1
|
de Souza Xavier Costa N, Mirtes Teles A, de Brito JM, de Barros Mendes Lopes T, Calciolari Rossi R, Magalhães Arantes Costa F, Mangueira Saraiva-Romanholo B, Perini A, Furuya TK, Germán Murillo Carrasco A, Matera Veras M, Nascimento Saldiva PH, Chammas R, Mauad T. Allergic sensitization and exposure to ambient air pollution beginning early in life lead to a COPD-like phenotype in young adult mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113821. [PMID: 36068749 DOI: 10.1016/j.ecoenv.2022.113821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/10/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
The perinatal period and early infancy are considered critical periods for lung development. During this period, adversities such as environmental exposures, allergic sensitization, and asthma are believed to impact lung health in adulthood. Therefore, we hypothesized that concomitant exposure to allergic sensitization and urban-derived fine particulate matter (PM2.5) in the early postnatal period of mice would cause more profound alterations in lung alveolarization and growth and differently modulate lung inflammation and gene expression than either insult alone in adult life. BALB/c mice were sensitized with ovalbumin (OVA) and exposed to PM2.5 from the fifth day of life. Then, we assessed lung responsiveness, inflammation in BALF, lung tissue, and alveolarization by stereology. In addition, we performed a transcriptomic analysis of lung tissue on the 40th day of life. Our results showed that young adult mice submitted to allergic sensitization and exposure to ambient PM2.5 since early life presented decreased lung growth with impaired alveolarization, a mixed neutrophilic-eosinophilic pattern of lung inflammation, increased airway responsiveness, and increased expression of genes linked to neutrophil recruitment when compared to animals that were OVA-sensitized or PM2.5 exposed only. Both, early life allergic sensitization and PM2.5 exposure, induced inflammation and impaired lung growth, but concomitant exposure was associated with worsened inflammation parameters and caused alveolar enlargement. Our experimental data provide pathological support for the hypothesis that allergic or environmental insults in early life have permanent adverse consequences for lung growth. In addition, combined insults were associated with the development of a COPD-like phenotype in young adult mice. Together with our data, current evidence points to the urgent need for healthier environments with fewer childhood disadvantage factors during the critical windows of lung development and growth.
Collapse
Affiliation(s)
- Natália de Souza Xavier Costa
- Laboratório de Patologia Ambiental e Experimental (LIM05), Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Aila Mirtes Teles
- Laboratório de Patologia Ambiental e Experimental (LIM05), Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Jôse Mára de Brito
- Laboratório de Patologia Ambiental e Experimental (LIM05), Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Thaís de Barros Mendes Lopes
- Laboratório de Patologia Ambiental e Experimental (LIM05), Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Renata Calciolari Rossi
- Department of Pathology, Universidade do Oeste Paulista UNOESTE, Presidente Prudente, SP, Brazil
| | - Fernanda Magalhães Arantes Costa
- Laboratory of Experimental Therapeutics (LIM20), Department of Medicine, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Beatriz Mangueira Saraiva-Romanholo
- Laboratory of Experimental Therapeutics (LIM20), Department of Medicine, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Adenir Perini
- Laboratory of Experimental Therapeutics (LIM20), Department of Medicine, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Tatiane Katsue Furuya
- Center of Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alexis Germán Murillo Carrasco
- Center of Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Mariana Matera Veras
- Laboratório de Patologia Ambiental e Experimental (LIM05), Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Paulo Hilário Nascimento Saldiva
- Laboratório de Patologia Ambiental e Experimental (LIM05), Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Roger Chammas
- Center of Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Thais Mauad
- Laboratório de Patologia Ambiental e Experimental (LIM05), Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Bai X, Chen H, Oliver BG. The health effects of traffic-related air pollution: A review focused the health effects of going green. CHEMOSPHERE 2022; 289:133082. [PMID: 34843836 DOI: 10.1016/j.chemosphere.2021.133082] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/03/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Traffic-related air pollution (TRAP) is global concern due to both the ecological damage of TRAP and the adverse health effects in Humans. Several strategies to reduce TRAP have been implemented, including the use of sustainable fuels, after-treatment technologies, and new energy vehicles. Such approaches can reduce the exhaust of particulate matter, adsorbed chemicals and a range of gases, but from a health perspective these approaches are not always successful. This review aims to discuss the approaches taken, and to then describe the likely health effects of these changes.
