1
|
Asiedu E, Zhao K, Anwar MN, Ross M, Balaberda AL, Ulrich AC. Biodegradation in oil sands process-affected water: A comprehensive laboratory analysis of the in situ biodegradation of dissolved organic acids. CHEMOSPHERE 2024; 349:141018. [PMID: 38141671 DOI: 10.1016/j.chemosphere.2023.141018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023]
Abstract
Oil sands process-affected water (OSPW) is a by-product of the extraction of bitumen, and volumes of OSPW have accumulated across the Alberta oil sands region due to the governments zero-discharge policy. Some dissolved organics in OSPW, including toxic naphthenic acids (NAs), can be biodegraded in oxic conditions, thereby reducing the toxicity of OSPW. While there has been much focus on degradation of NAs, the biodegradation of other dissolved organic chemicals by endogenous organisms remains understudied. Here, using the HPLC-ultrahigh resolution Orbitrap mass spectrometry, we examined the microbial biodegradation of dissolved organic acids in OSPW. Non-targeted analysis enabled the estimation of biodegradation rates for unique heteroatomic chemical classes detected in negative ion mode. The microcosm experiments were conducted with and without nutrient supplementation, and the changes in the microbial community over time were investigated. Without added nutrients, internal standard-adjusted intensities of all organics, including NAs, were largely unchanged. The addition of nutrients increased the biodegradation rate of O2- and SO2- chemical classes. While anoxic biodegradation can occur in tailings ponds and end pit lakes, microbial community analyses confirmed that the presence of oxygen stimulated biodegradation of the OSPW samples studied. We detected several aerobic hydrocarbon-degrading microbes (e.g., Pseudomonas and Brevundimonas), and microbes capable of degrading sulfur-containing hydrocarbons (e.g., Microbacterium). Microbial community diversity decreased over time with nutrient addition. Overall, the results from this study indicate that toxic dissolved organics beyond NAs can be biodegraded by endogenous organisms in OSPW, but reaffirms that biological treatment strategies require careful consideration of how nutrients and dissolved oxygen may impact efficacy.
Collapse
Affiliation(s)
- Evelyn Asiedu
- Division of Analytical & Environmental Toxicology, Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Kankan Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mian Nabeel Anwar
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Matthew Ross
- Department of Physical Sciences, MacEwan University, Edmonton, Alberta, T5J 2P2, Canada
| | - Amy-Lynne Balaberda
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Ania C Ulrich
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada.
| |
Collapse
|
2
|
Hussain NAS, Stafford JL. Abiotic and biotic constituents of oil sands process-affected waters. J Environ Sci (China) 2023; 127:169-186. [PMID: 36522051 DOI: 10.1016/j.jes.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 06/17/2023]
Abstract
The oil sands in Northern Alberta are the largest oil sands in the world, providing an important economic resource for the Canadian energy industry. The extraction of petroleum in the oil sands begins with the addition of hot water to the bituminous sediment, generating oil sands process-affected water (OSPW), which is acutely toxic to organisms. Trillions of litres of OSPW are stored on oil sands mining leased sites in man-made reservoirs called tailings ponds. As the volume of OSPW increases, concerns arise regarding the reclamation and eventual release of this water back into the environment. OSPW is composed of a complex and heterogeneous mix of components that vary based on factors such as company extraction techniques, age of the water, location, and bitumen ore quality. Therefore, the effective remediation of OSPW requires the consideration of abiotic and biotic constituents within it to understand short and long term effects of treatments used. This review summarizes selected chemicals and organisms in these waters and their interactions to provide a holistic perspective on the physiochemical and microbial dynamics underpinning OSPW .
