1
|
Ji Y, Wang Y, Wang X, Lv C, Zhou Q, Jiang G, Yan B, Chen L. Beyond the promise: Exploring the complex interactions of nanoparticles within biological systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133800. [PMID: 38368688 DOI: 10.1016/j.jhazmat.2024.133800] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The exploration of nanoparticle applications is filled with promise, but their impact on the environment and human health raises growing concerns. These tiny environmental particles can enter the human body through various routes, such as the respiratory system, digestive tract, skin absorption, intravenous injection, and implantation. Once inside, they can travel to distant organs via the bloodstream and lymphatic system. This journey often results in nanoparticles adhering to cell surfaces and being internalized. Upon entering cells, nanoparticles can provoke significant structural and functional changes. They can potentially disrupt critical cellular processes, including damaging cell membranes and cytoskeletons, impairing mitochondrial function, altering nuclear structures, and inhibiting ion channels. These disruptions can lead to widespread alterations by interfering with complex cellular signaling pathways, potentially causing cellular, organ, and systemic impairments. This article delves into the factors influencing how nanoparticles behave in biological systems. These factors include the nanoparticles' size, shape, charge, and chemical composition, as well as the characteristics of the cells and their surrounding environment. It also provides an overview of the impact of nanoparticles on cells, organs, and physiological systems and discusses possible mechanisms behind these adverse effects. Understanding the toxic effects of nanoparticles on physiological systems is crucial for developing safer, more effective nanoparticle-based technologies.
Collapse
Affiliation(s)
- Yunxia Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Changjun Lv
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
2
|
Parker KS, El N, Buldo EC, MacCormack TJ. Mechanisms of PVP-functionalized silver nanoparticle toxicity in fish: Intravascular exposure disrupts cardiac pacemaker function and inhibits Na +/K +-ATPase activity in heart, but not gill. Comp Biochem Physiol C Toxicol Pharmacol 2024; 277:109837. [PMID: 38218567 DOI: 10.1016/j.cbpc.2024.109837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Polyvinylpyrrolidone-functionalized silver nanoparticles (nAgPVP) are popular in consumer products for their colloidal stability and antimicrobial activity. Whole lake additions of nAgPVP cause long term, ecosystem-scale changes in fish populations but the mechanisms underlying this effect are unclear. We have previously shown that in fish, nAgPVP impairs cardiac contractility and Na+/K+-ATPase (NKA) activity in vitro, raising the possibility that heart dysfunction could underlie population-level exposure effects. The goal of this study was to determine if nAgPVP influences the control of heart rate (fh), blood pressure, or cardiac NKA activity in vivo. First, a dose-response curve for the effects of 5 nm nAgPVP on contractility was completed on isometrically contracting ventricular muscle preparations from Arctic char (Salvelinus alpinus) and showed that force production was lowest at 500 μg L-1 and maximum pacing frequency increased with nAgPVP concentration. Stroke volume, cardiac output, and power output were maintained in isolated working heart preparations from brook char (Salvelinus fontinalis) exposed to 700 μg L-1 nAgPVP. Both fh and blood pressure were elevated after 24 h in brook char injected with 700 μg kg body mass-1 nAgPVP and fh was insensitive to modulation with blockers of β-adrenergic and muscarinic cholinergic receptors. Na+/K+-ATPase activity was significantly lower in heart, but not gill of nAgPVP injected fish. The results indicate that nAgPVP influences cardiac function in vivo by disrupting regulation of the pacemaker and cardiomyocyte ionoregulation. Impaired fh regulation may prevent fish from appropriately responding to environmental or social stressors and affect their ability to survive.
Collapse
Affiliation(s)
- K S Parker
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - N El
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - E C Buldo
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - T J MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada.
| |
Collapse
|
3
|
James RS, Seebacher F, Tallis J. Can animals tune tissue mechanics in response to changing environments caused by anthropogenic impacts? J Exp Biol 2023; 226:287009. [PMID: 36779312 DOI: 10.1242/jeb.245109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Anthropogenic climate change and pollution are impacting environments across the globe. This Review summarises the potential impact of such anthropogenic effects on animal tissue mechanics, given the consequences for animal locomotor performance and behaviour. More specifically, in light of current literature, this Review focuses on evaluating the acute and chronic effects of temperature on the mechanical function of muscle tissues. For ectotherms, maximal muscle performance typically occurs at temperatures approximating the natural environment of the species. However, species vary in their ability to acclimate to chronic changes in temperature, which is likely to have longer-term effects on species range. Some species undergo periods of dormancy to avoid extreme temperature or drought. Whilst the skeletal muscle of such species generally appears to be adapted to minimise muscle atrophy and maintain performance for emergence from dormancy, the increased occurrence of extreme climatic conditions may reduce the survival of individuals in such environments. This Review also considers the likely impact of anthropogenic pollutants, such as hormones and heavy metals, on animal tissue mechanics, noting the relative paucity of literature directly investigating this key area. Future work needs to determine the direct effects of anthropogenic environmental changes on animal tissues and related changes in locomotor performance and behaviour, including accounting for currently unknown interactions between environmental factors, e.g. temperature and pollutants.
