem Res 2025; 203:305-333. [PMID: 38656682 DOI: 10.1007/s12011-024-04177-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Environmental contaminants such as polycyclic aromatic hydrocarbon (PAH) and heavy metals are major contaminants of food such as fish thus serving as source of exposure to human. This study was designed to evaluate the carcinogenic risk and other risks associated with long-term consumption of environmentally relevant dose of nickel and benzo [a] anthracene in rats. Thirty-six (36) male rats weighing between 80 and 100 g were assigned into 6 groups of 6 animals each; normal, nickel-, and benzo [a] anthracene-exposed groups for 12 and 24 weeks, respectively. Micronucleus and comet analyses were done in the blood, liver, and bone marrow. Liver function, redox, and inflammatory markers (AST, ALT, GGT, SOD, GSH, MDA, protein carbonyl, protein thiol, total protein, IL-10, 1L-1β, TNF-α, TGF-β NF-Ƙβ, and 8-oxodeoxyguansine) were analysed by standard methods. Immuno-histochemical quantification of Bax, Bcl2, and Erk 1/2 as well as mRNA expression of cyclin D1 was done in liver. From the results, weight gain was observed in varying degrees throughout the exposure period. The polychromatic erythrocytes/normochromatic erythrocytes ratio > 0.2 indicates no cytotoxic effects on the bone marrow. Percentage-MnPCE in blood significantly (p < 0.05) increased throughout exposure duration. Percentage tail DNA in blood was significantly (< 0.05) increased at weeks 20 and 24 in the exposed groups and in liver at weeks 12 (16.22 ± 0.47) and 24 (17.00 ± 0.36) of nickel-exposed rats. The aspartate amino transferase (AST):alanine amino transferase (ALT) ratio indicated fatty liver disease in the benzo [a] anthracene (0.90) and acute liver injury in the nickel (> 10 times greater than the upper limits of the reference group) exposed groups during the first 12 weeks. Observation from the histological and cytological data of the liver revealed the presence of inflammation, fibrosis, and high nuclear/cytoplasmic ratio, respectively, in the nickel and benzo [a] anthracene groups. Only benzo [a] anthracene induced liver oxidative stress with significant (p < 0.05) decrease in SOD (0.64 ± 0.02) activity and increase in protein carbonyl (7.60 ± 0.80 × 10-5) and MDA (57.10 ± 6.64) concentration after 24 weeks. Benzo [a] anthracene up-regulated the cyclin D1 expression and significantly (p < 0.05) increased the levels of the cytokines. Nickel and benzo [a] anthracene significantly (p < 0.05) increased the Bax (183.45 ± 6.50 and 199.76 ± 10.04) and Erk 1/2 (108.25 ± 6.41 and 136.74 ± 4.22) levels when compared with the control (37.43 ± 22.22 and 60.37 ± 17.86), respectively. Overall result showed that the toxic effects of nickel and benzo [a] anthracene might involve fibrosis, cirrhosis, apoptosis, and inflammation of the liver. As clearly demonstrated in this study, benzo [a] anthracene after the 24 weeks of exposure stimulates carcinogenic process by suppressing the liver antioxidant capacity, altering apoptotic, cell proliferation, and differentiation pathways.
Collapse
Affiliation(s)
- Adewale Adetutu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Peter Ifeoluwa Adegbola
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.
- Department of Biochemistry and Forensic Science, First Technical University, Ibadan, Nigeria.
| | - Abiodun Bukunmi Aborisade
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Nigeria Institute of Oceanography and Marine Research, Lagos, Nigeria
| |
Collapse
|
2
|
Wormington AM, Gabrielli DJ, Nouri MZ, Lin AM, Robinson SE, Bowden JA, Denslow ND, Sabo-Attwood T, Bisesi JH. Effects of the organochlorine pesticide metabolite p,p'-DDE on the gastrointestinal lipidome in fish: A novel toxicity pathway for a legacy pollutant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125191. [PMID: 39454813 DOI: 10.1016/j.envpol.2024.125191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 10/28/2024]
Abstract
Though phased out from use in the United States, environmental contamination by organochlorine pesticides (OCPs) remains a widespread issue, especially around intensive agricultural regions. OCPs, such as dichlorodiphenyltrichloroethane (DDT) and its primary metabolite, dichlorodiphenyldichloroethylene (DDE), have been detected in soils, sediments, surface waters, and biota decades after their discontinued use. As OCPs are persistent and can bioaccumulate in fats, these compounds can transfer and magnify across food webs. Freshwater predatory fish and birds can accumulate high OCP concentrations, leading to a myriad of deleterious impacts on organismal health. Studies have found evidence of reproductive disruption in predatory fish, such as the largemouth bass (LMB; Micropterus salmoides), associated with DDT and DDE exposure. DDE can act through estrogenic pathways and induce the expression of estrogenic signals in male animals; however, the molecular mechanism of disruption is unclear. Recently, metabolomics research has revealed corollary relationships between lipid signals and organic pollutant toxicity. Here, a two-month feeding experiment on LMB was conducted to assess the interactions of DDE (as p,p'-DDE) in food with gut and liver lipid signaling. Targeted lipidomic analysis revealed global alterations in the abundance of tissue lipids, especially cholesteryl esters and phospholipids, in LMB exposed to low levels of p,p'-DDE. Results from these studies indicate that p,p'-DDE may act through disruption of normal lipid homeostasis to cause toxicity in freshwater fish.
Collapse
Affiliation(s)
- Alexis M Wormington
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, 32611, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA
| | - David J Gabrielli
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, 32611, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA
| | - Mohammad-Zaman Nouri
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA
| | - Ashley M Lin
- Department of Environmental Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Sarah E Robinson
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, 32611, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA
| | - John A Bowden
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA; Department of Physiological Sciences, University of Florida, Gainesville, FL, 32611, USA; Department of Environmental Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Nancy D Denslow
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA; Department of Physiological Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, 32611, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA
| | - Joseph H Bisesi
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, 32611, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
3
|
R de O Stremel T, da Silva CP, E Domingues C, Lucia Voigt C, Raphael Pedroso C, Magno de Sousa Vidal C, X Campos S. Assessment of organochlorine pesticide contamination in Astyanax altiparanae from the Alagados Dam, Southern Brazil. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:725-736. [PMID: 39484824 DOI: 10.1080/03601234.2024.2422219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024]
Abstract
Organochlorine pesticides (OCPs) are persistent pollutants previously used in agriculture, known for their ability to bioaccumulate and pose health risks. This study analyzed samples of roe, viscera, and muscle from Astyanax altiparanae fish collected from the Alagados reservoir in Paraná, Brazil. Samples were prepared through extraction and purification, then analyzed using gas chromatography with an electron capture detector (GC/ECD), chosen for its sensitivity in detecting OCPs. The method was validated for precision, accuracy, and detection limits. Detected OCPs included Aldrin (17.1 to 50.6 ng/g in roe), α-endosulfan (3.4 to 23.5 ng/g), p, p'-DDE (4.2 to 134.7 ng/g), Dieldrin (84.7 to 183.1 ng/g), β-endosulfan (6.0 to 51.6 ng/g), and p, p'-DDT (56.6 to 286.8 ng/g). In viscera, concentrations ranged from Aldrin (19.8 to 93.3 ng/g) to p, p'-DDT (52.3 to 89.2 ng/g). Muscle samples showed similar trends. Principal component analysis indicated a link between higher OCP concentrations and increased abdominal width of the fish. While OCP levels were below FAO and WHO limits, risk quotient calculations suggest potential health risks from consuming these fish.
