1
|
Agache I, Annesi-Maesano I, Cecchi L, Biagioni B, Chung F, D'Amato G, Damialis A, Del Giacco S, Dominguez Ortega J, Galán C, Gilles S, Holgate S, Jeebhay M, Kazadzis S, Nadeau K, Papadopoulos NG, Quirce S, Sastre J, Traidl-Hoffmann C, Walusiak-Skorupa J, Zemelka-Wiacek M, Jutel M, Akdis CA. EAACI Guidelines on Environmental Science for Allergy and Asthma-Recommendations on the Impact of Indoor Air Pollutants on the Risk of New-Onset Asthma and on Asthma-Related Outcomes. Allergy 2025; 80:651-676. [PMID: 40018799 DOI: 10.1111/all.16502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 03/01/2025]
Abstract
The EAACI Guidelines used the GRADE approach to evaluate the impact of major indoor air pollutants (dampness and mould, cleaning agents, volatile organic compounds and pesticides) on the risk of new-onset asthma and on asthma-related outcomes. The guideline also acknowledges the synergies among indoor air pollutants and other components of the indoor exposome (allergens, viruses, endotoxins). Very low to low certainty of evidence was found for the association between exposure to indoor pollutants and increased risk of new-onset asthma and asthma worsening. Only for mould exposure there was moderate certainty of evidence for new-onset asthma. Due to the quality of evidence, conditional recommendations were formulated on the risk of exposure to all indoor pollutants. Recommendations are provided for prevention, patient care and mitigation in a framework supporting rational decisions for healthcare professionals and patients to individualize and improve asthma management. For policymakers and regulators this evidence-informed guideline supports setting legally binding standards and goals for indoor air quality at international, national and local levels. Asthma management counselled by the current EAACI guidelines can improve asthma-related outcomes but community and governmental measures for improved indoor air quality are needed to achieve significant impact.
Collapse
Affiliation(s)
- Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Isabella Annesi-Maesano
- Institute Desbrest of Epidemiology and Public Health, University of Montpellier and INSERM, Montpellier, France
| | - Lorenzo Cecchi
- Allergology and Clinical Immunology, S Giovanni di Dio Hospital, Florence, Italy
| | - Benedetta Biagioni
- Allergy and Clinical Immunology Unit, San Giovanni di Dio Hospital, Florence, Italy
| | | | - Gennaro D'Amato
- Respiratory Disease Department, Hospital Cardarelli, Naples, Italy
- Medical School of Respiratory Diseases, University of Naples Federico II, Naples, Italy
| | - Athanasios Damialis
- Terrestrial Ecology and Climate Change, Department of Ecology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Javier Dominguez Ortega
- Department of Allergy, La Paz University Hospital, IdiPAZ, and CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
| | - Carmen Galán
- Inter-University Institute for Earth System Research (IISTA), international Campus of Excellence on Agrifood (ceiA3), University of Córdoba, Córdoba, Spain
| | - Stefanie Gilles
- Institute of Environmental Medicine and Integrative Health, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Allergy Service, Fundación Jiménez Díaz, Faculty of Medicine Universidad Autónoma de Madrid and CIBERES, Instituto Carlos III, Ministry of Science and Innovation, Madrid, Spain
| | - Stephen Holgate
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mohamed Jeebhay
- Occupational Medicine Division and Centre for Environmental & Occupational Health Research, University of Cape Town, Cape Town, South Africa
| | - Stelios Kazadzis
- Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center, Davos, Switzerland
| | - Kari Nadeau
- John Rock Professor of Climate and Population Studies; Chair, Department of Environmental Health, Interim Director, Center for Climate, Health, and the Global Environment, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Nikos G Papadopoulos
- Department of Allergy, second Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
- Lydia Becker Institute, University of Manchester, Manchester, UK
| | - Santiago Quirce
- Department of Allergy, La Paz University Hospital, IdiPAZ, and CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz, Faculty of Medicine Universidad Autónoma de Madrid and CIBERES, Instituto Carlos III, Ministry of Science and Innovation, Madrid, Spain
| | - Claudia Traidl-Hoffmann
- Institute of Environmental Medicine and Integrative Health, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Insitute of Environmental Medicine, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jolanta Walusiak-Skorupa
- Department of Occupational Diseases and Environmental Health, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Magdalena Zemelka-Wiacek
- Department of Clinical Immunology, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Marek Jutel
- Department of Clinical Immunology, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
- ALL-MED Medical Research Institute, Wroclaw, Poland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| |
Collapse
|
2
|
