1
|
Kaskaoutis DG, Petrinoli K, Grivas G, Kalkavouras P, Tsagkaraki M, Tavernaraki K, Papoutsidaki K, Stavroulas I, Paraskevopoulou D, Bougiatioti A, Liakakou E, Rashki A, Sotiropoulou REP, Tagaris E, Gerasopoulos E, Mihalopoulos N. Impact of peri-urban forest fires on air quality and aerosol optical and chemical properties: The case of the August 2021 wildfires in Athens, Greece. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 907:168028. [PMID: 39491201 DOI: 10.1016/j.scitotenv.2023.168028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
Wildfires occurring near urban areas are known to have exceedingly detrimental impacts on the environment, air quality, economy and human health. In this framework, this study examines the effects of peri-urban forest fires on atmospheric chemical composition, and aerosol physical-optical properties in Athens, Greece, during August 2021. Satellite imagery and air mass trajectories showed advection of intense smoke plumes over Athens from three forest fires persisting for 10 days in the greater Athens area and in Central Greece (Euboea). During August 1-20, 2021, daily PM2.5 concentrations ranged from 8.9 to 78.7 μg m-3, and were associated with high OC levels (2.3-27.8 μg m-3), while BC and BCbb concentrations on smoke-impacted days were 2.6 μg m-3 and 1.0 μg m-3, respectively (2-3 times higher than August mean levels). During the peak of biomass burning (BB) smoke transport over Athens, daily-average scattering and absorption coefficients at short wavelengths maximized at 313 Mm-1 and 171 Mm-1, respectively. There was also a large impact of ambient BrC (brown carbon) absorption (60 Mm-1), while the OC/EC ratio exhibited characteristically low values (3-4), linked to flaming combustion (modified combustion efficiency of 0.97-0.99). The absorption Ångström exponent (1.38) and single scattering albedo (0.74) indicated highly absorbing BB aerosol, deviating from the normal summer patterns. BB-tracers like nssK+ displayed strong correlations with OC, EC and BC concentrations, as well as with scattering and absorption coefficients. However, forest fires drastically modified the levels of additional chemical species, with enhancements observed for Ca2+, NO3-, Cl-, and for organic aerosol (OA) components such as BBOA and less-oxidized oxygenated OA (LO-OOA). Since under climate change conditions, the Mediterranean is anticipated to experience a dramatic rise in the frequency and intensity of wildfires, the results highlight the necessity for prevention and mitigation policies to safeguard urban air quality.
Collapse
Affiliation(s)
- D G Kaskaoutis
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236 Athens, Greece; Department of Chemical Engineering, University of Western Macedonia, Kozani 50100, Greece.
| | - K Petrinoli
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236 Athens, Greece
| | - G Grivas
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236 Athens, Greece
| | - P Kalkavouras
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236 Athens, Greece
| | - M Tsagkaraki
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 70013 Crete, Greece
| | - K Tavernaraki
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 70013 Crete, Greece
| | - K Papoutsidaki
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 70013 Crete, Greece
| | - I Stavroulas
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236 Athens, Greece
| | - D Paraskevopoulou
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236 Athens, Greece
| | - A Bougiatioti
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236 Athens, Greece
| | - E Liakakou
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236 Athens, Greece
| | - A Rashki
- Department of Desert and Arid Zones Management, Ferdowsi University of Mashhad, Mashhad, Iran
| | - R E P Sotiropoulou
- Department of Mechanical Engineering, University of Western Macedonia, Kozani 50100, Greece
| | - E Tagaris
- Department of Chemical Engineering, University of Western Macedonia, Kozani 50100, Greece
| | - E Gerasopoulos
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236 Athens, Greece
| | - N Mihalopoulos
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236 Athens, Greece.