Collapse
Affiliation(s)
- Tatiana R de O Stremel
- Research Group on Environmental and Sanitary Analytical Chemistry, Ponta Grossa State University (UEPG), Ponta Grossa, Brazil
| | - Cleber Pinto da Silva
- Research Group on Environmental and Sanitary Analytical Chemistry, Ponta Grossa State University (UEPG), Ponta Grossa, Brazil
| | - Cinthia E Domingues
- Research Group on Environmental and Sanitary Analytical Chemistry, Ponta Grossa State University (UEPG), Ponta Grossa, Brazil
| | - Carmem Lucia Voigt
- Research Group on Environmental and Sanitary Analytical Chemistry, Ponta Grossa State University (UEPG), Ponta Grossa, Brazil
| | - Carlos Raphael Pedroso
- Laboratory of Sanitary and Environmental Engineering, State University of Centro-Oeste (UNICENTRO), Irati, Brazil
| | - Carlos Magno de Sousa Vidal
- Laboratory of Sanitary and Environmental Engineering, State University of Centro-Oeste (UNICENTRO), Irati, Brazil
| | - Sandro X Campos
- Research Group on Environmental and Sanitary Analytical Chemistry, Ponta Grossa State University (UEPG), Ponta Grossa, Brazil
| |
Collapse
|
4
|
Abdallah SM, Muhammed RE, Mohamed RE, El Daous H, Saleh DM, Ghorab MA, Chen S, El-Sayyad GS. Assessment of biochemical biomarkers and environmental stress indicators in some freshwater fish. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:464. [PMID: 39361177 PMCID: PMC11449979 DOI: 10.1007/s10653-024-02226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024]
Abstract
The mechanism by which an organism can adapt to subtle environmental changes is predicated on modifications to biochemical processes within the cellular metabolism in response to such changes. Changes in these processes have the potential to induce alterations in cellular structures and tissue organization, as well as establish a causal link between fluctuations in these parameters and stressors exposure. This investigation's main goal and innovation is to evaluate the environmental stress indicators in the aquatic ecosystem of Lake Qarun. Pesticide residues in freshwater fish should be the primary focus of evaluation of environmental stressor concentrations, since they serve as bioindicators at different times and places on a spatiotemporal scale. A thorough analysis of suggestive biochemical biomarker reactions should also be conducted. The effects of environmental stressors, specifically pesticide contamination in Qarun Lake, have been observed and investigated in relation to two fish species: Solea aejabtiaca and Oreochronis niloticus. The results of a hazard assessment conducted at six sampling sites using spatio-temporal data revealed elevated mean values for the pesticides, persistent organic pollutants (POPs), organochlorines, organophosphates, and pyrethroids that were detected. A multi biomarker approach facilitates a more comprehensive understanding of stress responses induced by exposure to pollutants. As a result, the activities of the biochemical biomarkers CYP-450, GST, GSH, and LDH in the blood and liver of fish samples were found to be notably elevated. The suitability of the identified variables for biomonitoring of aquatic pollution was validated, and the data unveiled variations in sensitivity among species, implying that Nile tilapia could potentially function as a bioindicator with high sensitivity. The findings were correlated with the concentrations of detrimental organochlorines, organophosphorus, and pyrethroids in the muscles and gills. The data indicates that pollutants linked to agricultural wastes, runoff, and municipal effluent may be discharged into the lake ecosystem. Consequently, to safeguard the environment, it is essential to enforce and implement policies, acts, and regulations that already exist. Assessing the effects of additional environmental stressors on aquatic ecosystems is another way in which biomarker screening with an integrative approach improves our comprehension of how toxicants impact various levels of biological organization and is particularly useful in realistic environmental exposure scenarios.
Collapse
Affiliation(s)
- Salwa M Abdallah
- Center of Excellence for Toxicological Testing, Department of Mammalian and Aquatic Toxicology, Central Agricultural Pesticides Lab (CAPL), Agricultural Research Center (ARC), Dokki, Egypt.
| | - Reham E Muhammed
- Center of Excellence for Toxicological Testing, Department of Mammalian and Aquatic Toxicology, Central Agricultural Pesticides Lab (CAPL), Agricultural Research Center (ARC), Dokki, Egypt
| | - Reda El Mohamed
- Center of Excellence for Toxicological Testing, Department of Mammalian and Aquatic Toxicology, Central Agricultural Pesticides Lab (CAPL), Agricultural Research Center (ARC), Dokki, Egypt
| | - Hala El Daous
- Center of Excellence for Toxicological Testing, Department of Mammalian and Aquatic Toxicology, Central Agricultural Pesticides Lab (CAPL), Agricultural Research Center (ARC), Dokki, Egypt
- Department of Hygiene and Veterinary Care, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
| | - Dina M Saleh
- Center of Excellence for Toxicological Testing, Department of Mammalian and Aquatic Toxicology, Central Agricultural Pesticides Lab (CAPL), Agricultural Research Center (ARC), Dokki, Egypt
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed A Ghorab
- Wildlife Toxicology Lab, Dept. of Animal Science, Institute for Integrative Toxicology (IIT), Michigan State University, East Lansing, MI, 48824, USA
| | - Shaohua Chen
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Gharieb S El-Sayyad
- Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Cairo, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza, Egypt.
| |
Collapse
|
5
|
Adetutu A, Aborisade AB, Ogunsina FA, Adegbola PI, Olaniyi TD. Ginger mitigated the health risks associated with arsenic-contamination of rats feed via inflammatory and apoptosis regulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115768. [PMID: 38064790 DOI: 10.1016/j.ecoenv.2023.115768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/12/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024]
Abstract
Millions of people around the world are inadvertently exposed to arsenic through drinking water and food. However, food spices possess antioxidants and anti-inflammatory potentials. Therefore, this study evaluated the protective potentials of Zingiber officinale (ginger) against the toxic effects of arsenic in male Wistar rats. Thirty-six Wistar rats were assigned into 6 groups (n = 6); group A1 and A2 (control), group B1 and B2 were fed with arsenic-contaminated feed (3.45x10-3 mg/kg), group C1 and C2 were feed with arsenic-contaminated feed (3.45x10-3 mg) supplemented with ginger respectively for 12 and 24 weeks. The blood, bone marrow, and liver of rats were harvested and prepared for various analyses. Micronucleus and Comet analysis were performed for the genotoxicity assessment every 4 weeks. Activities of AST, ALT, GGT, and SOD, and the concentration of GSH, MDA, protein carbonyl, protein thiol, and total protein, were measured by spectrophotometric methods. Quantification of IL-10, 1 L-1β, TNF-α, TGF-β NF-Ƙβ, and 8-oxodeoxyguanosine was done by ELISA method while Bax, Bcl2, and Erk 1/2 were quantified by immuno-histochemical staining. mRNA expression of cyclin D1 was quantified using qRT-PCR. Statistical analysis was performed with SPSS and statistical significance was accepted when p<0.05. Result showed significant (p<0.05) decrease in the haemoglobin concentration, red blood cell, lymphocyte counts, tail DNA and MnPCE of rats fed arsenic-contaminated feed compared with control. The supplementation with ginger significantly reduced serum activities of AST and GGT (p<0.05). Ginger supplementation also lowered the arsenic indued increases in liver MDA, protein carbonyl and 8-OXdG levels. Ginger restores to near normal the histological changes due to arsenic exposure. In the arsenic-exposed group, liver IL-10, IL-1β and TNF-α decreased significantly (p<0.05) at week 24 whereas, NF-Ƙβ and TGF-β increased significantly (p 0.05) at weeks 12 and 24 and TNF-α, Bcl2 at week 24. mRNA expression of cyclin D1 was significantly (p<0.05) downregulated in the arsenic and ginger-supplemented groups. This study showed that long-term consumption of arsenic resulted in immunosuppression, anaemia and activated anti-apoptotic process that was mitigated due to ginger supplementation.