Collapse
Affiliation(s)
- Rob S James
- Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Jason Tallis
- Research Centre for Sport, Exercise and Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK
| |
Collapse
|
4
|
Schultz DR, Tang S, Miller C, Gagnon D, Shekh K, Alcaraz AJG, Janz DM, Hecker M. A Multi-Life Stage Comparison of Silver Nanoparticle Toxicity on the Early Development of Three Canadian Fish Species. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:3337-3350. [PMID: 34506650 DOI: 10.1002/etc.5210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/10/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Information on the effects of silver nanoparticles (AgNPs) in fish has mostly been generated from standard laboratory species and short-term toxicity tests. However, there is significant uncertainty regarding AgNP toxicity to native species of concern in North America, particularly in northern freshwater ecosystems. We assessed the chronic toxicity of AgNPs in early life stages of three North American fish species: rainbow trout (Oncorhynchus mykiss), lake trout (Salvelinus namaycush), and northern pike (Esox lucius). Newly fertilized embryos were exposed to nominal aqueous concentrations of 0.1, 0.3, 1.0, 3.0, 10.0, or 30.0 nM AgNPs for 126 (rainbow trout), 210 (lake trout), and 25 (northern pike) days. Endpoints included cumulative developmental time (°C × day or degree-days to 50% life-stage transition), mortality, fork length, embryonic malformations, cumulative survival, and histopathology of gill and liver in larvae/alevins. The results showed life stage-specific differences in responses, with endpoints during the embryonic stage occurring more often and at lower concentrations compared to larval/alevin and juvenile stages. Sensitivities among species were highly dependent on the endpoints measured, although developmental time appeared to be the most consistent endpoint across species. At embryonic and larval/alevin stages, northern pike was the most sensitive species (lowest observable effect concentration of 0.1 nM using developmental time). Rainbow trout displayed similar responses to lake trout across multiple endpoints and therefore seems to be an adequate surrogate for trout species in ecotoxicology studies. Moreover, while mortality during individual life stages was not generally affected, the cumulative mortality across life stages was significantly affected, which highlights the importance of chronic, multi-life-stage studies. Environ Toxicol Chem 2021;40:3337-3350. © 2021 SETAC.
Collapse
Affiliation(s)
- Dayna R Schultz
- Toxicology Graduate Program, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Song Tang
- School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Christie Miller
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Danielle Gagnon
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kamran Shekh
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Alper J G Alcaraz
- Toxicology Graduate Program, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - David M Janz
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
5
|
Gates MA, Morash AJ, Lamarre SG, MacCormack TJ. Intracellular taurine deficiency impairs cardiac contractility in rainbow trout (Oncorhynchus mykiss) without affecting aerobic performance. J Comp Physiol B 2021; 192:49-60. [PMID: 34581858 DOI: 10.1007/s00360-021-01407-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/03/2021] [Accepted: 09/16/2021] [Indexed: 01/07/2023]
Abstract
Taurine is a non-proteinogenic sulfonic acid found in high concentrations inside vertebrate cardiomyocytes and its movement across the sarcolemmal membrane is critical for cell volume regulation. Taurine deficiency is rare in mammals, where it impairs cardiac contractility and leads to congestive heart failure. In fish, cardiac taurine levels vary substantially between species and can decrease by up to 60% in response to environmental change but its contribution to cardiac function is understudied. We addressed this gap in knowledge by generating a taurine-deficient rainbow trout (Oncorhynchus mykiss) model using a feed enriched with 3% β-alanine to inhibit cellular taurine uptake. Cardiac taurine was reduced by 17% after 4 weeks with no effect on growth or condition factor. Taurine deficiency did not affect routine or maximum rates of O2 consumption, aerobic scope, or critical swimming speed in whole animals but cardiac contractility was significantly impaired. In isometrically contracting ventricular strip preparations, the force-frequency and extracellular Ca2+-sensitivity relationships were both shifted downward and maximum pacing frequency was significantly lower in β-alanine fed trout. Cardiac taurine deficiency reduces sarcoplasmic reticular Ca2+-ATPase activity in mammals and our results are consistent with such an effect in rainbow trout. Our data indicate that intracellular taurine contributes to the regulation of cardiac contractility in rainbow trout. Aerobic performance was unaffected in β-alanine-fed animals, but further study is needed to determine if more significant natural reductions in taurine may constrain performance under certain environmental conditions.