| |
Collapse
|
2
|
Aslam I, Roeffaers MBJ. Carbonaceous Nanoparticle Air Pollution: Toxicity and Detection in Biological Samples. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12223948. [PMID: 36432235 PMCID: PMC9698098 DOI: 10.3390/nano12223948] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 05/27/2023]
Abstract
Among the different air pollutants, particulate matter (PM) is of great concern due to its abundant presence in the atmosphere, which results in adverse effects on the environment and human health. The different components of PM can be classified based on their physicochemical properties. Carbonaceous particles (CPs) constitute a major fraction of ultrafine PM and have the most harmful effects. Herein, we present a detailed overview of the main components of CPs, e.g., carbon black (CB), black carbon (BC), and brown carbon (BrC), from natural and anthropogenic sources. The emission sources and the adverse effects of CPs on the environment and human health are discussed. Particularly, we provide a detailed overview of the reported toxic effects of CPs in the human body, such as respiratory effects, cardiovascular effects, neurodegenerative effects, carcinogenic effects, etc. In addition, we also discuss the challenges faced by and limitations of the available analytical techniques for the qualitative and quantitative detection of CPs in atmospheric and biological samples. Considering the heterogeneous nature of CPs and biological samples, a detailed overview of different analytical techniques for the detection of CPs in (real-exposure) biological samples is also provided. This review provides useful insights into the classification, toxicity, and detection of CPs in biological samples.
Collapse
|
3
|
Chang PK, Griffith SM, Chuang HC, Chuang KJ, Wang YH, Chang KE, Hsiao TC. Particulate matter in a motorcycle-dominated urban area: Source apportionment and cancer risk of lung deposited surface area (LDSA) concentrations. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128188. [PMID: 35007803 DOI: 10.1016/j.jhazmat.2021.128188] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Source-apportioned particle concentrations are necessary to properly evaluate the health impacts of air pollution. In this study, a measurement station was established at an urban roadside in northern Taiwan to the investigate lung deposited surface area (LDSA) concentration, a relevant metric for the adverse health effects of aerosol exposure, along with PM1 and equivalent black carbon (eBC) concentrations, particle number concentration (PNC), and particle size distribution (PSD). Through positive matrix factorization and multi-linear regression analysis, we attributed 57% of LDSA to traffic emissions over the entire study. During rush hour, the motorcycle fraction increased to 0.83 and LDSA (77.6 ± 9.9 µm2/cm3) and PNC (14,000 ± 2400 particles/cm3) values peaked, while 74% of LDSA was attributed to traffic. The LDSA ratio, defined as the ratio of measured LDSA to that estimated from the particle size distribution with a spherical assumption, also increased, highlighting the greater degree of fractal morphology during rush hour. The relationship between LDSA emitted by traffic and PNC yielded a higher r2 (0.92) than the r2 between traffic LDSA and eBC (0.82). Finally, the excess lifetime cancer risk linked with traffic emission was 1.56 × 10-4 (i.e. 15.6 excess cancer cases for a population of 100,000 people) based on the LDSA apportionment results.
Collapse
Affiliation(s)
- Po-Kai Chang
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei 10617, Taiwan
| | - Stephen M Griffith
- Department of Atmospheric Sciences, National Central University, Taoyuan, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kai-Jen Chuang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hui Wang
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei 10617, Taiwan
| | - Kuo-En Chang
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei 10617, Taiwan
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei 10617, Taiwan.
| |
Collapse
|
4
|
Phairuang W, Inerb M, Hata M, Furuuchi M. Characteristics of trace elements bound to ambient nanoparticles (PM 0.1) and a health risk assessment in southern Thailand. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127986. [PMID: 34902726 DOI: 10.1016/j.jhazmat.2021.127986] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Ambient nanoparticles, or PM0.1 and thirteen trace elements (Al, Ba, K, Fe, Cr, Cu, Ni, Na, Mn, Mg, Ti, Pb, and Zn) were studied in Hat Yai, Thailand during the year 2018. The annual average PM0.1 mass concentration was 8.45 ± 1.93 µg/m3. The PM0.1 levels in Hat Yai were similar to those in large cities in South East Asia, such as Hanoi and North Sumatra, but lower than other cities in Thailand. The sum of thirteen trace elements was 207.83 ± 17.06 ng/m3 and was dominated by Na, Zn, K, Mg, and Al. The highest concentration of elements occurred in the pre-monsoon season followed by the dry and monsoon seasons. A principal component analysis (PCA) indicated that PM0.1 comes from motor vehicles, crustal dust, industrial and biomass burning. The PM0.1 was dominated in the pre-monsoon season, suggesting that biomass burning from the southwest direction could cause an increase in the levels of Cr, Ti, and Ni. The total cancer risk from all the carcinogenic elements was 1.98 × 10-6 in adults, indicating that the carcinogenic risk is in a tolerable risk assessment range. The increasing levels of PM0.1 during transboundary haze pollution and local source emissions are a concern.