Collapse
Affiliation(s)
- Xu Bai
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Sydney, NSW, 2037, Australia.
| |
Collapse
|
3
|
Olivo CR, Castro TBP, Riane A, Regonha T, Rivero DHRF, Vieira RP, Saraiva-Romanholo BM, Lopes FDTQS, Tibério IFLC, Martins MA, Prado CM. The effects of exercise training on the lungs and cardiovascular function of animals exposed to diesel exhaust particles and gases. ENVIRONMENTAL RESEARCH 2022; 203:111768. [PMID: 34339693 DOI: 10.1016/j.envres.2021.111768] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/02/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Air pollution has been identified as one of the main environmental risks to health. Since exercise training seems to act as an anti-inflammatory modulator, our hypothesis is that exercise training prevents damage to respiratory and cardiovascular function caused by diesel exhaust particle (DEP) exposure. This study aimed to evaluate whether aerobic exercise training prior to DEP exposure prevents inflammatory processes in the pulmonary and cardiovascular systems. Therefore, BALB/C male mice were or were not submitted to a 10-week exercise training protocol (5×/week, 1 h/d), and after four weeks, they were exposed to DEP in a chamber with 24 μg/m3 PM2.5 or filtered air. Heart rate variability, lung mechanics and bronchoalveolar lavage fluid, cytokines and polymorphonuclear cells in the lung parenchyma were evaluated. Exposure to DEPs reduced heart rate variability and the elastance of the respiratory system and increased the number of cells in bronchoalveolar lavage fluid, as well as macrophages, neutrophils and lymphocytes, the density of polymorphonuclear cells and the proportion of collagen fibres in the lung parenchyma. Additionally, DEP-exposed animals showed increased expression of IL-23 and IL-12p40 (proinflammatory cytokines) and inducible nitric oxide synthase. Exercise training avoided the increases in all these inflammatory parameters, except the elastance of the respiratory system, the amount of collagen fibres and the expression of inducible nitric oxide synthase. Additionally, trained animals showed increased expression of the anti-inflammatory cytokine IL-1ra. Although our data showed a reduction in proinflammatory markers and an increase in markers of the anti-inflammatory pathway, these changes were not sufficient to prevent damage to the lung and cardiovascular function induced by DEPs. Based on these data, we propose that aerobic exercise training prevents the lung inflammatory process induced by DEPs, although it was not sufficient to avoid chronic damage, such as a loss of lung function or cardiovascular events.
Collapse
Affiliation(s)
- C R Olivo
- Department of Clinical Medicine (LIM 20), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil; Institute of Medical Assistance to the State Public Servant (IAMSPE), Sao Paulo, Brazil; University City of Sao Paulo (UNICID), Sao Paulo, Brazil; Department of Bioscience, Universidade Federal de São Paulo, São Paulo, 11015-020, Brazil.