Collapse
Affiliation(s)
- Nora A S Hussain
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2N8, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2N8, Canada.
| |
Collapse
|
3
|
Song JY, Kitamura SI, Oh MJ, Nakayama K. Heavy oil exposure suppresses antiviral activities in Japanese flounder Paralichthys olivaceus infected with viral hemorrhagic septicemia virus (VHSV). FISH & SHELLFISH IMMUNOLOGY 2022; 124:201-207. [PMID: 35378310 DOI: 10.1016/j.fsi.2022.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/23/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
A combined treatment of heavy oil (HO) exposure and virus infection induces increased mortality in Japanese flounder (Paralichthys olivaceus). In this study, we addressed how HO exposure affects the immune system, especially antiviral activities, in Japanese flounder. The fish were infected with viral hemorrhagic septicemia virus (VHSV), followed by exposure to HO. We analyzed virus titers in the heart and mRNA expression in the kidney of surviving fish. The virus titers in fish exposed to heavy oil were higher than the threshold for onset. The results suggest that HO exposure may allow the replication of VHSV, leading to higher mortality in the co-treated group. Gene-expression profiling demonstrated that the expression of antiviral-activity-related genes, such as those for interferon and apoptosis induction, were lower in the co-treated group than in the group with VHSV infection only. These results helped explain the high virus titers in fish treated with both stressors. Thus, interferon production in the virus-infected cells and apoptosis induction by natural killer cells worked normally in the VHSV-infected fish without HO exposure, but these antiviral activities were slightly suppressed by HO exposure, possibly leading to extensive viral replication in the host cells and the occurrence of VHS.
Collapse
Affiliation(s)
- Jun-Young Song
- Pathology Division, National Institute of Fisheries Science, Busan, 46083, South Korea
| | - Shin-Ichi Kitamura
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, 790-8577, Japan
| | - Myung-Joo Oh
- Department of Aqualife Medicine, Chonnam National University, Yeosu, 59626, South Korea
| | - Kei Nakayama
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, 790-8577, Japan.
| |
Collapse
|
4
|
Abstract
Millions of tons of oil are spilled in aquatic environments every decade, and this oil has the potential to greatly impact fish populations. Here, we review available information on the physiological effects of oil and polycyclic aromatic hydrocarbons on fish. Oil toxicity affects multiple biological systems, including cardiac function, cholesterol biosynthesis, peripheral and central nervous system function, the stress response, and osmoregulatory and acid-base balance processes. We propose that cholesterol depletion may be a significant contributor to impacts on cardiac, neuronal, and synaptic function as well as reduced cortisol production and release. Furthermore, it is possible that intracellular calcium homeostasis-a part of cardiotoxic and neuronal function that is affected by oil exposure-may be related to cholesterol depletion. A detailed understanding of oil impacts and affected physiological processes is emerging, but knowledge of their combined effects on fish in natural habitats is largely lacking. We identify key areas deserving attention in future research.
Collapse
Affiliation(s)
- Martin Grosell
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida 33149, USA; ,
| | - Christina Pasparakis
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida 33149, USA; ,
| |
Collapse
|
5
|
Jones ER, Simning D, Serafin J, Sepúlveda MS, Griffitt RJ. Acute exposure to oil induces age and species-specific transcriptional responses in embryo-larval estuarine fish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114325. [PMID: 32240905 DOI: 10.1016/j.envpol.2020.114325] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/04/2020] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
Because oil spills frequently occur in coastal regions that serve as spawning habitat, characterizing the effects of oil in estuarine fish carries both economic and environmental importance. There is a breadth of research investigating the effects of crude oil on fish, however few studies have addressed how transcriptional responses to oil change throughout development or how these responses might be conserved across taxa. To investigate these effects, we performed RNA-seq and pathway analysis following oil exposure 1) in a single estuarine species (Cyprinodon variegatus) at three developmental time points (embryos, yolk-sack larvae, free-feeding larvae), and 2) in two ecologically similar species (C. variegatus and Fundulus grandis), immediately post-hatch (yolk-sack stage). Our results indicate that C. variegatus embryos mount a diminished transcriptional response to oil compared to later stages, and that few transcriptional responses are conserved throughout development. Pathway analysis of larval C. variegatus revealed dysregulation of similar biological processes at later larval stages, including alteration of cholesterol biosynthesis pathways, cardiac development processes, and immune functions. Our cross-species comparison showed that F. grandis exhibited a reduced transcriptional response compared to C. variegatus. Pathway analysis revealed that the two species shared similar immune and cardiac responses, however pathways related to cholesterol biosynthesis exhibited a divergent response as they were activated in C. variegatus but inhibited in F. grandis. Our results suggest that examination of larval stages may provide a more sensitive estimate of oil-impacts than examination of embryos, and challenge assumptions that ecologically comparable species respond to oil similarly.
