1
|
Khandeparker L, Desai DV, Teja Mittireddi R, Panda E, Hede N, Mapari K. Efficacy of amorphous TiO x-coated surfaces against micro- and macrofouling through laboratory microcosms and field studies. BIOFOULING 2023; 39:853-866. [PMID: 37965754 DOI: 10.1080/08927014.2023.2279997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/28/2023] [Indexed: 11/16/2023]
Abstract
In this study, Soda Lime Glass (SLG) and Stainless Steel (SS316L) substrata coated with Titanium oxide (TiOx) were tested for their efficacy in the laboratory microcosms and in field against micro- and macrofouling. Laboratory microcosm studies were conducted for five days using natural biofilms, single-species diatom (Navicula sp.), and bacterial biofilms, whereas field observations were conducted for 30 days. The TiOx-coating induced change in the mean contact angle of the substratum and rendered SS316L more hydrophilic and SLG hydrophobic, which influenced the Navicula sp. biofilm, and bacterial community structure of the biofilm. Overall, the TiOx-coated SS316L showed minimal microfouling, whereas non-coated SLG exhibited greater efficacy in deterring/preventing macrofouling organisms. Moreover, the reduction in macrofouling could be attributed to high abundance of Actinobacteria. Unraveling the mechanism of action needs future studies emphasizing biochemical processes and pathways.
Collapse
Affiliation(s)
- Lidita Khandeparker
- Biological Oceanography Division, CSIR - National Institute of Oceanography, Goa, India
| | - Dattesh V Desai
- Biological Oceanography Division, CSIR - National Institute of Oceanography, Goa, India
| | - Ravi Teja Mittireddi
- Materials Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Emila Panda
- Materials Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Niyati Hede
- Biological Oceanography Division, CSIR - National Institute of Oceanography, Goa, India
| | - Kaushal Mapari
- Biological Oceanography Division, CSIR - National Institute of Oceanography, Goa, India
| |
Collapse
|
2
|
Agostini VO, Martinez ST, Muxagata E, Macedo AJ, Pinho GLL. Antifouling activity of isonitrosoacetanilides against microfouling and macrofouling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26435-26444. [PMID: 36367651 DOI: 10.1007/s11356-022-24016-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Biofouling is responsible for structural and economic damage to man-made surfaces. Antifouling paints with biocides have been applied to structures to avoid organism adhesion; however, they have high toxicity and are not able to prevent all biofouling processes, necessitating the periodic mechanical removal of organisms and paint reapplication. Thus, there is an urgent demand for novel, effective, and environmentally friendly antifouling alternatives. As isonitrosoacetanilide is the precursor for many compounds with antibacterial activity, we believe that it could have antifouling activity against microfouling and, consequently, against macrofouling. The aim of this work was to investigate the antifouling potential of six isonitrosoacetanilide compounds and their toxicity. The compounds were employed at different concentrations (0.625-1.25-2.5-5-10 µg mL-1) in this study. The biofilm and planktonic bacteria inhibition and biofilm eradication potential were evaluated by crystal violet assay, while Amphibalus amphitrite barnacle settlement was evaluated by cyprid settlement assay. Toxicity evaluation (LC50 and EC50) was performed with A. amphitrite nauplii II and cyprid larvae. At least one of the tested concentrations of 4-Br-INA, 4-CH3-INA, and 2-Br-INA compounds showed nontoxic antifouling activity against microfouling (antibiofilm) and macrofouling (antisettlement). However, only 4-CH3-INA and 2-Br-INA also showed biofilm eradication potential. These compounds with antibiofilm activity and nontoxic effects could be combined with acrylic base paint resin or added directly into commercial paints in place of toxicant biocides to cover artificial structures as friendly antifouling agents.