| | - T B P Castro
- Institute of Medical Assistance to the State Public Servant (IAMSPE), Sao Paulo, Brazil
| | - A Riane
- Department of Clinical Medicine (LIM 20), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - T Regonha
- University City of Sao Paulo (UNICID), Sao Paulo, Brazil
| | - D H R F Rivero
- Department of Clinical Medicine (LIM 05), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - R P Vieira
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (LABPEI), Sao Jose dos Campos, SP, Brazil
| | - B M Saraiva-Romanholo
- Department of Clinical Medicine (LIM 20), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil; Institute of Medical Assistance to the State Public Servant (IAMSPE), Sao Paulo, Brazil; University City of Sao Paulo (UNICID), Sao Paulo, Brazil
| | - F D T Q S Lopes
- Department of Clinical Medicine (LIM 20), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - I F L C Tibério
- Department of Clinical Medicine (LIM 20), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - M A Martins
- Department of Clinical Medicine (LIM 20), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - C M Prado
- Department of Clinical Medicine (LIM 20), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil; Department of Bioscience, Universidade Federal de São Paulo, São Paulo, 11015-020, Brazil
| |
Collapse
|
4
|
de Brito JM, de Ameida FM, Arantes-Costa FM, Guimarães ET, Morgan A, Mangone FR, Pavanelli AC, Nagai MA, Vieira RP, Macchione M, Mauad T. Effects of intrauterine exposure to concentrated ambient particles on allergic sensitization in juvenile mice. Toxicology 2021; 463:152970. [PMID: 34606951 DOI: 10.1016/j.tox.2021.152970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 11/22/2022]
Abstract
Intrauterine exposure to particulate matter (PM) has been associated with an increased risk of asthma development, which may differ by the age of asthma onset, sex, and pollutant concentration. To investigate the pulmonary effects of in utero exposure to concentrated urban ambient particles (CAPs) in response to house dust mite (HDM) sensitization in juvenile mice. Mice were exposed to CAPs (600 μg/m3 PM2.5) during the gestational period. Twenty-two-day postnatal mice were sensitized with HDM (100 μg, intranasally, 3 times per week). Airway responsiveness (AHR), serum immunoglobulin, and lung inflammation were assessed after 43 days of the postnatal period. Female (n = 47) and male (n = 43) mice were divided into four groups as follows: (1) FA: not exposed to CAPs; (2) CAPs: exposed to CAPs; (3) HDM: sensitized to HDM; and (4) CAPs+HDM: exposed to CAPs and HDM-sensitized. PM2.5 exposure did not worsen lung hyperresponsiveness or allergic inflammation in sensitized animals. The levels of the lung cytokines IL-4, TNF-α, and IL-2 were differentially altered in male and female animals. Males presented hyporesponsiveness and increased lung macrophagic inflammation. There were no epigenetic changes in the IL-4 gene. In conclusion, intrauterine exposure ambient PM2.5 did not worsened allergic pulmonary susceptibility but affected the pulmonary immune profile and lung function, which differed by sex.
Collapse
Affiliation(s)
- Jôse Mára de Brito
- Departamento Patologia, Faculdade de Medicina da Universidade de São Paulo, Brazil.
| | - Francine Maria de Ameida
- Departamento de Clinica Médica (LIM 20), Faculdade de Medicina da Universidade de São Paulo, Brazil.
| | | | | | - Adriana Morgan
- Departamento Patologia, Faculdade de Medicina da Universidade de São Paulo, Brazil.
| | - Flavia Rotea Mangone
- Laboratory of Molecular Genetics, Center for Translational Research in Oncology, Cancer Institute of the State of São Paulo (ICESP), 01246-000, São Paulo, Brazil.
| | - Ana Carolina Pavanelli
- Laboratory of Molecular Genetics, Center for Translational Research in Oncology, Cancer Institute of the State of São Paulo (ICESP), 01246-000, São Paulo, Brazil.
| | - Maria Aparecida Nagai
- Laboratory of Molecular Genetics, Center for Translational Research in Oncology, Cancer Institute of the State of São Paulo (ICESP), 01246-000, São Paulo, Brazil; Discipline of Oncology, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, 01246-903, São Paulo, Brazil.
| | - Rodolfo P Vieira
- Federal University of Sao Paulo (UNIFESP), Post-graduation Program in Sciences of Human Movement and Rehabilitation, Rua Talim 330, Sao Jose Dos Campos, SP, 12231-280, Brazil; Universidade Brasil, Post-graduation Program in Bioengineering, Rua Carolina Fonseca 235, São Paulo, SP, 08230-030, Brazil.
| | - Mariângela Macchione
- Departamento Patologia, Faculdade de Medicina da Universidade de São Paulo, Brazil.
| | - Thais Mauad
- Departamento Patologia, Faculdade de Medicina da Universidade de São Paulo, Brazil.