Collapse
Affiliation(s)
- Elizabeth R Jones
- Division of Coastal Sciences, School of Ocean Science and Engineering, The University of Southern Mississippi, United States; Department of Biology, Francis Marion University, United States.
| | - Danielle Simning
- Division of Coastal Sciences, School of Ocean Science and Engineering, The University of Southern Mississippi, United States
| | - Jenifer Serafin
- Department of Forestry and Natural Resources, Purdue University, United States
| | - Maria S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, United States
| | - Robert J Griffitt
- Division of Coastal Sciences, School of Ocean Science and Engineering, The University of Southern Mississippi, United States
| |
Collapse
|
6
|
Philibert DA, Lyons DD, Qin R, Huang R, El-Din MG, Tierney KB. Persistent and transgenerational effects of raw and ozonated oil sands process-affected water exposure on a model vertebrate, the zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133611. [PMID: 31634996 DOI: 10.1016/j.scitotenv.2019.133611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Exposure to oil sands process-affected water (OSPW), a by-product of Canadian oil sands mining operations, can cause both acute and chronic adverse effects in aquatic life. Ozonation effectively degrades naphthenic acids in OSPW, mitigating some of the toxicological effects of exposure. In this study we examined the effect of developmental exposure to raw and ozonated OSPW had on the breeding success, prey capture, and alarm cue response in fish months/years after exposure and the transgenerational effect exposure had on gene expression, global DNA methylation, and larval basal activity. Exposure to raw and ozonated OSPW had no effect on breeding success, and global DNA methylation. Exposure altered the expression of vtg and nkx2.5 in the unexposed F1 generation. Exposure to both raw and ozonated OSPW had a transgenerational impact on larval activity levels, anxiety behaviors, and maximum swim speed compared to the control population. Prey capture success was unaffected, however, the variability in the behavioral responses to the introduction of prey was decreased. Fish developmentally exposed to either treatment were less active before exposure and did not have an anxiety response to the alarm cue hypoxanthine-3-n-oxide. Though ozonation was able to mitigate some of the effects of OSPW exposure, further studies are needed to understand the transgenerational effects and the implications of exposure on complex fish behaviors.
Collapse
Affiliation(s)
- Danielle A Philibert
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
| | - Danielle D Lyons
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Rui Qin
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Rongfu Huang
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Mohamed Gamal El-Din
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Ketih B Tierney
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada; School of Public Health, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
7
|
Fennell J, Arciszewski TJ. Current knowledge of seepage from oil sands tailings ponds and its environmental influence in northeastern Alberta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:968-985. [PMID: 31200313 DOI: 10.1016/j.scitotenv.2019.05.407] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/26/2019] [Accepted: 05/26/2019] [Indexed: 05/05/2023]
Abstract
Seepage of oil sand process-affected waters (OSPW) from tailings ponds into surface waters is a common concern in the minable oil sands region of northeast Alberta. Research on seepage has been extensive, but few comprehensive treatments evaluating all aspects relevant to the phenomenon are available. In this work, the current information relevant for understanding the state of seepage from tailings ponds was reviewed. The information suggests the infiltration of OSPW into groundwater occurs near some ponds. OSPW may also be present in sediments beneath the Athabasca River adjacent to one pond, but there are no clear observations of OSPW in the river water. Similarly, most water samples from tributaries also show no evidence of OSPW, but these observations are limited by the lack of systematic, systemic, and repeated surveys, missing baseline data, standard analytical approaches, and reference materials. Waters naturally influenced by bitumen, discharge of saline groundwaters, and dilution also potentially affect the consolidation of information and certainty of any conclusions. Despite these challenges, some data suggest OSPW may be present in two tributaries of the Athabasca River adjacent to tailings ponds: McLean Creek and Lower Beaver River. Irrespective of the possible source(s), constituents of OSPW often affect organisms exposed in laboratories, but research in all but one study suggests the concentrations of organics in the surface water bodies assessed are below the standard toxicological effect thresholds for these compounds. In contrast, many samples of groundwater, irrespective of source, likely affect biota. Biomonitoring of surface waters suggests generic responses to stressors, but the influence of natural phenomena and occasionally nutrient enrichment are often suggested by data. In summary, valuable research has been done on seepage. The data suggest infiltration into groundwater is common, seepage into surface waters is not, and anthropogenic biological impacts are not likely.