Collapse
Affiliation(s)
- Worradorn Phairuang
- Department of Geography, Faculty of Social Sciences, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; Faculty of Geoscience and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan.
| | - Muanfun Inerb
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Mitsuhiko Hata
- Faculty of Geoscience and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Masami Furuuchi
- Faculty of Geoscience and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan; Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| |
Collapse
|
5
|
Can Forest Fires Be an Important Factor in the Reduction in Solar Power Production in India? REMOTE SENSING 2022. [DOI: 10.3390/rs14030549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The wildfires over the central Indian Himalayan region have attracted the significant attention of environmental scientists. Despite their major and disastrous effects on the environment and air quality, studies on the forest fires’ impacts from a renewable energy point of view are lacking for this region. Therefore, for the first time, we examine the impact of massive forest fires on the reduction in solar energy production over the Indian subcontinent via remote sensing techniques. For this purpose, we used data from the Moderate Resolution Imaging Spectroradiometer (MODIS), the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIPSO), the Satellite Application Facility on support to Nowcasting/Very Short-Range Forecasting Meteosat Second Generation (SAFNWC/MSG) in conjunction with radiative transfer model (RTM) simulation, in addition to 1-day aerosol forecasts from the Copernicus Atmosphere Monitoring Service (CAMS). The energy production during the first quarter of 2021 was found to reach 650 kWh/m2 and the revenue generated was about INR (Indian rupee) 79.5 million. During the study period, the total attenuation due to aerosols and clouds was estimated to be 116 and 63 kWh/m2 for global and beam horizontal irradiance (GHI and BHI), respectively. The financial loss due to the presence of aerosols was found to be INR 8 million, with the corresponding loss due to clouds reaching INR 14 million for the total Indian solar plant’s capacity potential (40 GW). This analysis of daily energy and financial losses can help the grid operators in planning and scheduling power generation and supply during the period of fires. The findings of the present study will drastically increase the awareness among the decision makers in India about the indirect effects of forest fires on renewable energy production, and help promote the reduction in carbon emissions and greenhouse gases in the air, along with the increase in mitigation processes and policies.
Collapse
|
6
|
Adam MG, Tran PTM, Balasubramanian R. Air quality changes in cities during the COVID-19 lockdown: A critical review. ATMOSPHERIC RESEARCH 2021; 264:105823. [PMID: 34456403 PMCID: PMC8384485 DOI: 10.1016/j.atmosres.2021.105823] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/11/2021] [Accepted: 08/21/2021] [Indexed: 05/04/2023]
Abstract
In response to the rapid spread of coronavirus disease-2019 (COVID-19) within and across countries and the need to protect public health, governments worldwide introduced unprecedented measures such as restricted road and air travel and reduced human mobility in 2020. The curtailment of personal travel and economic activity provided a unique opportunity for researchers to assess the interplay between anthropogenic emissions of primary air pollutants, their physical transport, chemical transformation, ultimate fate and potential health impacts. In general, reductions in the atmospheric levels of outdoor air pollutants such as particulate matter (PM), nitrogen dioxide (NO2), carbon monoxide (CO), sulfur dioxide (SO2), and volatile organic compounds (VOCs) were observed in many countries during the lockdowns. However, the levels of ozone (O3), a secondary air pollutant linked to asthma and respiratory ailments, and secondary PM were frequently reported to remain unchanged or even increase. An increase in O3 can enhance the formation of secondary PM2.5, especially secondary organic aerosols, through the atmospheric oxidation of VOCs. Given that the gaseous precursors of O3 (VOCs and NOx) are also involved in the formation of secondary PM2.5, an integrated control strategy should focus on reducing the emission of the common precursors for the co-mitigation of PM2.5 and O3 with an emphasis on their complex photochemical interactions. Compared to outdoor air quality, comprehensive investigations of indoor air quality (IAQ) are relatively sparse. People spend more than 80% of their time indoors with exposure to air pollutants of both outdoor and indoor origins. Consequently, an integrated assessment of exposure to air pollutants in both outdoor and indoor microenvironments is needed for effective urban air quality management and for mitigation of health risk. To provide further insights into air quality, we do a critical review of scientific articles, published from January 2020 to December 2020 across the globe. Finally, we discuss policy implications of our review in the context of global air quality improvement.