Collapse
Affiliation(s)
- Adewale Adetutu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Abiodun Bukunmi Aborisade
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Faith Ayotunde Ogunsina
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Peter Ifeoluwa Adegbola
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria; Department of Biochemistry and Forensic Science, First Technical University, Ibadan, Nigeria.
| | - Temitope Deborah Olaniyi
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
6
|
Ali MU, Wang C, Li Y, Jin X, Yang S, Ding L, Feng L, Wang B, Li P. Human biomonitoring of heavy metals exposure in different age- and gender-groups based on fish consumption patterns in typical coastal cities of China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115316. [PMID: 37541022 DOI: 10.1016/j.ecoenv.2023.115316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/23/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
The study aimed to investigate heavy metals (HMs) concentrations in human hair based on fish consumption patterns in Qingdao, Xiamen, and Zhoushan. The (HMs) concentrations were determined using acid digestion and an inductively coupled plasma mass spectrometer (ICP-MS, NexION 300X, PerkinElmer). The associated health risks were investigated using risk assessment models described by the United States Environmental Protection Agency (USEPA). The order of fish HMs concentration in Qingdao was Cd CrCu>Pb>Cr>As>Cd in all three study areas. The hair Zn concentration in 28 % of the studied population exceeded the safety standards. Overall, the hair HMs concentration was found to be high in middle-aged groups (19-45 and 45-59), and the hair HMs concentrations were high, especially in the case of females. A significant correlation was noticed between hair As (0.119; p < 0.05), Cr (0.231; p < 0.05),) and Cu (0.117; p < 0.05),) and fish consumption frequency. High Odd ratios (>2) were noticed for As, Cu and Zn in high fish-eating frequency. A significant non-carcinogenic risk was noticed in human Cr exposure (1.10E+00) in Xiamen, and the hazard index values indicated non-carcinogenic risk in Xiamen and Zhoushan. The carcinogenic risk for human As exposure (2.50E-05-7.09E-03) indicated a significant cancer risk.
Collapse
Affiliation(s)
- Muhammad Ubaid Ali
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Chuan Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Yuan Li
- School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Xingang Jin
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Shaochen Yang
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Li Ding
- School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Lin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Bo Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
7
|
Ali MU, Wang C, Li Y, Li R, Yang S, Ding L, Feng L, Wang B, Li P, Wong MH. Heavy metals in fish, rice, and human hair and health risk assessment in Wuhan city, central China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121604. [PMID: 37061018 DOI: 10.1016/j.envpol.2023.121604] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/06/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023]
Abstract
The current study investigated the concentration of heavy metals (HMs) in human hair associated with fish and rice consumption in Wuhan City, central China. The mean values of As in 8/10 fish species exceeded the food safety standard of 0.015 mg/kg. The mean values (mg/kg) of HMs in rice followed a descending order of Zn (13.7)> Cu (1.9)>Cr (0.51)>As (0.11) >Cd (0.08) >Pb (0.04). The ascending order of HMs for male hair was Cd < As < Cr < Pb < Cu < Zn, while As < Cd < Cr < Pb < Cu < Zn for female. 30% of hair Cr and 22% of hair Zn contents exceeded the recommended values. The middle age (19-44) and adult (45-59) groups were the most vulnerable group, as the concentration for most elements was high in these age groups. A significant correlation was found between fish-eating frequency and hair Zn (r = 0.213; p < 0.05), and As (r = 0.204; p < 0.05). High odd ratios were found in a population with high fish-eating frequency, especially for Pb (7.19), As (3.1), Zn (3.83), and Cd (3.7). A significant non-carcinogenic risk was associated with Cr exposure through consuming herbivores, filter feeders, and omnivorous fish. The cancer risk values of Cd exposure (1.54E-04) via rice consumption and As exposure (1.25E-04) via consumption of omnivores fish indicate precautionary measures.
Collapse
Affiliation(s)
- Muhammad Ubaid Ali
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Chuan Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Yuan Li
- School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Ruolan Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Shaochen Yang
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Li Ding
- School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Lin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Bo Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Ming Hung Wong
- Consortium on Health, Environment, Education, and Research (CHEER), And Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| |
Collapse
|
8
|
Cresto N, Forner-Piquer I, Baig A, Chatterjee M, Perroy J, Goracci J, Marchi N. Pesticides at brain borders: Impact on the blood-brain barrier, neuroinflammation, and neurological risk trajectories. CHEMOSPHERE 2023; 324:138251. [PMID: 36878369 DOI: 10.1016/j.chemosphere.2023.138251] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/11/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Pesticides are omnipresent, and they pose significant environmental and health risks. Translational studies indicate that acute exposure to high pesticide levels is detrimental, and prolonged contact with low concentrations of pesticides, as single and cocktail, could represent a risk factor for multi-organ pathophysiology, including the brain. Within this research template, we focus on pesticides' impact on the blood-brain barrier (BBB) and neuroinflammation, physical and immunological borders for the homeostatic control of the central nervous system (CNS) neuronal networks. We examine the evidence supporting a link between pre- and postnatal pesticide exposure, neuroinflammatory responses, and time-depend vulnerability footprints in the brain. Because of the pathological influence of BBB damage and inflammation on neuronal transmission from early development, varying exposures to pesticides could represent a danger, perhaps accelerating adverse neurological trajectories during aging. Refining our understanding of how pesticides influence brain barriers and borders could enable the implementation of pesticide-specific regulatory measures directly relevant to environmental neuroethics, the exposome, and one-health frameworks.
Collapse
Affiliation(s)
- Noemie Cresto
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Isabel Forner-Piquer
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom.
| | - Asma Baig
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom
| | - Mousumi Chatterjee
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom
| | - Julie Perroy
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Nicola Marchi
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
9
|
Jung DW, Jeong DH, Lee HS. Endocrine disrupting potential of selected azole and organophosphorus pesticide products through suppressing the dimerization of human androgen receptor in genomic pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114246. [PMID: 36332405 DOI: 10.1016/j.ecoenv.2022.114246] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Several pesticides widely used in agriculture have been considered to be endocrine disrupting chemicals through their binding affinities to estrogen or androgen receptors. This study was conducted to clarify the human androgen receptor (hAR)-mediated genomic endocrine disrupting mechanism of eight selected pesticide products by in vitro assay providing the Organization for Economic Co-operation and Development Test Guideline No. 458, 22Rv1/MMTV_GR-KO AR transcriptional activation assay and a homo-dimerization confirmation assay. None of the tested pesticide products showed an AR agonistic effect, whereas they were all determined to be AR antagonists at non-toxic concentrations. Also, the eight pesticide products were verified as true AR antagonists through a specificity control test. In the Bioluminescence Resonance Energy Transfer-based AR homo-dimerization confirmation assay, the eight pesticide products did not induce AR homo-dimerization. Additionally, western blotting revealed that none of the eight pesticide products induced AR translocation from the cytoplasm to the nucleus. In conclusion, we found for the first-time evidence to understand the AR-mediated endocrine disrupting mechanisms induced by selected azole and organophosphorus pesticide products.