Collapse
Affiliation(s)
- Jon Fennell
- Integrated Sustainability, Calgary, AB, Canada
| | | |
Collapse
|
8
|
Loughery JR, Marentette JR, Frank RA, Hewitt LM, Parrott JL, Martyniuk CJ. Transcriptome Profiling in Larval Fathead Minnow Exposed to Commercial Naphthenic Acids and Extracts from Fresh and Aged Oil Sands Process-Affected Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10435-10444. [PMID: 31335129 DOI: 10.1021/acs.est.9b01493] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface mining and extraction of oil sands results in the generation of and need for storage of large volumes of oil sands process-affected water (OSPW). More structurally complex than classical naphthenic acids (NAs), naphthenic acid fraction components (NAFCs) are key toxic constituents of OSPW, and changes in the NAFC profile in OSPW over time have been linked to mitigation of OSPW toxicity. Molecular studies targeting individual genes have indicated that NAFC toxicity is likely mediated via oxidative stress, altered cell cycles, ontogenetic differentiation, endocrine disruption, and immunotoxicity. However, the individual-gene approach results in a limited picture of molecular responses. This study shows that NAFCs, from aged or fresh OSPW, have a unique effect on the larval fathead minnow transcriptome and provides initial data to construct adverse outcome pathways for skeletal deformities. All three types of processed NAs (fresh, aged, and commercial) affected the immunome of developing fish. These gene networks included immunity, inflammatory response, B-cell response, platelet adhesion, and T-helper lymphocyte activity. Larvae exposed to both NAFCs and commercial NA developed cardiovascular and bone deformities, and transcriptomic networks reflected these developmental abnormalities. Gene networks found only in NAFC-exposed fish suggest NAFCs may alter fish cardiovascular health through altered calcium ion regulation. This study improves understanding regarding the molecular perturbations underlying developmental deformities following exposure to NAFCs.
Collapse
Affiliation(s)
- Jennifer R Loughery
- Department of Biological Sciences , University of New Brunswick , Saint John , NB E2L 4L5 , Canada
| | - Julie R Marentette
- Water Science and Technology Directorate , Environment and Climate Change Canada , Burlington , ON L7S 1A1 , Canada
| | - Richard A Frank
- Water Science and Technology Directorate , Environment and Climate Change Canada , Burlington , ON L7S 1A1 , Canada
| | - L Mark Hewitt
- Water Science and Technology Directorate , Environment and Climate Change Canada , Burlington , ON L7S 1A1 , Canada
| | - Joanne L Parrott
- Water Science and Technology Directorate , Environment and Climate Change Canada , Burlington , ON L7S 1A1 , Canada
| | - Christopher J Martyniuk
- Department of Biological Sciences , University of New Brunswick , Saint John , NB E2L 4L5 , Canada
| |
Collapse
|
9
|
Rodgers ML, Takeshita R, Griffitt RJ. Deepwater Horizon oil alone and in conjunction with Vibrio anguillarum exposure modulates immune response and growth in red snapper (Lutjanus campechanus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 204:91-99. [PMID: 30223188 DOI: 10.1016/j.aquatox.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/16/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
This study examined the impacts of Macondo oil from the Deepwater Horizon oil spill, both alone and in conjunction with exposure to the known fish pathogen Vibrio anguillarum, on the expression of five immune-related gene transcripts of red snapper (il8, il10, tnfa, il1b, and igm). In order to elucidate this impact, six different test conditions were used: one Control group (No oil/No pathogen), one Low oil/No pathogen group (tPAH50 = 0.563 μg/L), one High oil/No pathogen group (tPAH50 = 17.084 μg/L, one No oil/Pathogen group, one Low oil/Pathogen group (tPAH50 = 0.736 μg/L), and one High oil/Pathogen group (tPAH50 = 15.799 μg/L). Fish were exposed to their respective oil concentrations for one week. On day 7 of the experiment, all fish were placed into new tanks (with or without V. anguillarum) for one hour. At three time points (day 8, day 10, and day 17), fish organs were harvested and placed into RNAlater, and qPCR was run for examination of the above specific immune genes as well as cyp1a1. Our results suggest that cyp1a1 transcripts were upregulated in oil-exposed groups throughout the experiment, confirming oil exposure, and that all five immune gene transcripts were upregulated on day 8, but were generally downregulated or showed no differences from controls on days 10 and 17. Finally, both oil and pathogen exposure had impacts on growth.