Collapse
Affiliation(s)
- Max G Adam
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Phuong T M Tran
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
- Faculty of Environment, University of Science and Technology, The University of Danang, 54 Nguyen Luong Bang Street, Lien Chieu District, Danang City, Viet Nam
| | - Rajasekhar Balasubramanian
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
7
|
Jia H, Pan J, Huo J, Fu Q, Duan Y, Lin Y, Hu X, Cheng J. Atmospheric black carbon in urban and traffic areas in Shanghai: Temporal variations, source characteristics, and population exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117868. [PMID: 34364117 DOI: 10.1016/j.envpol.2021.117868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Black carbon (BC) measurements were performed at Pudong (PD) urban supersite and Gonghexin (GH) roadside station from December 1, 2017 to August 10, 2020 to investigate the variations, source characteristics, and population exposure levels of BC in traffic and urban areas in Shanghai, China. The BC median concentration at GH was more than two-fold that at PD. Absorption Ångström exponent (AAE) values were 1.27 ± 0.17 and 1.31 ± 0.17 at PD and GH, respectively, suggesting the dominance of liquid fossil fuel combustion sources (i.e., traffic exhaust) at these stations. The higher BC and AAE values in winter at PD indicated the relatively increasing contribution of solid fuels (i.e., biomass burning) to BC concentration in urban Shanghai. The diurnal variation in BC showed similar twin-peak patterns at PD and GH, implying that traffic emission mainly contributed to ambient BC concentration in urban Shanghai. The estimated daily intakes (EDIs) of BC were generally higher in males than in females at both PD and GH. The highest BC EDIs at PD were found in age subgroups 1-<2 and 2-<3 years. In contrast, the BC EDIs at GH were observed in age subgroups 6-<9, 12-<15, and 15-<18 years, which were higher than those determined at PD, indicating that more attention must be paid to BC exposure of the population in these age subgroups. These results provide scientific insights into variations, source characteristics, and population exposure levels of BC in urban and traffic areas and could help in the development of BC control strategies in Shanghai.
Collapse
Affiliation(s)
- Haohao Jia
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Pan
- State Ecologic Environmental Scientific Observation and Research Station at Dianshan Lake (SEED), Shanghai Environmental Monitor Center, Shanghai, 200235, China
| | - Juntao Huo
- State Ecologic Environmental Scientific Observation and Research Station at Dianshan Lake (SEED), Shanghai Environmental Monitor Center, Shanghai, 200235, China
| | - Qingyan Fu
- State Ecologic Environmental Scientific Observation and Research Station at Dianshan Lake (SEED), Shanghai Environmental Monitor Center, Shanghai, 200235, China
| | - Yusen Duan
- State Ecologic Environmental Scientific Observation and Research Station at Dianshan Lake (SEED), Shanghai Environmental Monitor Center, Shanghai, 200235, China
| | - Yanfen Lin
- State Ecologic Environmental Scientific Observation and Research Station at Dianshan Lake (SEED), Shanghai Environmental Monitor Center, Shanghai, 200235, China
| | - Xue Hu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinping Cheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
8
|
Tran PTM, Adam MG, Balasubramanian R. Assessment and mitigation of toddlers' personal exposure to black carbon before and during the COVID-19 pandemic: A case study in Singapore. ENVIRONMENTAL RESEARCH 2021; 202:111711. [PMID: 34280416 PMCID: PMC9749899 DOI: 10.1016/j.envres.2021.111711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 05/17/2023]
Abstract