Ziou M, Gao CX, Wheeler AJ, Zosky GR, Stephens N, Knibbs LD, Melody SM, Venn AJ, Dalton MF, Dharmage SC, Johnston FH. Contrasting Health Outcomes following a Severe Smoke Episode and Ambient Air Pollution in Early Life: Findings from an Australian Data Linkage Cohort Study of Hospital Utilization. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:117005. [PMID: 37962441 PMCID: PMC10644899 DOI: 10.1289/ehp12238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Episodic spikes in air pollution due to landscape fires are increasing, and their potential for longer term health impacts is uncertain. OBJECTIVE Our objective is to evaluate associations between exposure in utero and in infancy to severe pollution from a mine fire, background ambient air pollution, and subsequent hospital care. METHODS We linked health records of births, emergency department (ED) visits, and hospitalizations of children born in the Latrobe Valley, Australia, 2012-2015, which included a severe pollution episode from a mine fire (9 February 2014 to 25 March 2014). We assigned modeled exposure estimates for fire-related and ambient particulate matter with an aerodynamic diameter of 2.5 μ m (PM 2.5 ) to residential address. We used logistic regression to estimate associations with hospital visits for any cause and groupings of infectious, allergic, and respiratory conditions. Outcomes were assessed for the first year of life in the in utero cohort and the year following the fire in the infant cohort. We estimated exposure-response for both fire-related and ambient PM 2.5 and also employed inverse probability weighting using the propensity score to compare exposed and not/minimally exposed children. RESULTS Prenatal exposure to fire-related PM 2.5 was associated with ED presentations for allergies/skin rash [odds ratio ( OR ) = 1.34 , 95% confidence interval (CI): 1.01, 1.76 per 240 μ g / m 3 increase]. Exposure in utero to ambient PM 2.5 was associated with overall presentations (OR = 1.18 , 95% CI: 1.05, 1.33 per 1.4 μ g / m 3 ) and visits for infections (ED: OR = 1.13 , 95% CI: 0.98, 1.29; hospitalizations: OR = 1.23 , 95% CI: 1.00, 1.52). Exposure in infancy to fire-related PM 2.5 compared to no/minimal exposure, was associated with ED presentations for respiratory (OR = 1.37 , 95% CI: 1.05, 1.80) and infectious conditions (any: OR = 1.21 , 95% CI: 0.98, 1.49; respiratory-related: OR = 1.39 , 95% CI: 1.05, 1.83). Early life exposure to ambient PM 2.5 was associated with overall ED visits (OR = 1.17 , 95% CI: 1.05, 1.30 per 1.4 μ g / m 3 increase). DISCUSSION Higher episodic and lower ambient concentrations of PM 2.5 in early life were associated with visits for allergic, respiratory, and infectious conditions. Our findings also indicated differences in associations at the two developmental stages. https://doi.org/10.1289/EHP12238.
Collapse
Affiliation(s)
- Myriam Ziou
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Caroline X. Gao
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Amanda J. Wheeler
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Oceans and Atmosphere, Aspendale, Victoria, Australia
| | - Graeme R. Zosky
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- Tasmanian School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Nicola Stephens
- Tasmanian School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Luke D. Knibbs
- School of Public Health, The University of Sydney, New South Wales, Australia
- Public Health Research Analytics and Methods for Evidence, Public Health Unit, Sydney Local Health District, Camperdown, New South Wales, Australia
| | - Shannon M. Melody
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Alison J. Venn
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Marita F. Dalton
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Shyamali C. Dharmage
- Allergy and Lung Health Unit, School of Population and Global Health, The University of Melbourne, Carlton, Victoria, Australia
| | - Fay H. Johnston
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
3
|
Dhital S, Rupakheti D, Rupakheti M, Yin X, Liu Y, Mafiana JJ, Alareqi MM, Mohamednour H, Zhang B. A scientometric analysis of indoor air pollution research during 1990-2019. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115736. [PMID: 35932736 DOI: 10.1016/j.jenvman.2022.115736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 01/26/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Indoor air pollution (IAP) is one of the leading risk factors for various adverse health outcomes including premature deaths globally. Even though research related to IAP has been carried out, bibliometric studies with particular emphasis on this topic have been lacking. Here, we investigated IAP research from 1990 to 2019 retrieved from the Web of Science database through a comprehensive and systematic scientometric analysis using the CiteSpace 5.7.R2, a powerful tool for visualizing structural, temporal patterns and trends of a scientific field. There was an exponential increase in publications, however, with a stark difference between developed and developing countries. The journals publishing IAP related research had multiple disciplines; 'Indoor Air' journal that focuses solely on IAP issues ranked fifth among top-cited journals. The terms like 'global burden', 'comparative risk assessment,' 'household air pollution (HAP)', 'ventilation', 'respiratory health', 'emission factor', 'impact,' 'energy', 'household', 'India' were the current topical subject where author Kirk R. Smith was identified with a significant contribution. Research related to rural, fossil-fuel toxicity, IAP, and exposure-assessment had the highest citation burst signifying the particular attention of scientific communities to these subjects. Overall, this study examined the evolution of IAP research, identified the gaps and provided future research directions.