| |
Collapse
|
5
|
Yang X, Zhang Y, Zhan X, Xu X, Li S, Xu X, Ying S, Chen Z. Particulate matter exposure is highly correlated to pediatric asthma exacerbation. Aging (Albany NY) 2021; 13:17818-17829. [PMID: 34254951 PMCID: PMC8312457 DOI: 10.18632/aging.203281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 06/01/2021] [Indexed: 12/02/2022]
Abstract
Asthma is a heterogeneous disease in which environmental factors play an important role, and the effect of particulate matter (PM) on the occurrence and severity of asthma is drawing more attention. This study aims to identify the correlation between PM and pediatric asthma exacerbation and explore the potential mechanisms. The asthma visits data (N = 16,779,739) in a university-based tertiary children’s hospital from January 2013 to December 2017 were collected, and the relationship between asthma visits and local PM concentration was analyzed. For further study, we established a house dust mite (HDM)-induced allergic airway inflammation model with PM intervention. We detected a correlation between PM concentration and pediatric asthma visits, especially in children under 6 years old. The in vivo data showed that PM aggravated HDM-induced airway inflammation, and IL-33 neutralizing antibody exerted a protective role. Our study suggests that PM is a risk factor in promoting pediatric asthma exacerbation, in which IL-33 might be a promising target.
Collapse
Affiliation(s)
- Xin Yang
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Yuanyuan Zhang
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Xueqin Zhan
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Xuchen Xu
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Shuxian Li
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Xuefeng Xu
- Department of Rheumatology Immunology and Allergy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Songmin Ying
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou 310009, China.,International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China
| | - Zhimin Chen
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| |
Collapse
|
6
|
Tu Y, Williams GM, Cortés de Waterman AM, Toelle BG, Guo Y, Denison L, Babu GR, Yang BY, Dong GH, Jalaludin B, Marks GB, Knibbs LD. A national cross-sectional study of exposure to outdoor nitrogen dioxide and aeroallergen sensitization in Australian children aged 7-11 years. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116330. [PMID: 33383426 DOI: 10.1016/j.envpol.2020.116330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
The prevalence of allergic diseases in Australian children is high, but few studies have assessed the potential role of outdoor air pollution in allergic sensitization. We investigated the association between outdoor air pollution and the prevalence of aeroallergen sensitization in a national cross-sectional study of Australian children aged 7-11 years. Children were recruited from 55 participating schools in 12 Australian cities during 2007-2008. Parents completed a detailed (70-item) questionnaire. Outdoor nitrogen dioxide (NO2), as a proxy for exposure to traffic-related emissions, was estimated using measurements from regulatory monitors near each school and a national land-use regression (LUR) model. Three averaging periods were assessed, using information on duration of residence at the address, including lifetime, previous (lifetime, excluding the last year), and recent (the last year only). The LUR model was used as an additional source of recent exposure estimates at school and home addresses. Skin prick tests (SPTs) were performed to measure sensitization to eight common aeroallergens. Multilevel logistic regression estimated the association between NO2 and sensitization (by individual allergens, indoor and outdoor allergens, and all allergens combined), after adjustment for individual- and area-level covariates. In total, 2226 children had a completed questionnaire and SPT. The prevalence of sensitization to any allergen was 44.4%. Sensitization to house dust mites (HDMs) was the most common (36.1%), while sensitization to Aspergillus was the least common (3.4%). Measured mean (±s.d.) NO2 exposure was between 9 (±2.9) ppb and 9.5 (±3.2) ppb, depending on the averaging period. An IQR (4 ppb) increase in measured previous NO2 exposure was associated with greater odds of sensitization to HDMs (OR: 1.21, 95% CI: 1.01-1.43, P = 0.035). We found evidence of an association between relatively low outdoor NO2 concentrations and sensitization to HDMs, but not other aeroallergens, in Australian children aged 7-11 years.