Collapse
Affiliation(s)
- Maria L Rodgers
- Division of Coastal Sciences, School of Ocean Science and Technology, University of Southern Mississippi, Ocean Springs, MS, 39564, USA
| | - Ryan Takeshita
- Abt Associates, 1881 Ninth Street, Suite 201, Boulder, CO, USA
| | - Robert J Griffitt
- Division of Coastal Sciences, School of Ocean Science and Technology, University of Southern Mississippi, Ocean Springs, MS, 39564, USA.
| |
Collapse
|
10
|
Rundle KI, Sharaf MS, Stevens D, Kamunde C, van den Heuvel MR. Oil Sands Derived Naphthenic Acids Are Oxidative Uncouplers and Impair Electron Transport in Isolated Mitochondria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10803-10811. [PMID: 30102860 DOI: 10.1021/acs.est.8b02638] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Naphthenic acids (NAs) are predominant compounds in oil sands influenced waters. These acids cause numerous acute and chronic effects in fishes. However, the mechanism of toxicity underlying these effects has not been fully elucidated. Due to their carboxylic acid moiety and the reported disruption of cellular bioenergetics by similar structures, we hypothesized that NAs would uncouple mitochondrial respiration with the resultant production of reactive oxygen species (ROS). Naphthenic acids were extracted and purified from 17-year-old oil sands tailings waters yielding an extract of 99% carboxylic acids with 90% fitting the classical O2-NA definition. Mitochondria were isolated from rainbow trout liver and exposed to different concentrations of NAs. Mitochondrial respiration, membrane potential, and ROS emission were measured using the Oroboros fluorespirometry system. Additionally, mitochondrial ROS emission and membrane potential were evaluated with real-time flow cytometry. Results showed NAs uncoupled oxidative phosphorylation, inhibited respiration, and increased ROS emission. The effective concentration (EC50) and inhibition concentration (IC50) values for the end points measured ranged from 21.0 to 157.8 mg/L, concentrations similar to tailings waters. For the same end points, EC10/IC10 values ranged from 11.8 to 66.7 mg/L, approaching concentrations found in the environment. These data unveil mechanisms underlying effects of NAs that may contribute to adverse effects on organisms in the environment.
Collapse
Affiliation(s)
- Kate I Rundle
- Canadian Rivers Institute, Department of Biomedical Science, Atlantic Veterinary College , University of Prince Edward Island , Charlottetown , Canada C1A 4P3
| | - Mahmoud S Sharaf
- Department of Biomedical Science, Atlantic Veterinary College , University of Prince Edward Island , Charlottetown , Canada C1A 4P3
| | - Don Stevens
- Department of Biomedical Science, Atlantic Veterinary College , University of Prince Edward Island , Charlottetown , Canada C1A 4P3
| | - Collins Kamunde
- Department of Biomedical Science, Atlantic Veterinary College , University of Prince Edward Island , Charlottetown , Canada C1A 4P3
| | - Michael R van den Heuvel
- Canadian Rivers Institute, Department of Biomedical Science, Atlantic Veterinary College , University of Prince Edward Island , Charlottetown , Canada C1A 4P3
- Canadian Rivers Institute, Department of Biology , University of Prince Edward Island , Charlottetown , Canada C1A 4P3
| |
Collapse
|