Collapse
Affiliation(s)
- Vanessa Ochi Agostini
- Regenera Moléculas do Mar, Centro de Biotecnologia da Universidade Federal do Rio Grande Do Sul (UFRGS), Av. Bento Gonçalves, 9500, Bairro Agronomia, Porto Alegre, RS, 91501-970, Brazil.
| | - Sabrina Teixeira Martinez
- Centro Interdisciplinar em Energia e Ambiente-CIEnAm, Universidade Federal da Bahia, Salvador, BA, 40170-115, Brazil
- Centro Universitário SENAI-CIMATEC, Salvador, BA, 41650-010, Brazil
| | - Erik Muxagata
- Laboratório de Zooplâncton, Instituto de Oceanografia da Universidade Federal do Rio Grande (FURG), Av. Itália, Km 8, Caixa Postal, 474, Rio Grande, RS, 96203-900, Brazil
| | - Alexandre José Macedo
- Laboratório de Biofilmes e Diversidade Microbiana, Centro de Biotecnologia da, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Bairro Agronomia, Porto Alegre, RS, 91501-900, Brazil
| | - Grasiela Lopes Leães Pinho
- Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática, Instituto de Oceanografia da Universidade Federal do Rio Grande (FURG), Caixa Postal, 474, CEP, Rio Grande, RS, 96203-900, Brazil
| |
Collapse
|
3
|
Agostini VO, Ozorio CP. Biofouling initial succession on offshore artificial substrate under subtropical conditions. AN ACAD BRAS CIENC 2022; 94:e20201357. [PMID: 36477990 DOI: 10.1590/0001-3765202220201357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/03/2020] [Indexed: 12/12/2022] Open
Abstract
This study presents the initial stages of the macrofouling community on artificial substrate exposed to the offshore subtropical marine environment, and the contribution of depth (3 and 22m), exposure time (1-2-4-7-10-13-weeks), UV-radiation, rainfall, temperature, pH, salinity, water chlorophyll-a, and zooplankton supply to organism establishment. Steel substrates were placed horizontally on the structure of a pipeline monobuoy off the southern shore of Brazil (Tramandaí beach), and the ecological succession was monitored by six random removals per depth during the summer-autumn of 2011. Approximately 88.5% of the quantified settled individuals comprised fouling fauna and 11.5% vagile and sedentary fauna, although the taxa richness was higher for non-sessile invertebrates. Species richness and organism density up to four weeks were significantly higher at 3m-depth. After this period, a higher density of organisms was found at 22m, while during the whole study the species richness and diversity remained higher at 3m-depth. Zooplankton composition did not show a simultaneous temporal relationship with invertebrate recruitment at any depth; however, increasing the exposure time, the similarity between the planktonic and benthic communities also increased. Meroplankton, tychoplankton, and holoplankton were recorded on the substrates. This study showed that the depth of available substrates affects the macrofouling establishment, which is mainly associated with UV-radiation, exposure time, and ecological interspecific interactions.
Collapse
Affiliation(s)
- Vanessa O Agostini
- Universidade Federal do Rio Grande do Sul (UFRGS), Regenera Moléculas do Mar, Centro de Biotecnologia, Avenida Bento Gonçalves 9500, 96203-900 Porto Alegre, RS, Brazil
| | - Carla P Ozorio
- Universidade Federal do Rio Grande do Sul (UFRGS), Departamento Interdisciplinar, Campus Litoral Norte/ Km 92, RS-030, 11700, 95590-000 Tramandaí, RS, Brazil
| |
Collapse
|
4
|
Subba Rao T, Murthy PS, Veeramani P, Narayanan DS, Ramesh R, Jyothi BN, Muthukumaran D, Murugesan M, Vadivelan A, Dharani G, Santhanakumar J, Ramadass GA. Assessment of biogrowth assemblages with depth in a seawater intake system of a coastal power station. BIOFOULING 2021; 37:506-520. [PMID: 34139900 DOI: 10.1080/08927014.2021.1933457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Marine biogrowth infestation of a seawater intake system was investigated. A digital camera fixed onto a skid was used to record the biogrowth at intervals of 5 m up to a depth of 55 m. Divers inspected the intake shaft and collected the biogrowth samples for biomass estimation. A biomass density of 7.5 kg m-2 and 28.2 kg m-2 was recorded at 5 and 30 m depths respectively. Inspection by the divers revealed that hard-shelled organisms such as oysters and brown and green mussels were observed in plenty up to a thickness of 15 cm and bryozoans grew as epibionts. At lower depths (<40 m), hydroids grew on the shells of green mussels along with silt accumulation. The biofouling community was composed of 46 organisms, exhibiting variation in distribution and abundance. The study explains the extent and type of marine biogrowth phenomena with depth and describes biofouling preventive methods.Supplemental data for this article is available online at https://doi.org/10.1080/08927014.2021.1933457 .