Black carbon (BC), an important indicator of traffic-related air pollution (TRAP) in urban environments, is receiving increased attention because of its adverse health effects. Personal exposure (PE) of adults to BC has been widely studied, but little is known about the exposure of young children (toddlers) to BC in cities. We carried out a pilot study to investigate the integrated daily PE of toddlers to BC in a city-state with a high population density (Singapore). We studied the impact of urban traffic on the PE of toddlers to BC by comparing and contrasting on-road traffic flow (i.e., volume and composition) in Singapore in 2019 (before the COVID-19 pandemic) and in 2020 (during the COVID-19 pandemic). Our observations indicate that the daily BC exposure levels and inhaled doses increased by about 25% in 2020 (2.9 ± 0.3 μg m-3 and 35.5 μg day-1) compared to that in 2019 (2.3 ± 0.4 μg m-3 and 28.5 μg day-1 for exposure concentration and inhaled dose, respectively). The increased BC levels were associated with the increased traffic volume on both weekdays and weekends in 2020 compared to the same time period in 2019. Specifically, we observed an increase in the number of trucks as well as cars/taxis and motorcycles (private transport) and a decline in the number of buses (public transport) in 2020. The implementation of lockdown measures in 2020 resulted in significant changes in the time, place and duration of PE of toddlers to BC. The recorded daily time-activity patterns indicated that toddlers spent almost all the time in indoor environments during the measurement period in 2020. When we compared different ventilation options (natural ventilation (NV), air conditioning (AC), and portable air cleaner (PAC)) for mitigation of PE to BC in the home environment, we found a significant decrease (>30%) in daily BC exposure levels while using the PAC compared to the NV scenario. Our case study shows that the PE of toddlers to BC is of health concern in indoor environments in 2020 because of the migration of the increased TRAP into naturally ventilated residential homes and more time spent indoors than outdoors. Since toddlers' immune system is weak, technological intervention is necessary to protect their health against inhalation exposure to air pollutants.
Collapse
Affiliation(s)
- Phuong T M Tran
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore; Faculty of Environment, University of Science and Technology, The University of Danang, 54 Nguyen Luong Bang Street, Lien Chieu District, Danang City, Viet Nam
| | - Max G Adam
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Rajasekhar Balasubramanian
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore.
| |
Collapse
|
9
|
Adam MG, Tran PTM, Cheong DKW, Chandra Sekhar S, Tham KW, Balasubramanian R. Assessment of Home-Based and Mobility-Based Exposure to Black Carbon in an Urban Environment: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18095028. [PMID: 34068742 PMCID: PMC8126254 DOI: 10.3390/ijerph18095028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/05/2021] [Indexed: 01/20/2023]
Abstract
The combustion of fossil fuels is a significant source of particulate-bound black carbon (BC) in urban environments. The personal exposure (PE) of urban dwellers to BC and subsequent health impacts remain poorly understood due to a lack of observational data. In this study, we assessed and quantified the levels of PE to BC under two exposure scenarios (home-based and mobility-based exposure) in the city of Trivandrum in India. In the home-based scenario, the PE to BC was assessed in a naturally ventilated building over 24 h each day during the study period while in the mobility-based scenario, the PE to BC was monitored across diverse microenvironments (MEs) during the day using the same study protocol for consistency. Elevated BC concentrations were observed during the transport by motorcycle (26.23 ± 2.33 µg/m3) and car (17.49 ± 2.37 µg/m3). The BC concentrations observed in the MEs decreased in the following order: 16.58 ± 1.38 µg/m3 (temple), 13.78 ± 2.07 µg/m3 (restaurant), 11.44 ± 1.37 µg/m3 (bus stop), and 8.27 ± 1.88 µg/m3 (home); the standard deviations represent the temporal and spatial variations of BC concentrations. Overall, a relatively larger inhaled dose of BC in the range of 148.98–163.87 µg/day was observed for the mobility-based scenario compared to the home-based one (118.10–137.03 µg/day). This work highlights the importance of reducing PE to fossil fuel-related particulate emissions in cities for which BC is a good indicator. The study outcome could be used to formulate effective strategies to improve the urban air quality as well as public health.