Collapse
Affiliation(s)
- Da-Woon Jung
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Da-Hyun Jeong
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hee-Seok Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea; Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
10
|
Arisekar U, Shakila RJ, Shalini R, Jeyasekaran G, Padmavathy P. Effect of household culinary processes on organochlorine pesticide residues (OCPs) in the seafood (Penaeus vannamei) and its associated human health risk assessment: Our vision and future scope. CHEMOSPHERE 2022; 297:134075. [PMID: 35218780 DOI: 10.1016/j.chemosphere.2022.134075] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/05/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Food safety is crucial in today's competitive trading market, as it directly affects human health and promotes seafood exports. The effects of thermal processing (boiling, frying, grilling, and microwave cooking) on pesticide residues (PR) in P. vannamei were assessed. The PR in raw and processed shrimp ranged from 0.007 to 0.703 μg/kg for uncooked/raw, not detected (ND) to 0.917 μg/kg for boiled, ND to 0.506 μg/kg for fried, ND to 0.573 μg/kg for grilled and ND to 0.514 μg/kg for microwave cooked shrimps. The Endrin, endosulfan sulfate, and heptachlor were predominant PR found in the raw and processed shrimp. The PR content in raw and cooked shrimps were below the maximum residue limits (MRL) set by the Codex Alimentarius Commission (2021) and the European Commission (86/363/1986 and 57/2007). The estimated daily intake (EDI) of PR from raw and processed shrimps were below the ADI prescribed by CAC. The hazard quotient (HQ) and hazard ratio (HR) values were <1, indicating no non-carcinogenic or carcinogenic health implications through shrimp consumption. The estimated maximum allowable shrimp consumption rate (CRlim) suggests an adult can eat >100 shrimp meals/month, which is over the USEPA's (2000)recommendation of >16 meals/month without health issues. The Effect of thermal processing was detected in the following order: boiling < grilling < frying < microwave cooking. The processing factor (PF < 0.7), paired t-test (t < 0.05), Tukey post hoc (p < 0.05) test, Bray-Curtis similarity index, and matrix plot exhibited that all the four thermal processing methods have a considerable impact on pesticides in the processed shrimps. But frying (59.4%) and microwave cooking (60.3%) reduced PR far beyond boiling (48.8%) and grilling (51.3%). Hence, we recommend frying and microwave processing are better methods for minimizing PR in seafood than boiling or grilling.
Collapse
Affiliation(s)
- Ulaganathan Arisekar
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tuticorin, 628 008, Tamil Nadu, India.
| | - Robinson Jeya Shakila
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tuticorin, 628 008, Tamil Nadu, India.
| | - Rajendran Shalini
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tuticorin, 628 008, Tamil Nadu, India
| | - Geevaretnam Jeyasekaran
- Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Nagapattinam, 611002, Tamil Nadu, India
| | - Pandurangan Padmavathy
- Department of Aquatic Environment and Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin, 628 008, Tamil Nadu, India
| |
Collapse
|
11
|
Yang C, Lim W, Song G. Immunotoxicological effects of insecticides in exposed fishes. Comp Biochem Physiol C Toxicol Pharmacol 2021; 247:109064. [PMID: 33905824 DOI: 10.1016/j.cbpc.2021.109064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/11/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023]
Abstract
Biologically active compounds used in agriculture that develop near aquatic environments easily spill into rivers or lakes. As a result, insecticides, herbicides and fungicides are observed worldwide in aquatic environments and accumulated in aquatic organism. Many insecticides, including organochlorine and organophosphate, have long been banned long ago because of their high persistence and non-target toxicity. However, previous studies have shown that persistent pesticides remain in aquatic organisms. The immune system is the first defense mechanism against exposure to persistent organic pollutants or pesticides that have been released into the aquatic environment. Many insecticides have been reported to cause immunotoxicity, which is represented by alteration of phagocytic and lysozyme activity. Recent studies show that immunotoxicity by insecticides exerts a more complex mechanism in fish. Insecticides induce immunotoxic effects, such as the release of inflammatory cytokines from head kidney macrophages and inhibition of immune cell proliferation in fish, which can lead to death in severe cases. Even currently used pesticides, such as pyrethroid, with low bioaccumulation have been shown to induce immunotoxicological effects in fish when exposed continuously. Therefore, this review describes the types and bioaccumulation of insecticides that cause immunotoxicity and detailed immunotoxicological mechanisms in fish tissues.
Collapse
Affiliation(s)
- Changwon Yang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
12
|
Adegbola IP, Aborisade BA, Adetutu A. Health risk assessment and heavy metal accumulation in fish species ( Clarias gariepinus and Sarotherodon melanotheron) from industrially polluted Ogun and Eleyele Rivers, Nigeria. Toxicol Rep 2021; 8:1445-1460. [PMID: 34401354 PMCID: PMC8349904 DOI: 10.1016/j.toxrep.2021.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 06/05/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
Concentration of Arsenic and Cadmium in the fish tissues exceed the limits set by the European Union. THQ values indicated likely adverse effects during a person’s lifetime with continuous exposure to Arsenic and Cadmium. As, Cd, and Nickel may pose cancer risk to consumer of fish from the two rivers over longtime exposure. Cancer risk due to long time consumption of fish from the rivers can be a major concern.
Ogun and Eleyele Rivers are in the Western part of Nigeria with a potential risk of heavy metal pollution because of many industrial wastes channeling through their courses. Therefore, in this study, the concentration of heavy metals and the possible human health risk of consuming Clarias gariepinus and Sarotherodon melanotheron collected from industrially polluted Ogun and Eleyele Rivers in Nigeria were evaluated. The concentration of arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), manganese (Mn), nickel (Ni), and lead (Pb) in tissues (gill, muscle, and liver) of fish was measured using Atomic Absorption Spectroscopy (AAS) and compared with the maximum permissible. The Estimated Daily Intake (EDI), Targeted Hazard Quotient (THQ), and Carcinogenic Risk (CR) of the metals were estimated for the determination of human health risk. Probabilistic predictions of the health risk were performed with Oracle Crystal Ball software. Results of this study showed that the dry weight concentrations of the metals in the gills, liver, and muscle of the two fish species from the two sites were well below the permissible limits set by the joint FAO/WHO Expert Committee. Only the EDI for arsenic in gills of C. gariepinus obtained from the Ogun River exceeded the set limit. The THQ was >1 for As in the gills and liver of C. gariepinus and S. melanotheron obtained from the Ogun river suggesting non-carcinogenic risk to the consumers. The carcinogenic risk above 10−6 obtained for As, Cd, and Ni in the tissues of the two fish species suggested cancer risk to the consumers of fish from the two rivers. Consequent to our observation, consumption of fish from the study site presents some public health concerns. Therefore, this study advises routine heavy metal monitoring of fish along these rivers to implement regulatory standards by the government environmental health management agencies.