Collapse
Affiliation(s)
- T Subba Rao
- Biofouling & Thermal Ecology Section, Water & Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, India
- Homi Bhabha National Institute, Mumbai, India
| | - P S Murthy
- Biofouling & Thermal Ecology Section, Water & Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, India
- Homi Bhabha National Institute, Mumbai, India
| | - P Veeramani
- Biofouling & Thermal Ecology Section, Water & Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, India
| | - D S Narayanan
- Deep Sea Technology Group, National Institute of Ocean Technology, Chennai, India
| | - R Ramesh
- Deep Sea Technology Group, National Institute of Ocean Technology, Chennai, India
| | - B N Jyothi
- Deep Sea Technology Group, National Institute of Ocean Technology, Chennai, India
| | - D Muthukumaran
- Deep Sea Technology Group, National Institute of Ocean Technology, Chennai, India
| | - M Murugesan
- Deep Sea Technology Group, National Institute of Ocean Technology, Chennai, India
| | - A Vadivelan
- Deep Sea Technology Group, National Institute of Ocean Technology, Chennai, India
| | - G Dharani
- Marine Biotechnology Division, National Institute of Ocean Technology, Chennai, India
| | - J Santhanakumar
- Marine Biotechnology Division, National Institute of Ocean Technology, Chennai, India
| | - G A Ramadass
- Deep Sea Technology Group, National Institute of Ocean Technology, Chennai, India
| |
Collapse
|
5
|
Agostini VO, Muxagata E, Pinho GLL, Pessi IS, Macedo AJ. Bacteria-invertebrate interactions as an asset in developing new antifouling coatings for man-made aquatic surfaces. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116284. [PMID: 33360655 DOI: 10.1016/j.envpol.2020.116284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Economic losses can result from biofouling establishment on man-made structures. Macrofouling causes damage to artificial substrates, which justifies the need for its control. However, the antifouling coatings employed nowadays are typically not safe for the environment. Microfouling can affect macrofouling colonization, and thus represents a potential target for alternative antifouling control. From both ecological and economical points of view, information on the ecology and interactions between micro- and macrofouling are crucial to develop successful and safe control strategies, which will prevent biofouling development on man-made structures while preserving water quality and the safety of non-target organisms. This study presents a metabarcoding analysis of biofilm-associated marine bacteria (16S-rRNA-gene) and fungi (ITS-region), with the aim to understand invertebrate settlement over time on hard substrates exposed to natural condition (Control) and two treatments (Antimicrobials and Antifouling Painted). Biofouling composition changed with exposure time (up to 12 days) and showed differences among Control and Antimicrobials and Painted treatments. Antimicrobial treatment influenced more the biofouling composition than traditional antifouling paint (Cu2O-based). Both treatments caused microbial resistance. Macrofouling establishment was strongly influenced by Gram-negative heterotrophic bacteria (mostly Proteobacteria and Bacteroidetes). Nevertheless, each macrofouling taxon settled in response to a specific biofilm bacterial composition, although other factors can also affect the biofouling community as the condition of the substrate. We suggest that proper friendly antifouling technologies should be focused on inhibiting bacterial biofilm adhesion.
Collapse
Affiliation(s)
- Vanessa Ochi Agostini
- Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática - Instituto de Oceanografia da Universidade Federal do Rio Grande (FURG). Caixa Postal, 474, CEP: 96203-900, Rio Grande, RS, Brazil; Post-Doctoral fellow - Programa Nacional de Pós-Doutorado da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (PNPD-CAPES), Programa de Pós-graduação em Oceanologia (PPGO), Brazil.
| | - Erik Muxagata
- Laboratório de Zooplâncton - Instituto de Oceanografia da Universidade Federal do Rio Grande (FURG). Av. Itália, Km 8, Caixa Postal, 474, 96203-900, Rio Grande, RS, Brazil.
| | - Grasiela Lopes Leães Pinho
- Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática - Instituto de Oceanografia da Universidade Federal do Rio Grande (FURG). Caixa Postal, 474, CEP: 96203-900, Rio Grande, RS, Brazil.