Collapse
Affiliation(s)
- Max Gerrit Adam
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore; (M.G.A.); (P.T.M.T.)
| | - Phuong Thi Minh Tran
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore; (M.G.A.); (P.T.M.T.)
- Faculty of Environment, The University of Danang—University of Science and Technology, 54 Nguyen Luong Bang Street, Lien Chieu District, Danang City 50608, Vietnam
| | - David Kok Wai Cheong
- Department of Building, School of Design and Environment, National University of Singapore, Singapore 117566, Singapore; (D.K.W.C.); (S.C.S.); (K.W.T.)
| | - Sitaraman Chandra Sekhar
- Department of Building, School of Design and Environment, National University of Singapore, Singapore 117566, Singapore; (D.K.W.C.); (S.C.S.); (K.W.T.)
| | - Kwok Wai Tham
- Department of Building, School of Design and Environment, National University of Singapore, Singapore 117566, Singapore; (D.K.W.C.); (S.C.S.); (K.W.T.)
| | - Rajasekhar Balasubramanian
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore; (M.G.A.); (P.T.M.T.)
- Correspondence: ; Tel.: +65-6516-5135; Fax: +65-6779-1635
| |
Collapse
|
10
|
Adam MG, Tran PTM, Bolan N, Balasubramanian R. Biomass burning-derived airborne particulate matter in Southeast Asia: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124760. [PMID: 33341572 DOI: 10.1016/j.jhazmat.2020.124760] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/10/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Smoke haze episodes, resulting from uncontrolled biomass burning (BB) including forest and peat fires, continue to occur in Southeast Asia (SEA), affecting air quality, atmospheric visibility, climate, ecosystems, hydrologic cycle and human health. The pollutant of major concern in smoke haze is airborne particulate matter (PM). A number of fundamental laboratory, field and modeling studies have been conducted in SEA from 2010 to 2020 to investigate potential environmental and health impacts of BB-induced PM. The goal of this review is to bring together the most recent developments in our understanding of various aspects of BB-derived PM based on 127 research articles published from 2010 to 2020, which have not been conveyed in previous reviews. Specifically, this paper discusses the physical, chemical, toxicological and radiative properties of BB-derived PM. It also provides insights into the environmental and health impacts of BB-derived PM, summarizes the approaches taken to do the source apportionment of PM during BB events and discusses the mitigation of exposure to BB-derived PM. Suggestions for future research priorities are outlined. Policies needed to prevent future BB events in the SEA region are highlighted.
Collapse
Affiliation(s)
- Max G Adam
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Phuong T M Tran
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore; Faculty of Environment, University of Science and Technology, The University of Danang, 54 Nguyen Luong Bang Street, Lien Chieu District, Danang City, Viet Nam
| | - Nanthi Bolan
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Rajasekhar Balasubramanian
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore.