Collapse
Affiliation(s)
- M A Gates
- Department of Chemistry and Biochemistry, Mount Allison University, 63C York St., Sackville, NB, E4L1G8, Canada.,Department of Biology, Mount Allison University, Sackville, NB, Canada.,Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - A J Morash
- Department of Chemistry and Biochemistry, Mount Allison University, 63C York St., Sackville, NB, E4L1G8, Canada.,Department of Biology, Mount Allison University, Sackville, NB, Canada.,Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - S G Lamarre
- Department of Chemistry and Biochemistry, Mount Allison University, 63C York St., Sackville, NB, E4L1G8, Canada.,Department of Biology, Mount Allison University, Sackville, NB, Canada.,Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - T J MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, 63C York St., Sackville, NB, E4L1G8, Canada. .,Department of Biology, Mount Allison University, Sackville, NB, Canada. .,Department of Biology, Université de Moncton, Moncton, NB, Canada.
| |
Collapse
|
6
|
Ollerhead KM, Adams OA, Willett NJ, Gates MA, Bennett JC, Murimboh J, Morash AJ, Lamarre SG, MacCormack TJ. Polyvinylpyrolidone-functionalized silver nanoparticles do not affect aerobic performance or fractional rates of protein synthesis in rainbow trout (Oncorhynchus mykiss). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114044. [PMID: 32004967 DOI: 10.1016/j.envpol.2020.114044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/15/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Aerobic performance in fish is linked to individual and population fitness and can be impacted by anthropogenic contaminants. Exposure to some engineered nanomaterials, including silver nanoparticles (nAg), reduces rates of oxygen consumption in some fish species, but the underlying mechanisms remain unclear. In addition, their effects on swim performance have not been studied. Our aim was to quantify the impact of exposure to functionalized nAg on aerobic scope and swim performance in rainbow trout (Oncorhychus mykiss) and to characterize the contribution of changing rates of protein synthesis to these physiological endpoints. Fish were exposed for 48 h to 5 nm polyvinylpyrolidone-functionalized nAg (nAgPVP; 100 μg L-1) or 0.22 μg L-1 Ag+ (as AgNO3), which was the measured quantity of Ag released from the nAgPVP over that time period. Aerobic scope, critical swimming speed (Ucrit), and fractional rates of protein synthesis (Ks), were then assessed, along with indicators of osmoregulation and cardiotoxicity. Neither nAgPVP, nor Ag+ exposure significantly altered aerobic scope, its component parts, or swim performance. Ks was similarly unaffected in 8 tissue types, though it tended to be lower in liver of nAgPVP treated fish. The treatments tended to decrease gill Na+/K+-ATPase activity, but effects were not significant. The latter results suggest that a longer or more concentrated nAgPVP exposure may induce significant effects. Although this same formulation of nAgPVP is bioactive in other fish, it had no effects on rainbow trout under the conditions tested. Such findings on common model animals like trout may thus misrepresent the safety of nAg to more sensitive species.
Collapse
Affiliation(s)
- K M Ollerhead
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - O A Adams
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - N J Willett
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - M A Gates
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - J C Bennett
- Department of Physics, Acadia University, Wolfville, NS, Canada
| | - J Murimboh
- Department of Chemistry, Acadia University, Wolfville, NS, Canada
| | - A J Morash
- Department of Biology, Mount Allison University, Sackville, NB, Canada
| | - S G Lamarre
- Département de Biologie, Université de Moncton, Moncton, NB, Canada
| | - T J MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada.
| |
Collapse
|
7
|
Campbell LA, Gormley PT, Bennett JC, Murimboh JD, MacCormack TJ. Functionalized silver nanoparticles depress aerobic metabolism in the absence of overt toxicity in brackish water killifish, Fundulus heteroclitus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105221. [PMID: 31207537 DOI: 10.1016/j.aquatox.2019.105221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/04/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
Engineered nanomaterials (ENMs) tend to precipitate in saline waters so the majority of aquatic toxicity studies have focused on freshwaters, where bioavailability is presumed to be higher. Recent studies have illustrated that some ENM formulations are bioavailable and bioactive in salt water and that their effects are more pronounced at the physiological than biochemical level. These findings raise concerns regarding the effects of ENMs on marine organisms. Therefore, our goal was to characterize the effects of polyvinylpyrolidone-functionalized silver ENMs (nAg) on aerobic performance in the killifish (Fundulus heteroclitus), a common euryhaline teleost. Fish were exposed to 80 μg L-1 of 5 nm nAg for 48 h in brackish water (12 ppt) and routine (ṀO2min) and maximum (ṀO2max) rates of oxygen consumption were quantified. Silver dissolution was minimal and nAg remained well dispersed in brackish water, with a hydrodynamic diameter of 21.0 nm, compared to 19.3 in freshwater. Both ṀO2min and ṀO2max were significantly lower (by 53 and 30%, respectively) in killifish exposed to nAg and a reduction in ṀO2 variability suggested spontaneous activity was suppressed. Neither gill Na+/K+-ATPase activity, nor various other biochemical markers were affected by nAg exposure. The results illustrate that a common ENM formulation is bioactive in salt water and, as in previous studies on functionalized copper ENMs, that effects are more pronounced at the whole animal than the biochemical level.
Collapse
Affiliation(s)
- L A Campbell
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - P T Gormley
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - J C Bennett
- Department of Physics, Acadia University, Wolfville, NS, Canada
| | - J D Murimboh
- Department Chemistry, Acadia University, Wolfville, NS, Canada
| | - T J MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada.
| |
Collapse
|