Collapse
Affiliation(s)
- Sushma Dhital
- School of Public Health, Lanzhou University, Lanzhou 730000, China.
| | - Dipesh Rupakheti
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | | | - Xiufeng Yin
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yanli Liu
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | | | | | | | - Benzhong Zhang
- School of Public Health, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
4
|
Loto‐Aso E, Howie SRC, Grant CC. Childhood pneumonia in New Zealand. J Paediatr Child Health 2022; 58:752-757. [PMID: 35244959 PMCID: PMC9311843 DOI: 10.1111/jpc.15941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
Abstract
While deaths from pneumonia during childhood in New Zealand (NZ) are now infrequent, childhood pneumonia remains a significant cause of morbidity. In this viewpoint, we describe pneumonia epidemiology in NZ and identify modifiable risk factors. During recent decades, pneumonia hospitalisation rates decreased, attributable in part to inclusion of pneumococcal conjugate vaccine in NZ's immunisation schedule. Irrespective of these decreases, pneumonia hospitalisation rates are four times higher for Pacific and 60% higher for Māori compared with children of other ethnic groups. Consistent with other developed countries, hospitalisation rates for pneumonia with pleural empyema increased in NZ during the 2000s. Numerous factors contribute to childhood pneumonia acquisition, hospitalisation and morbidity in NZ include poor quality living environments, malnutrition during pregnancy and early childhood, incomplete and delayed vaccination during pregnancy and childhood and variable primary and secondary care management. To reduce childhood pneumonia disease burden, interventions should focus on addressing modifiable risk factors for pneumonia. These include using non-polluting forms of household heating; decreasing cigarette smoke exposure; reducing household acute respiratory infection transmission; improving dietary nutritional content and nutrition during pregnancy and early childhood; breastfeeding promotion; vaccination during pregnancy and childhood and improving the quality of and decreasing the variance in primary and secondary care management of pneumonia.
Collapse
Affiliation(s)
- Eseta Loto‐Aso
- Kidz First Neonatal CareCounties Manukau District Health BoardAucklandNew Zealand
| | - Stephen RC Howie
- Department of Paediatrics: Child & Youth HealthUniversity of AucklandAucklandNew Zealand,Child, Women and Family ServicesWaitematā District Health BoardAucklandNew Zealand
| | - Cameron C Grant
- Child, Women and Family ServicesWaitematā District Health BoardAucklandNew Zealand,General Paediatrics, Starship Children's HospitalAuckland District Health BoardAucklandNew Zealand
| |
Collapse
|
5
|
Guercio V, Pojum IC, Leonardi GS, Shrubsole C, Gowers AM, Dimitroulopoulou S, Exley KS. Exposure to indoor and outdoor air pollution from solid fuel combustion and respiratory outcomes in children in developed countries: a systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142187. [PMID: 33017761 DOI: 10.1016/j.scitotenv.2020.142187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
Epidemiological studies have shown a positive association between exposure to outdoor and indoor solid fuel combustion and adverse health effects. We reviewed the epidemiological evidence from Europe, North America, Australia and New Zealand on the association between outdoor and indoor exposure to solid fuel combustion and respiratory outcomes in children. We performed a systematic review and meta-analysis. Pooled relative risks (RRs) and 95% confidence intervals (CI) were calculated using random-effects models. We identified 74 articles. Due to limited evidence on other exposures and outcomes, we performed meta-analyses on the association between indoor wood burning exposure and respiratory outcomes. The RR for the highest vs the lowest category of indoor wood exposure was 0.90 (95% CI 0.77-1.05) considering asthma as an outcome. The corresponding pooled RRs for lower respiratory infection (LRI) and upper respiratory infection (URI) were 1.11 (95% CI 0.88, 1.41) and 1.11 (95% CI 0.85, 1.44) respectively. No association was found between indoor wood burning exposure and risk of wheeze and cough. Inconsistent and limited results were found considering the relationship between indoor wood burning exposure and other respiratory outcomes (rhinitis and hay fever, influenza) as well as indoor coal burning exposure and respiratory outcomes in children. Results from epidemiological studies that evaluated the relationship between the exposure to outdoor emissions derived from indoor combustion of solid fuels are too limited to allow firm conclusions. We found no association between indoor wood burning exposure and risk of asthma. A slight, but not significant, increased risk of LRI and URI was identified, although the available evidence is limited. Epidemiological studies evaluating the relationship between indoor coal burning exposure and respiratory outcomes, as well as, studies considering exposure to outdoor solid fuels, are too limited to draw any firm conclusions.