Collapse
|
13
|
Arisekar U, Jeya Shakila R, Shalini R, Jeyasekaran G. Pesticides contamination in the Thamirabarani, a perennial river in peninsular India: The first report on ecotoxicological and human health risk assessment. CHEMOSPHERE 2021; 267:129251. [PMID: 33348266 DOI: 10.1016/j.chemosphere.2020.129251] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
This study evaluates the distribution of pesticides and assesses the ecological and human health risks associated with pesticide residues concentration in the Thamirabarani River, the only perennial river in Tamil Nadu, India. Observed a variation in the pesticide concentration in the water (not detected (ND)-31.69 μg/L), sediments (ND-14.77 μg/kg), and fish (0.02-26.05 μg/kg). Endosulfan, aldrin, and endrin were the predominant organochlorine pesticides present in water, sediments, and fish. The average concentration of pesticides (except endosulfan) in water and sediments was found to be below the acceptable threshold as per the water and sediment quality guidelines, posing no ecological hazard to aquatic organisms. The calculated risk quotient and toxic unit (0.1 > TU/RQ ≤ 1) represent low-to-medium acute and chronic toxicity to the aquatic organisms inhabiting the river basin. The average concentration of pesticides in fish (Labeorohita) was also below the maximum residual limits set by the Codex Alimentarius Commission (CAC). However, the calculated daily intakes of endosulfan, aldrin, and endrin were above the CAC-acceptable daily intake guidelines. The human health risk assessment showed that children and adults exposed to pesticides in water and sediments through ingestion and dermal contact could have higher cancer risks (CR > 10-4) than inhalation. This study recommends implementing effective and routine pollution management schemes to avoid pesticide threats to aquatic and human health.
Collapse
Affiliation(s)
- Ulaganathan Arisekar
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin, 628 008, Tamil Nadu, India.
| | - Robinson Jeya Shakila
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin, 628 008, Tamil Nadu, India.
| | - Rajendran Shalini
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin, 628 008, Tamil Nadu, India
| | | |
Collapse
|
14
|
Hua Q, Adamovsky O, Vespalcova H, Boyda J, Schmidt JT, Kozuch M, Craft SLM, Ginn PE, Smatana S, Budinska E, Persico M, Bisesi JH, Martyniuk CJ. Microbiome analysis and predicted relative metabolomic turnover suggest bacterial heme and selenium metabolism are altered in the gastrointestinal system of zebrafish (Danio rerio) exposed to the organochlorine dieldrin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115715. [PMID: 33069042 DOI: 10.1016/j.envpol.2020.115715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/29/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Dietary exposure to chemicals alters the diversity of microbiome communities and can lead to pathophysiological changes in the gastrointestinal system. The organochlorine pesticide dieldrin is a persistent environmental contaminant that bioaccumulates in fatty tissue of aquatic organisms. The objectives of this study were to determine whether environmentally-relevant doses of dieldrin altered gastrointestinal morphology and the microbiome of zebrafish. Adult zebrafish at ∼4 months of age were fed a measured amount of feed containing either a solvent control or one of two doses of dieldrin (measured at 16, and 163.5 ng/g dry weight) for 4 months. Dieldrin body burden levels in zebrafish after four-month exposure were 0 (control), 11.47 ± 1.13 ng/g (low dose) and 18.32 ± 1.32 ng/g (high dose) wet weight [mean ± std]. Extensive histopathology at the whole organism level revealed that dieldrin exposure did not induce notable tissue pathology, including the gastrointestinal tract. A repeated measure mixed model analysis revealed that, while fish gained weight over time, there were no dieldrin-specific effects on body weight. Fecal content was collected from the gastrointestinal tract of males and 16S rRNA gene sequencing conducted. Dieldrin at a measured feed dose of 16 ng/g reduced the abundance of Firmicutes, a phylum involved in energy resorption. At the level of class, there was a decrease in abundance of Clostridia and Betaproteobacteria, and an increase in Verrucomicrobiae species. We used a computational approach called predicted relative metabolomic turnover (PRMT) to predict how a shift in microbial community composition affects exchange of metabolites. Dieldrin was predicted to affect metabolic turnover of uroporphyrinogen I and coproporphyrinogen I [enzyme]-cysteine, hydrogen selenide, selenite, and methyl-selenic acid in the fish gastrointestinal system. These pathways are related to bacterial heme biosynthesis and selenium metabolism. Our study demonstrates that dietary exposures to dieldrin can alter microbiota composition over 4 months, however the long-term consequences of such impacts are not well understood.
Collapse
Affiliation(s)
- Qing Hua
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA; Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Ondrej Adamovsky
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA; Masaryk University, Research Centre for Toxic Compounds in the Environment (RECETOX), Brno, Czech Republic
| | - Hana Vespalcova
- Masaryk University, Research Centre for Toxic Compounds in the Environment (RECETOX), Brno, Czech Republic
| | - Jonna Boyda
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA
| | - Jordan T Schmidt
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA
| | - Marianne Kozuch
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA
| | - Serena L M Craft
- University of Florida, Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, Gainesville, USA
| | - Pamela E Ginn
- University of Florida, Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, Gainesville, USA
| | - Stanislav Smatana
- Masaryk University, Research Centre for Toxic Compounds in the Environment (RECETOX), Brno, Czech Republic; Faculty of Information Technology, IT4Innovations Centre of Excellence, Brno University of Technology, Brno, Czech Republic
| | - Eva Budinska
- Masaryk University, Research Centre for Toxic Compounds in the Environment (RECETOX), Brno, Czech Republic
| | - Maria Persico
- Masaryk University, Research Centre for Toxic Compounds in the Environment (RECETOX), Brno, Czech Republic
| | - Joseph H Bisesi
- Department of Environmental & Global Health and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA; University of Florida Genetics Institute and Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
15
|
Wnuk A, Rzemieniec J, Przepiórska K, Wesołowska J, Wójtowicz AK, Kajta M. Autophagy-related neurotoxicity is mediated via AHR and CAR in mouse neurons exposed to DDE. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140599. [PMID: 32721735 DOI: 10.1016/j.scitotenv.2020.140599] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
DDE (dichlorodiphenyldichloroethylene) is an environmental metabolite of the pesticide DDT, which is still present in the environment, and its insecticidal properties are used to fight malaria and the Zika virus disease. We showed for the first time that the neurotoxic effects of DDE involve autophagy, as demonstrated by elevated levels of Becn1, Map1lc3a/MAP1LC3A, Map1lc3b, and Nup62/NUP62 and an increase in autophagosome formation. The suggestion that the aryl hydrocarbon receptor (AHR) and the constitutive androstane receptor (CAR) are involved in the neurotoxic effect of DDE was supported by increases in the mRNA and protein expression of these receptors, as detected by qPCR, ELISA, immunofluorescence labeling and confocal microscopy. Selective antagonists of the receptors, including alpha-naphthoflavone, CH223191, and CINPA 1, inhibited p,p'-DDE- and o,p'-DDE-induced LDH release and caspase-3 activity, while specific siRNAs (Ahr and Car siRNA) reduced the levels of p,p'-DDE- and o,p'-DDE-induced autophagosome formation. Although the neurotoxic effects of DDE were isomer independent, the mechanisms of p,p'- and o,p'-DDE were isomer specific. Therefore, we identified previously unknown mechanisms of the neurotoxic actions of DDE that, in addition to inducing apoptosis, stimulate autophagy in mouse neocortical cultures and induce AHR and CAR signaling.