Collapse
Affiliation(s)
- Yanhui Tu
- Faculty of Medicine, School of Public Health, The University of Queensland, Herston, QLD, 4006, Australia
| | - Gail M Williams
- Faculty of Medicine, School of Public Health, The University of Queensland, Herston, QLD, 4006, Australia
| | | | - Brett G Toelle
- Woolcock Institute of Medical Research, The University of Sydney, NSW, 2006, Australia; Sydney Local Health District, Sydney, NSW, 2050, Australia
| | - Yuming Guo
- Centre for Air Pollution, Energy and Health Research, Glebe, NSW, 2037, Australia; Department of Epidemiology and Biostatistics, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Lyn Denison
- ERM Services Australia, Melbourne, VIC, 3000, Australia
| | - Giridhara R Babu
- Indian Institute of Public Health-Bangalore, Public Health Foundation of India, Bangalore, 560023, India
| | - Bo-Yi Yang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Guang-Hui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bin Jalaludin
- Centre for Air Pollution, Energy and Health Research, Glebe, NSW, 2037, Australia; Population Health, South Western Sydney Local Health District, Liverpool, NSW, 2170, Australia; Ingham Institute, Liverpool, NSW, 2170, Australia
| | - Guy B Marks
- Centre for Air Pollution, Energy and Health Research, Glebe, NSW, 2037, Australia; Woolcock Institute of Medical Research, The University of Sydney, NSW, 2006, Australia; South Western Sydney Clinical School, The University of New South Wales, Liverpool, NSW, 2170, Australia
| | - Luke D Knibbs
- Faculty of Medicine, School of Public Health, The University of Queensland, Herston, QLD, 4006, Australia; Centre for Air Pollution, Energy and Health Research, Glebe, NSW, 2037, Australia.
| |
Collapse
|
7
|
Ma H, Lin Y, Jin Y, Gao M, Li H, Wang Q, Ge S, Cai L, Huang Z, Van Le Q, Xia C. Effect of ultrasonic pretreatment on chain elongation of saccharified residue from food waste by anaerobic fermentation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115936. [PMID: 33158614 DOI: 10.1016/j.envpol.2020.115936] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/03/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
Converting biowaste into value-added products has raised the researchers' interests. In this study, bioconversion was applied to produce chain acids from food waste by anaerobic fermentation. To improve the caproic acid production, different pretreatments (i.e., ultrasonic, hydrothermal, and alkaline-thermal) were used for investigating their effects on the acidogenic production and microbial communities. The results showed that ultrasonic and hydrothermal pretreatments (207.8 and 210.1 mg COD/g VS, respectively) were very efficient for enhancing the caproic acid production, compared to the alkaline-thermal pretreated samples and control samples (72.6 and 97.5 mg COD/g VS, respectively). The ultrasonic pretreatment was beneficial for reducing volatile fatty acids (VFAs) during the caproic acid production, resulting in converting more lactic acid to caproic acid by adding the hydrothermal pretreatment. The microbial community analysis showed that the acidogenic bacteria Caproiciproducens dominated the fermentation in this bioconversion process of food waste into chain acids. The Caproiciproducens mainly degraded the proteins and carbohydrates from the saccharified residues of food waste to produce caproic acids through chain elongation procedure. The investigation and optimized method may help develop the bioconversion technology for producing VFAs products from food wastes.