Collapse
Affiliation(s)
- Valentina Guercio
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Oxfordshire, OX11 0RQ, United Kingdom.
| | - Iulia C Pojum
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Oxfordshire, OX11 0RQ, United Kingdom
| | - Giovanni S Leonardi
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Oxfordshire, OX11 0RQ, United Kingdom
| | - Clive Shrubsole
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Oxfordshire, OX11 0RQ, United Kingdom
| | - Alison M Gowers
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Oxfordshire, OX11 0RQ, United Kingdom
| | - Sani Dimitroulopoulou
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Oxfordshire, OX11 0RQ, United Kingdom
| | - Karen S Exley
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Oxfordshire, OX11 0RQ, United Kingdom
| |
Collapse
|
6
|
Robinson DL. Home insulation also saves lives by reducing wood stove pollution. BMJ 2021; 372:n388. [PMID: 33563589 DOI: 10.1136/bmj.n388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Lai H, Hales S, Woodward A, Walker C, Marks E, Pillai A, Chen RX, Morton SM. Effects of heavy rainfall on waterborne disease hospitalizations among young children in wet and dry areas of New Zealand. ENVIRONMENT INTERNATIONAL 2020; 145:106136. [PMID: 32987220 DOI: 10.1016/j.envint.2020.106136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/14/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Heavy rainfall is associated with increased risk of waterborne disease. However, it is not known whether the risk increment differs between wet and dry regions. We examined this question in New Zealand, which has a wide geographical variation of annual rainfall totals (10th-90th percentile difference ≥3000 mm). We conducted a nested case-crossover study within a prospective child cohort (born in 2009-2010) for assessing transient health effects when modified by longitudinal exposures to rainfall. Short-term heavy rainfall effects on hospitalizations due to enteric bacterial and viral infectious causes at lag of 0-14 days were assessed using a Cox regression model adjusted for daily temperature, relative humidity and evapotranspiration. We derived quantiles of time-weighted long-term rainfall levels at the children's homes and these were added as an interaction term to the short-term effect model. Hospitalization risks were higher two days after heavy rainfall days (hazard ratio [95% confidence interval]: 1.73 [1.10-2.70]). The lowest-observable-adverse-effect-level was detected at the 94th percentile of daily rainfall total. Hospital admissions 1-2 days after heavy rainfall increased most in locations with the lowest and highest long-term rainfall. An interaction of this kind between short-term weather and long-term climate has not been reported previously. It is relevant to climate change risk assessments given global projections of increasing intensity of precipitation, against a background of more severe, and possibly more frequent, droughts and flooding.
Collapse
Affiliation(s)
- Hakkan Lai
- Growing Up in New Zealand, School of Population Health, University of Auckland, New Zealand; Centre for Longitudinal Research - He Ara Ki Mua, School of Population Health, University of Auckland, New Zealand.