Collapse
Affiliation(s)
- Agnieszka Wnuk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Laboratory of Molecular Neuroendocrinology, Smetna street 12, 31-343 Krakow, Poland
| | - Joanna Rzemieniec
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Laboratory of Molecular Neuroendocrinology, Smetna street 12, 31-343 Krakow, Poland
| | - Karolina Przepiórska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Laboratory of Molecular Neuroendocrinology, Smetna street 12, 31-343 Krakow, Poland
| | - Julita Wesołowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Laboratory for In vivo and In Vitro Imaging, Smetna street 12, 31-343 Krakow, Poland
| | - Anna Katarzyna Wójtowicz
- University of Agriculture, Faculty of Animal Sciences, Department of Nutrition, Animal Biotechnology and Fisheries, Adama Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Małgorzata Kajta
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Laboratory of Molecular Neuroendocrinology, Smetna street 12, 31-343 Krakow, Poland.
| |
Collapse
|
16
|
Martyniuk CJ, Mehinto AC, Denslow ND. Organochlorine pesticides: Agrochemicals with potent endocrine-disrupting properties in fish. Mol Cell Endocrinol 2020; 507:110764. [PMID: 32112812 PMCID: PMC10603819 DOI: 10.1016/j.mce.2020.110764] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/01/2020] [Accepted: 02/18/2020] [Indexed: 12/24/2022]
Abstract
Organochlorine pesticides (OCPs) are persistent environmental contaminants that act as endocrine disruptors and organ system toxicants. These pesticides (e.g. dichlorodiphenyltrichloroethane (DDT), dieldrin, toxaphene, among others) are ranked as some of the most concerning chemicals for human health. These pesticides (1) act as teratogens, (2) are neuroendocrine disruptors, (3) suppress the immune and reproductive systems, and (4) dysregulate lipids and metabolism. Using a computational approach, we revealed enriched endocrine-related pathways in the Comparative Toxicogenomics Database sensitive to this chemical class, and these included reproduction (gonadotropins, estradiol, androgen, steroid biosynthesis, oxytocin), thyroid hormone, and insulin. Insight from the Tox21 and ToxCast programs confirm that these agrochemicals activate estrogen receptors, androgen receptors, and retinoic acid receptors with relatively high affinity, although differences exist in their potency. We propose an adverse outcome pathway for OCPs toxicity in the fish testis as a novel contribution to further understanding of OCP-induced toxicity. Organochlorine pesticides, due to their persistence and high toxicity to aquatic and terrestrial wildlife as well as humans, remain significant agrochemicals of concern.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, UF, USA; Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Alvine C Mehinto
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA, 92626, CA, USA
| | - Nancy D Denslow
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, UF, USA; Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
17
|
Büyüksoylu S, Özgür ME, Gül CC, Taşlıdere A, Aydemir S, Erdoğan S. An investigation of histopathological changes and bioaccumulation in tissues of rainbow trout ( Oncorhynchus mykiss) after exposure to dodine. Drug Chem Toxicol 2020; 45:537-547. [PMID: 32102573 DOI: 10.1080/01480545.2020.1730884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The purpose of this research is to determine ecotoxicological effects of dodine (n-dodecylguanidini acetate) on aquatic environments. Though dodine is widely used as a fungicide in agriculture, but there is no much data about its ecotoxicology. In this regard, we investigated bioaccumulation levels and histological alterations on the tissues of muscle, liver and gills in Rainbow Trout (Oncorhynchus mykiss) against different doses (0.01, 0.1, 0.5 and 1 mg/L) of Dodine exposure. The tissues of fish were extracted according to QUECHERS method and analyzed by mass spectrometer (LC-MS-MS). Neither of the applied dodine doses resulted in killing 50% of the total individuals in the experimental groups. However, 48 hours after doses, behaviors such as instability, anomaly in swimming or sudden jumping movements were observed. Histological results of the study showed deteriorations of the radiological pattern of hepatocytes, sinusoidal dilatations, hemorrhages, edemas, mononuclear cell infiltrations, vascular congestions, hyperplasia and hypertrophy in liver, gill and muscle tissues. Accumulation of dodine in tissues correlated with increase of dose. The maximum level of active substance accumulation in tissues were measured 96 hours after application of 1 mg/L dodine dose -in order- in gills, muscles and liver. The accumulations were statistically significant (p < 0.05) when compared with control group.
Collapse
Affiliation(s)
- Semih Büyüksoylu
- Faculty of Pharmacy, Department of Analytical Chemistry, İnönü University, Malatya, Turkey
| | - Mustafa Erkan Özgür
- Faculty of Fishery, Department of Aquaculture, Malatya Turgut Özal University, Malatya, Turkey
| | - Cemile Ceren Gül
- Faculty of Medicine, Department of Histology and Embryology, İnönü University, Malatya, Turkey
| | - Aslı Taşlıdere
- Faculty of Medicine, Department of Histology and Embryology, İnönü University, Malatya, Turkey
| | - Songül Aydemir
- Faculty of Art and Science, Department of Biology, İnönü University, Malatya, Turkey
| | - Selim Erdoğan
- Faculty of Pharmacy, Department of Analytical Chemistry, İnönü University, Malatya, Turkey
| |
Collapse
|
18
|
Manivannan B, Yegambaram M, Supowit S, Beach TG, Halden RU. Assessment of Persistent, Bioaccumulative and Toxic Organic Environmental Pollutants in Liver and Adipose Tissue of Alzheimer’s Disease Patients and Age-matched Controls. Curr Alzheimer Res 2019; 16:1039-1049. [DOI: 10.2174/1567205016666191010114744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 09/19/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Background:
Lifetime exposure to environmental (neuro) toxicants may contribute to the
pathogenesis of Alzheimer’s Disease (AD). Since many contaminants do not cross the blood-brain
barrier, brain tissue alone cannot serve to assess the spectrum of environmental exposures.
Methods:
We used liquid and gas chromatography tandem mass spectrometry to monitor, in postmortem
liver and adipose tissues of AD patients and age-matched controls, the occurrence and
concentrations of 11 environmental contaminants.
Results:
Seven toxicants were detected at 100% frequency: p,p'-DDE, dieldrin, triclosan,
methylparaben, bisphenol A, fipronil and tetrabromobisphenol A (TBBPA). Intra-individual, tissuedependent
differences were detected for triclosan, methylparaben, fipronil and TBBPA. High
concentrations of p,p’-DDE and dieldrin were observed in adipose tissue when compared to liver values
for both AD cases and controls.
Conclusion:
This study provides vital data on organ-specific human body burdens to select analytes and
demonstrate the feasibility of analyzing small sample quantities for toxicants suspected to constitute AD
risk factors.