Collapse
Affiliation(s)
- Hongzhi Ma
- Department of Environmental Engineering, University of Science and Technology Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Yujia Lin
- Department of Environmental Engineering, University of Science and Technology Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Yong Jin
- Department of Environmental Engineering, University of Science and Technology Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Ming Gao
- Department of Environmental Engineering, University of Science and Technology Beijing, 100083, China
| | - Hongai Li
- Department of Environmental Engineering, University of Science and Technology Beijing, 100083, China
| | - Qunhui Wang
- Department of Environmental Engineering, University of Science and Technology Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Liping Cai
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; Department of Mechanical Engineering, University of North Texas, Denton, TX, 76207, USA
| | - Zhenhua Huang
- Department of Mechanical Engineering, University of North Texas, Denton, TX, 76207, USA
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Changlei Xia
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| |
Collapse
|
8
|
Wang X, Liu SF, Qin ZH, Balamurugan S, Li HY, Lin CSK. Sustainable and stepwise waste-based utilisation strategy for the production of biomass and biofuels by engineered microalgae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114854. [PMID: 32504890 DOI: 10.1016/j.envpol.2020.114854] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/04/2020] [Accepted: 05/20/2020] [Indexed: 05/08/2023]
Abstract
Waste streams have emerged as potential feedstocks for biofuel production via microbial bioconversion. Metabolic engineering of the microalga Phaeodactylum tricornutum in its lipid biosynthetic pathways has been conducted with an aim to improve lipid production. However, there has been only limited achievement in satisfying biofuel demands by utilising extracellular organic carbons from low-cost waste streams. Herein, we present a successive staged cultivation mode, based on a previously engineered strain that co-overexpresses two key triacylglycerol biosynthesis genes. We first optimised microalgal biomass and lipid production by using food waste hydrolysate and crude glycerol as the cultivation media. Food waste hydrolysate (5% v/v) is a low-cost organic carbon source for enhanced microalgal biomass production, and the resulting lipid concentration was 1.08-fold higher with food-waste hydrolysate than that of the defined medium. Additionally, the resultant lipid concentration after using crude glycerol (100 mM) was 1.24-fold higher than that using the defined medium. Two carbon feeding modes (hybrid and sequential) were also performed to investigate the potential of engineered P. tricornutum with preliminary mechanistic analyses. The biodiesel properties of lipids produced in the hybrid mode were evaluated for potential application prospects. Collectively, this study demonstrates a waste stream utilisation strategy for efficient and sustainable microalgal biofuel production.
Collapse
Affiliation(s)
- Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Si-Fen Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zi-Hao Qin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Srinivasan Balamurugan
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Department of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
9
|
Jiang Q, Xu X, Zhang C, Luo J, Lv N, Shi L, Ji A, Gao M, Chen F, Cui L, Zheng Y. In ovo very early-in-life exposure to diesel exhaust induced cardiopulmonary toxicity in a hatchling chick model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114718. [PMID: 32388309 DOI: 10.1016/j.envpol.2020.114718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Diesel exhaust (DE) had been associated with cardiopulmonary toxicity and developmental toxicity. However, neonatal very early-in-life exposure had not been extensively studied previously. To investigate the potential effects of neonatal very early-in-life exposure to DE, a brand-new chicken embryo in ovo exposure model had been established, with which the cardiopulmonary effects of DE exposure via air cell infusion at embryonic day 18/19 (ED18/19) were assessed in hatchling chicks post-hatch 0-, 1-, or 2-weeks. Heart rates were assessed with electrocardiography. Cardiac and pulmonary morphologies were investigated with histopathological methods. Cardiopulmonary effects were explored with immunohistochemistry for alpha smooth muscle actin (alpha-SMA). In further investigations, the expression levels of phosphorylated AhR, serum levels of TGF-β1, phosphorylated SMAD2/3 and phosphorylated p38MAPK were assessed in the lung tissues. Significantly elevated heart rates, increased right ventricular wall thickness and cardiac collagen deposition were observed in the hearts of exposed hatchling chicks. Significantly increased collagen deposition as well as increased vascular alpha-SMA layer thickness/decreased cavity area were observed in exposed animal lungs. These effects persisted up to two weeks post-hatch. Mechanistic studies revealed elevated phosphorylated AhR expression levels in 0-week and 1-week chicken lungs, while phosphorylated SMAD2/3 levels significantly increased in 0-week chicken lungs but decreased in 2-week chicken lungs following DE exposure. Phosphorylation of p38MAPK did not remarkably increase until 2-week post-hatch. In summary, the novel chicken neonatal very early-in-life exposure model effectively exposed the chicken embryos during the neonatal initial breathing, resulting in cardiopulmonary toxicity, which is associated with AHR, TGF-β1 and MAPK signaling.