| | - Simon Hales
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Alistair Woodward
- Section of Epidemiology and Biostatistics, School of Population Health, University of Auckland, New Zealand
| | - Caroline Walker
- Growing Up in New Zealand, School of Population Health, University of Auckland, New Zealand; Centre for Longitudinal Research - He Ara Ki Mua, School of Population Health, University of Auckland, New Zealand
| | - Emma Marks
- Growing Up in New Zealand, School of Population Health, University of Auckland, New Zealand; Centre for Longitudinal Research - He Ara Ki Mua, School of Population Health, University of Auckland, New Zealand
| | - Avinesh Pillai
- Growing Up in New Zealand, School of Population Health, University of Auckland, New Zealand; Department of Statistics, Faculty of Science, University of Auckland, New Zealand
| | - Rachel X Chen
- Growing Up in New Zealand, School of Population Health, University of Auckland, New Zealand; Department of Statistics, Faculty of Science, University of Auckland, New Zealand
| | - Susan M Morton
- Growing Up in New Zealand, School of Population Health, University of Auckland, New Zealand; Centre for Longitudinal Research - He Ara Ki Mua, School of Population Health, University of Auckland, New Zealand
| |
Collapse
|
8
|
Accurate, Low Cost PM2.5 Measurements Demonstrate the Large Spatial Variation in Wood Smoke Pollution in Regional Australia and Improve Modeling and Estimates of Health Costs. ATMOSPHERE 2020. [DOI: 10.3390/atmos11080856] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The accuracy and utility of low-cost PM2.5 sensors was evaluated for measuring spatial variation and modeling population exposure to PM2.5 pollution from domestic wood-heating (DWH) in Armidale, a regional town in New South Wales (NSW), Australia, to obtain estimates of health costs and mortality. Eleven ‘PurpleAir’ (PA) monitors were deployed, including five located part of the time at the NSW government station (NSWGov) to derive calibration equations. Calibrated PA PM2.5 were almost identical to the NSWGov tapered element oscillating microbalance (TEOM) and Armidale Regional Council’s 2017 DustTrak measurements. Spatial variation was substantial. National air quality standards were exceeded 32 times from May–August 2018 at NSWGov and 63 times in one residential area. Wood heater use by about 50% of households increased estimated annual PM2.5 exposure by over eight micrograms per cubic meter, suggesting increased mortality of about 10% and health costs of thousands of dollars per wood heater per year. Accurate real-time community-based monitoring can improve estimates of exposure and avoid bias in estimating dose-response relationships. Efforts over the past decade to reduce wood smoke pollution proved ineffective, perhaps partly because some residents do not understand the health impacts or costs of wood-heating. Real-time Internet displays can increase awareness of DWH and bushfire pollution and encourage governments to develop effective policies to protect public health, as recommended by several recent studies in which wood smoke was identified as a major source of health-hazardous air pollution.
Collapse
|
9
|
Lai HK, Camargo CA, Woodward A, Hobbs M, Pillai A, Morton SM, Grant CC. Long-term exposure to neighborhood smoke from household heating and risk of respiratory and dermatological prescription medications-Growing Up in New Zealand child cohort study. Allergy 2019; 74:391-395. [PMID: 30243026 DOI: 10.1111/all.13615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hak Kan Lai
- Growing Up in New Zealand; School of Population Health; University of Auckland; Auckland New Zealand
- Centre for Longitudinal Research-He Ara Ki Mua; School of Population Health; University of Auckland; Auckland New Zealand
| | - Carlos A. Camargo
- Department of Epidemiology; Harvard T.H. Chan School of Public Health; Boston Massachusetts
- Department of Emergency Medicine; Massachusetts General Hospital; Boston Massachusetts
| | - Alistair Woodward
- Section of Epidemiology and Biostatistics; School of Population Health; University of Auckland; Auckland New Zealand
| | - Mark Hobbs
- Growing Up in New Zealand; School of Population Health; University of Auckland; Auckland New Zealand
- Centre for Longitudinal Research-He Ara Ki Mua; School of Population Health; University of Auckland; Auckland New Zealand
- Department of Paediatrics, Child and Youth Health; School of Medicine; University of Auckland; Auckland New Zealand
| | - Avinesh Pillai
- Growing Up in New Zealand; School of Population Health; University of Auckland; Auckland New Zealand
- Department of Statistics; Faculty of Science; University of Auckland; Auckland New Zealand
| | - Susan M. Morton
- Growing Up in New Zealand; School of Population Health; University of Auckland; Auckland New Zealand
- Centre for Longitudinal Research-He Ara Ki Mua; School of Population Health; University of Auckland; Auckland New Zealand
| | - Cameron C. Grant
- Growing Up in New Zealand; School of Population Health; University of Auckland; Auckland New Zealand
- Centre for Longitudinal Research-He Ara Ki Mua; School of Population Health; University of Auckland; Auckland New Zealand
- Department of Paediatrics, Child and Youth Health; School of Medicine; University of Auckland; Auckland New Zealand
- General Paediatrics; Starship Children's Hospital; Auckland New Zealand
| |
Collapse
|