Collapse
Affiliation(s)
- Bhagyashree Manivannan
- Biodesign Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, United States
| | - Manivannan Yegambaram
- Biodesign Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, United States
| | - Samuel Supowit
- Biodesign Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, United States
| | - Thomas G. Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ-85287, United States
| | - Rolf U. Halden
- Biodesign Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
19
|
Simmons DB, Cowie AM, Koh J, Sherry JP, Martyniuk CJ. Label-free and iTRAQ proteomics analysis in the liver of zebrafish (Danio rerio) following dietary exposure to the organochlorine pesticide dieldrin. J Proteomics 2019; 202:103362. [DOI: 10.1016/j.jprot.2019.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/25/2019] [Accepted: 04/12/2019] [Indexed: 12/26/2022]
|
20
|
Alvim TT, Martinez CBDR. Genotoxic and oxidative damage in the freshwater teleost Prochilodus lineatus exposed to the insecticides lambda-cyhalothrin and imidacloprid alone and in combination. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 842:85-93. [DOI: 10.1016/j.mrgentox.2018.11.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/23/2018] [Accepted: 11/28/2018] [Indexed: 01/22/2023]
|
21
|
Tarnawska M, Augustyniak M, Łaszczyca P, Migula P, Irnazarow I, Krzyżowski M, Babczyńska A. Immune response of juvenile common carp (Cyprinus carpio L.) exposed to a mixture of sewage chemicals. FISH & SHELLFISH IMMUNOLOGY 2019; 88:17-27. [PMID: 30831244 DOI: 10.1016/j.fsi.2019.02.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
Pharmaceuticals and household chemicals are important components of municipal sewage. Many of them are biologically active, disrupting not only hormonal regulation of aquatic animals but also, indirectly, disturbing their immunological protection. In the environment, chemicals rarely act as individual substances, but as elements of mixtures. Therefore, the aim of this study was to check whether the acute laboratory exposure of common carp juveniles to a mixture of ibuprofen, sodium dodecyl sulphate (SDS), dimethyl sulfoxide (DMSO) and 17 α-ethynylestradiol in increasing concentrations, modifies the levels of innate immunity (lysozyme, C-reactive protein) as well as general stress (metallothioneins, heat shock proteins HSP70) markers in brain, liver, gills, spleen and mucus. The levels of the markers were measured by an immunodetection technique. Not only do the pharmaceuticals and household chemicals impair immunological reactions of young carp in various tissues but also do that in a concentration-dependent manner in the liver, gills, spleen and mucus. This has a very important implication, since it may result in higher sensitivity of young fish to pathogens due to energy allocation to defence processes. The comparisons of the pattern of stress reactions in the studied organ samples indicated that mucus appeared to be a good, non-invasive material for monitoring of environmental state and fish conditions.
Collapse
Affiliation(s)
- M Tarnawska
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland.
| | - M Augustyniak
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - P Łaszczyca
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - P Migula
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - I Irnazarow
- Polish Academy of Sciences, Institute of Ichthyobiology & Aquaculture in Gołysz, Kalinowa 2, 43-520 Chybie, Poland
| | - M Krzyżowski
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - A Babczyńska
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
22
|
Varol M, Sünbül MR. Environmental contaminants in fish species from a large dam reservoir and their potential risks to human health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:507-515. [PMID: 30472475 DOI: 10.1016/j.ecoenv.2018.11.060] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/05/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
The residue levels of antibiotics, metals and organochlorine pesticides (OCPs) were investigated in six fish species from the Karakaya Dam Reservoir, Turkey. Among monitored antibiotics, only enrofloxacin and ofloxacin were detected in muscle of fish species. Enrofloxacin levels in positive samples ranged from 0.0034 to 0.0073 mg/kg. It was detected in four fish species (trout barb, common carp, chub and Euphrates barbell), while ofloxacin was only found in common carp with the concentration of 0.0072 mg/kg. Both enrofloxacin and ofloxacin levels were below the maximum residue levels. No detectable residues of any OCPs were found in fish species. The highest toxic metal (As, Cd and Pb) content was detected in Euphrates barbell (0.103 mg/kg). Arsenic, Cd, Cr, Cu, Pb and Zn levels were well below the maximum permissible limits. The levels of antibiotics and metals found in fish species in the present study were generally lower than or comparable to those reported in other water bodies. According to estimated daily intake and hazard quotient values, antibiotics and metals detected in these wild fish species do not appear to pose a serious risk to public health.
Collapse
Affiliation(s)
- Memet Varol
- Malatya Turgut Özal University, Faculty of Fisheries, Malatya, Turkey.
| | - Muhammet Raşit Sünbül
- East Mediterranean Transitional Zone Agricultural Research of Institute, Kahramanmaraş, Turkey
| |
Collapse
|
23
|
Kumar S, Nehra M, Dilbaghi N, Marrazza G, Hassan AA, Kim KH. Nano-based smart pesticide formulations: Emerging opportunities for agriculture. J Control Release 2019; 294:131-153. [PMID: 30552953 DOI: 10.1016/j.jconrel.2018.12.012] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022]
Abstract
The incorporation of nanotechnology as a means for nanopesticides is in the early stage of development. The main idea behind this incorporation is to lower the indiscriminate use of conventional pesticides to be in line with safe environmental applications. Nanoencapsulated pesticides can provide controlled release kinetics, while efficiently enhancing permeability, stability, and solubility. Nanoencapsulation can enhance the pest-control efficiency over extended durations by preventing the premature degradation of active ingredients (AIs) under harsh environmental conditions. This review is thus organized to critically assess the significant role of nanotechnology for encapsulation of AIs for pesticides. The smart delivery of pesticides is essential to reduce the dosage of AIs with enhanced efficacy and to overcome pesticide loss (e.g., due to leaching and evaporation). The future trends of pesticide nanoformulations including nanomaterials as AIs and nanoemulsions of biopesticides are also explored. This review should thus offer a valuable guide for establishing regulatory frameworks related to field applications of these nano-based pesticides in the near future.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India; Department of Civil Engineering, College of Engineering, University of Nebraska Lincoln, P.O. Box 886105, Lincoln, NE 68588-6105, United States.
| | - Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India; Department of Electronics and Communication Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy; Istituto Nazionale Biostrutture e Biosistemi (INBB), Unit of Florence, Viale delle Medaglie d'Oro 305, 00136, Roma, Italy
| | - Ashraf Aly Hassan
- Department of Civil Engineering, College of Engineering, University of Nebraska Lincoln, P.O. Box 886105, Lincoln, NE 68588-6105, United States
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
24
|
Olguín N, Müller ML, Rodríguez-Farré E, Suñol C. Neurotransmitter amines and antioxidant agents in neuronal protection against methylmercury-induced cytotoxicity in primary cultures of mice cortical neurons. Neurotoxicology 2018; 69:278-287. [PMID: 30075218 DOI: 10.1016/j.neuro.2018.07.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 12/23/2022]
Abstract
Methylmercury (MeHg) is an environmental toxicant with detrimental effects on the developing brain and adult nervous system. The main mechanisms identified include oxidative stress, changes in intracellular calcium, mitochondrial changes, inhibition of glutamate uptake, of protein synthesis and disruption of microtubules. However, little is known about mechanisms of protection against MeHg neurotoxicity. We found that resveratrol (10 μM) and ascorbic acid (200 μM) protected MeHg-induced cell death in primary cultures of cortical neurons. In this work, we aimed at finding additional targets that may be related to MeHg mode of action in cell toxicity with special emphasis in cell protection. We wonder whether neurotransmitters may affect the MeHg effects on neuronal death. Our findings show that neurons exposed to low MeHg concentrations exhibit less mortality if co-exposed to 10 μM dopamine (DA). However, DA metabolites, HVA (homovanillic acid) and DOPAC (3,4-dihydroxyphenylacetic acid) are not responsible for such protection. Furthermore, both DA D1 and D2 receptors agonists showed a protective effect against MeHg toxicity. It is striking though that DA receptor antagonists SKF83566 (10 μM) and haloperidol (10 μM) did not inhibit DA protection against MeHg. In addition, the protective effect of 10 μM DA against MeHg-induced toxicity was not affected by additional organochlorine pollutants exposure. Our results also demonstrate that cells exposed to MeHg in presence of 100 μM acetylcholine (ACh), show an increase in cell mortality at the "threshold value" of 100 nM MeHg. Finally, norepinephrine (10 μM) and serotonin (20 μM) also had an effect on cell protection. Altogether, we propose to further investigate the additional mechanisms that may be playing an important role in MeHg-induced cytotoxicity.