Collapse
Affiliation(s)
- Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, 266021, China
| | - Xiaohui Xu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, 266021, China
| | - Chao Zhang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, 266021, China
| | - Jing Luo
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, 266021, China
| | - Na Lv
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Limei Shi
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, 266021, China
| | - Andong Ji
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, 266021, China
| | - Mengyu Gao
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, 266021, China
| | - Feilong Chen
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, 266021, China
| | - Lianhua Cui
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, 266021, China
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
10
|
Moreira AR, Pereira de Castro TB, Kohler JB, Ito JT, de França Silva LE, Lourenço JD, Almeida RR, Santana FR, Brito JM, Rivero DHRF, Vale MICA, Prado CM, Câmara NOS, Saldiva PHN, Olivo CR, Lopes FDTQDS. Chronic exposure to diesel particles worsened emphysema and increased M2-like phenotype macrophages in a PPE-induced model. PLoS One 2020; 15:e0228393. [PMID: 32004356 PMCID: PMC6993960 DOI: 10.1371/journal.pone.0228393] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic exposure to ambient levels of air pollution induces respiratory illness exacerbation by increasing inflammatory responses and apoptotic cells in pulmonary tissues. The ineffective phagocytosis of these apoptotic cells (efferocytosis) by macrophages has been considered an important factor in these pathological mechanisms. Depending on microenvironmental stimuli, macrophages can assume different phenotypes with different functional actions. M1 macrophages are recognized by their proinflammatory activity, whereas M2 macrophages play pivotal roles in responding to microorganisms and in efferocytosis to avoid the progression of inflammatory conditions. To verify how exposure to air pollutants interferes with macrophage polarization in emphysema development, we evaluated the different macrophage phenotypes in a PPE- induced model with the exposure to diesel exhaust particles. C57BL/6 mice received intranasal instillation of porcine pancreatic elastase (PPE) to induce emphysema, and the control groups received saline. Both groups were exposed to diesel exhaust particles or filtered air for 60 days according to the groups. We observed that both the diesel and PPE groups had an increase in alveolar enlargement, collagen and elastic fibers in the parenchyma and the number of macrophages, lymphocytes and epithelial cells in BAL, and these responses were exacerbated in animals that received PPE instillation prior to exposure to diesel exhaust particles. The same response pattern was found inCaspase-3 positive cell analysis, attesting to an increase in cell apoptosis, which is in agreement with the increase in M2 phenotype markers, measured by RT-PCR and flow cytometry analysis. We did not verify differences among the groups for the M1 phenotype. In conclusion, our results showed that both chronic exposure to diesel exhaust particles and PPE instillation induced inflammatory conditions, cell apoptosis and emphysema development, as well as an increase in M2 phenotype macrophages, and the combination of these two factors exacerbated these responses. The predominance of the M2-like phenotype likely occurred due to the increased demand for efferocytosis. However, M2 macrophage activity was ineffective, resulting in emphysema development and worsening of symptoms.
Collapse
Affiliation(s)
- Alyne Riani Moreira
- Department of Clinical Medicine (LIM 20), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Thamyres Barros Pereira de Castro
- Institute of Medical Assistance to the State Public Servant (IAMSPE), Sao Paulo, Brazil
- University City of Sao Paulo (UNICID), Sao Paulo, Brazil
| | - Júlia Benini Kohler
- Department of Clinical Medicine (LIM 20), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Juliana Tiyaki Ito
- Department of Clinical Medicine (LIM 20), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Juliana Dias Lourenço
- Department of Clinical Medicine (LIM 20), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Rafael Ribeiro Almeida
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Heart Institute (InCor) School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Jose Mara Brito
- Department of Pathology (LIM 5), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Carla Máximo Prado
- Department of Bioscience, Federal University of Sao Paulo, Santos, Sao Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Department of Clinical Medicine (LIM 16), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
- Department of Medicine, Nephrology Division, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | - Clarice Rosa Olivo
- Department of Clinical Medicine (LIM 20), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
- Institute of Medical Assistance to the State Public Servant (IAMSPE), Sao Paulo, Brazil
- University City of Sao Paulo (UNICID), Sao Paulo, Brazil
| | | |
Collapse
|