| | - Igor Stelmach Pessi
- Department of Microbiology, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland; Helsinki Institute of Sustainability Science, University of Helsinki, Yliopistonkatu 3, 00014, Helsinki, Finland.
| | - Alexandre José Macedo
- Laboratório de Biofilmes e Diversidade Microbiana - Faculdade de Farmácia e Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, Bairro Azenha, 90610-000, Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Catao ECP, Gallois N, Fay F, Misson B, Briand JF. Metal resistance genes enrichment in marine biofilm communities selected by biocide-containing surfaces in temperate and tropical coastal environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115835. [PMID: 33099201 DOI: 10.1016/j.envpol.2020.115835] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/28/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Microorganisms able to form biofilms in marine ecosystems are selected depending on immersed surfaces and environmental conditions. Cell attachment directly on toxic surfaces like antifouling coatings suggests a selection of tolerant (or resistant) organisms with characteristics conferring adaptive advantages. We investigated if environment would drive metal resistance gene abundance in biofilms on artificial surfaces. Biofilms were sampled from three surfaces (a PVC reference and two antifouling coatings) deployed in three coastal waters with dissimilar characteristics: The Mediterranean Sea (Toulon) and Atlantic (Lorient) and Indian (Reunion) Oceans. The two coatings differed in metals composition, either Cu thiocyanate and Zn pyrithione (A3) or Cu2O (Hy). Metal resistance genes (MRG) specific to copper (cusA, copA, cueO) or other metals (czcA and pbrT) were monitored with qPCR in parallel to the microbial community using 16S rRNA gene metabarcoding. A lower α-diversity on A3 or Hy than on PVC was observed independent on the site. Weighted Unifrac suggested segregation of communities primarily by surface, with lower site effect. Metacoder log2 fold change ratio and LeFSe discrimination suggested Marinobacter to be specific of Hy and Altererythrobacter, Erythrobacter and Sphingorhabdus of A3. Likewise, the relative abundance of MRG (MRG/bacterial 16S rRNA) varied between surfaces and sites. A3 presented the greatest relative abundances for cusA, cueO and czcA. The latter could only be amplified from A3 communities, except at Toulon. Hy surface presented the highest relative abundance for copA, specifically at Lorient. These relative abundances were correlated with LeFSe discriminant taxa. Dasania correlated positively with all MRG except cueO. Marinobacter found in greater abundance in Hy biofilm communities correlated with the highest abundances of copA and Roseovarius with czcA. These results prove the selection of specific communities with abilities to tolerate metallic biocides forming biofilms over antifouling surfaces, and the secondary but significant influence of local environmental factors.
Collapse
Affiliation(s)
- Elisa C P Catao
- Laboratoire MAPIEM, EA 4323, Université de Toulon, 83041, Toulon, France
| | - Nicolas Gallois
- Univ Toulon, Aix Marseille Univ., CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, La Garde, France
| | - Fabienne Fay
- Institut Européen de la Mer, Université de Bretagne-Sud, EA 3884, LBCM, Lorient, France
| | - Benjamin Misson
- Univ Toulon, Aix Marseille Univ., CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, La Garde, France
| | | |
Collapse
|
7
|
Gomes IB, Simões M, Simões LC. Copper Surfaces in Biofilm Control. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2491. [PMID: 33322518 PMCID: PMC7764739 DOI: 10.3390/nano10122491] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022]
Abstract
Biofilms are structures comprising microorganisms associated to surfaces and enclosed by an extracellular polymeric matrix produced by the colonizer cells. These structures protect microorganisms from adverse environmental conditions. Biofilms are typically associated with several negative impacts for health and industries and no effective strategy for their complete control/eradication has been identified so far. The antimicrobial properties of copper are well recognized among the scientific community, which increased their interest for the use of these materials in different applications. In this review the use of different copper materials (copper, copper alloys, nanoparticles and copper-based coatings) in medical settings, industrial equipment and plumbing systems will be discussed considering their potential to prevent and control biofilm formation. Particular attention is given to the mode of action of copper materials. The putative impact of copper materials in the health and/or products quality is reviewed taking into account their main use and the possible effects on the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Inês B. Gomes
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
| | - Manuel Simões
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
| | - Lúcia C. Simões
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
| |
Collapse
|