Collapse
Affiliation(s)
- Nair Olguín
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC - IDIBAPS, CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Marie-Lena Müller
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC - IDIBAPS, CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Eduard Rodríguez-Farré
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC - IDIBAPS, CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Cristina Suñol
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC - IDIBAPS, CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.
| |
Collapse
|
25
|
Georgiadis N, Tsarouhas K, Tsitsimpikou C, Vardavas A, Rezaee R, Germanakis I, Tsatsakis A, Stagos D, Kouretas D. Pesticides and cardiotoxicity. Where do we stand? Toxicol Appl Pharmacol 2018; 353:1-14. [PMID: 29885332 DOI: 10.1016/j.taap.2018.06.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/30/2018] [Accepted: 06/03/2018] [Indexed: 01/11/2023]
Abstract
Cardiovascular diseases are among the most significant causes of mortality in humans. Pesticides toxicity and risk for human health are controlled at a European level through a well-developed regulatory network, but cardiotoxicity is not described as a separate hazard class. Specific classification criteria should be developed within the frame of Regulation (EC) No 1272/2008 in order to classify chemicals as cardiotoxic, if applicable to avoid long-term cardiovascular complications. The aim of this study was to review the cardiac pathology and function impairment due to exposure to pesticides (i.e. organophosphates, organothiophisphates, organochlorines, carbamates, pyrethroids, dipyridyl herbicides, triazoles, triazines) based on both animal and human data. The majority of human data on cardiotoxicity of pesticides come from poisoning cases and epidemiological data. Several cardiovascular complications have been reported in animal models including electrocardiogram abnormalities, myocardial infarction, impaired systolic and diastolic performance, functional remodeling and histopathological findings, such as haemorrhage, vacuolisation, signs of apoptosis and degeneration.
Collapse
Affiliation(s)
- Nikolaos Georgiadis
- European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy; Department of Biochemistry- Biotechnology, School of Health Sciences, University of Thessaly, Viopolis, Larissa 41500, Greece
| | - Konstantinos Tsarouhas
- Department of Cardiology, University Hospital of Larissa, Mezourlo, Larissa 41110, Greece
| | | | - Alexandros Vardavas
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, Heraklion, 71003 Crete, Greece
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ioannis Germanakis
- Paediatric Cardiology Unit, Department of Paediatrics, University Hospital Voutes, Heraklion, 71409 Crete, Greece
| | - Aristides Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, Heraklion, 71003 Crete, Greece
| | - Dimitrios Stagos
- Department of Biochemistry- Biotechnology, School of Health Sciences, University of Thessaly, Viopolis, Larissa 41500, Greece
| | - Demetrios Kouretas
- Department of Biochemistry- Biotechnology, School of Health Sciences, University of Thessaly, Viopolis, Larissa 41500, Greece.
| |
Collapse
|
26
|
Varol M, Sünbül MR. Organochlorine pesticide, antibiotic and heavy metal residues in mussel, crayfish and fish species from a reservoir on the Euphrates River, Turkey. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:311-319. [PMID: 28667912 DOI: 10.1016/j.envpol.2017.06.066] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/26/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
This study investigated the residues of 19 organochlorine pesticides, 37 antibiotics and 5 heavy metals in biota samples (one mussel species, one crayfish species, six wild fish species and one farmed fish species) from the Keban Dam Reservoir on the Euphrates River, Turkey. Among monitored OCPs, only p,p'-DDE was detected in biota samples. It was found only in mussel, fish muscle and fish gill samples. The highest concentration of p,p'-DDE (0.032 mg/kg ww) was determined in the gill of common carp, which was found to be below the maximum residue limit (MRL). Only sulfadimethoxine was detected among antibiotics in biota samples. Its maximum concentration (0.0044 mg/kg ww) did not exceed the MRL of 0.1 mg/kg. Sulfadimethoxine was found only in muscle and gill of common carp collected from site S6, where there are many rainbow trout cage farms. However, no detectable residue of sulfadimethoxine was found in farmed rainbow trout. The highest concentrations of As, Cd and Pb were detected in mussels, while the highest concentrations Cu and Zn were determined in crayfish. Metal concentrations in biota samples did not exceed the maximum permissible levels. According to these results, the consumption of biota samples from the Keban Dam Reservoir is safe for human health.
Collapse
Affiliation(s)
- Memet Varol
- Faculty of Fisheries, Department of Basic Aquatic Sciences, Inonu University, Malatya, Turkey.
| | | |
Collapse
|
27
|
Christen V, Rusconi M, Crettaz P, Fent K. Developmental neurotoxicity of different pesticides in PC-12 cells in vitro. Toxicol Appl Pharmacol 2017; 325:25-36. [PMID: 28385489 DOI: 10.1016/j.taap.2017.03.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 03/31/2017] [Indexed: 11/19/2022]
Abstract
The detection of developmental neurotoxicity (DNT) of chemicals has high relevance for protection of human health. However, DNT of many pesticides is only little known. Furthermore, validated in vitro systems for assessment of DNT are not well established. Here we employed the rat phaeochromocytoma cell line PC-12 to evaluate DNT of 18 frequently used pesticides of different classes, including neonicotinoids, pyrethroids, organophosphates, organochlorines, as well as quaternary ammonium compounds, the organic compound used in pesticides, piperonyl butoxide, as well as the insect repellent diethyltoluamide (DEET). We determined the outgrowth of neurites in PC-12 cells co-treated with nerve growth factor and different concentrations of biocides for 5days. Furthermore, we determined transcriptional alterations of selected genes that may be associated with DNT, such as camk2α and camk2β, gap-43, neurofilament-h, tubulin-α and tubulin-β. Strong and dose- dependent inhibition of neurite outgrowth was induced by azamethiphos and chlorpyrifos, and dieldrin and heptachlor, which was correlated with up-regulation of gap-43. No or only weak effects on neurite outgrowth and transcriptional alterations occurred for neonicotinoids acetamiprid, clothianidin, imidacloprid and thiamethoxam, the pyrethroids λ-cyhalothrin, cyfluthrin, deltamethrin, and permethrin, the biocidal disinfectants C12-C14-alkyl(ethylbenzyl)dimethylammonium (BAC), benzalkonium chloride and barquat (dimethyl benzyl ammonium chloride), and piperonyl butoxide and DEET. Our study confirms potential developmental neurotoxicity of some pesticides and provides first evidence that azamethiphos has the potential to act as a developmental neurotoxic compound. We also demonstrate that inhibition of neurite outgrowth and transcriptional alterations of gap-43 expression correlate, which suggests the employment of gap-43 expression as a biomarker for detection and initial evaluation of potential DNT of chemicals.
Collapse
Affiliation(s)
- Verena Christen
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132, Muttenz, Switzerland
| | - Manuel Rusconi
- Federal Office of Public Health, Division Chemical Products, 3003 Bern, Switzerland
| | - Pierre Crettaz
- Federal Office of Public Health, Division Chemical Products, 3003 Bern, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132, Muttenz, Switzerland; Swiss Federal Institute of Technology Zürich (ETH Zürich), Department of Environmental Systems Sciences, Institute of Biogeochemistry and Pollution Dynamics, CH-8092 Zürich, Switzerland.
| |
Collapse
|