| |
Collapse
|
11
|
Boongla Y, Chanonmuang P, Hata M, Furuuchi M, Phairuang W. The characteristics of carbonaceous particles down to the nanoparticle range in Rangsit city in the Bangkok Metropolitan Region, Thailand. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115940. [PMID: 33189443 DOI: 10.1016/j.envpol.2020.115940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/16/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
Atmospheric size-classified particles in sizes ranging from small to nanoparticles (PM0.1) are reported for Rangsit City in the Bangkok Metropolitan Region (BMR) of Thailand, for October 2019 (wet season) and January-February 2020 (dry season). The sampling involved the use of a PM0.1 cascade air sampler to determine the mass concentration. The PMs consisted of six stages including TSP-PM10, PM2.5-10, PM1.0-2.5, PM0.5-1.0, PM0.5-1.0 and PM0.1. Elemental carbon (EC) and organic carbon (OC) were evaluated by a carbon analyzer following the IMPROVE_TOR protocol. The average PM0.1 mass concentrations were found to be 13.47 ± 0.79 (wet season) and 18.88 ± 3.99 (dry season) μg/m3, respectively. The average OC/EC ratio for the rainy season was lower than that in the dry season. The char-EC/soot-EC ratios were consistently below 1 for the PM0.1 fraction in both seasons indicating that vehicular traffic appeared to be the main emission source. However, the influence of open biomass burning on fine and coarse PM particles on local air pollution was found to be an important issue during the wet season. In addition, long-range transport from other countries may also contribute to the carbon content in the Bangkok Metropolitan Region (BMR) atmosphere during the dry season. The higher secondary organic carbon to organic carbon (SOC/OC) ratio in the dry season is indicative of the contribution of secondary sources to the formation of PM, especially finer particles. A strong correlation between OC and EC in nanoparticles was found, indicating that they are derived from sources of constant emission, likely the diesel engines. Conversely, the OC and EC correlation for other size-specific PMs decreased during the dry season, indicating that these emission sources were more varied.
Collapse
Affiliation(s)
- Yaowatat Boongla
- Department of Sustainable Development Technology, Faculty of Science and Technology, Thammasat University, Rangsit Campus, Pathumtani, 12121, Thailand
| | - Phuvasa Chanonmuang
- Thailand Institute of Scientific and Technological Research (TISTR), Klong-Luang, Pathumtani, 12120, Thailand
| | - Mitsuhiko Hata
- Faculty of Geoscience and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Masami Furuuchi
- Faculty of Geoscience and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan; Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Worradorn Phairuang
- Faculty of Geoscience and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan; Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; Department of Geography, Faculty of Social Sciences, Chiang Mai University, Muang, Chiang Mai, 50200, Thailand.
| |
Collapse
|
12
|
Tran PTM, Adam MG, Balasubramanian R. Mitigation of indoor human exposure to airborne particles of outdoor origin in an urban environment during haze and non-haze periods. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123555. [PMID: 33264848 DOI: 10.1016/j.jhazmat.2020.123555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 06/12/2023]
Abstract
During the 2019 smoke haze episode in Singapore, elevated levels of fine particulate matter (PM2.5) were observed, deteriorating both ambient and indoor air quality (IAQ). We investigated the mitigation of indoor human exposure to PM2.5 of outdoor origin under diverse exposure scenarios with and without filtration of PM2.5 during both hazy and non-hazy days. The key objective of our study was to make a comparative evaluation of the effectiveness of portable air cleaners (PACs) and air conditioning (AC) systems equipped with particle filters in improving IAQ and to assess related long-term carcinogenic and non-carcinogenic health risks. We conducted real-time measurements of PM2.5, black carbon mass concentrations and particle number concentrations in both indoor and outdoor areas, quantified the relative concentrations of the water-soluble fraction of toxic trace elements in PM2.5 for health risk assessment, and estimated the levels of thermal comfort. In addition, we calculated the total estimated cost of indoor air pollution control. Our findings suggest that indoor air cleaners are more effective at mitigating human exposure to airborne particles and reducing health risk with less consumption of electricity and better cost-effectiveness compared to AC. This information would be beneficial for public health interventions during major air pollution events.
Collapse
Affiliation(s)
- Phuong T M Tran
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore; Faculty of Environment, University of Science and Technology, The University of Danang, 54 Nguyen Luong Bang Street, Lien Chieu District, Danang City, Viet Nam
| | - Max G Adam
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Rajasekhar Balasubramanian
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore.
| |
Collapse
|
13
|
Park S, Yu GH, Bae MS. Effects of combustion condition and biomass type on the light absorption of fine organic aerosols from fresh biomass burning emissions over Korea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114841. [PMID: 32454360 DOI: 10.1016/j.envpol.2020.114841] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
In this study, the light absorption properties of fine organic aerosols from the burning emissions of four biomass materials were examined using UV-spectrophotometry and Aethalometer-measurements, respectively. For wood chips and palm trees, the burning experiments were carried out with different combustion temperatures (200, 250, and 300 οC) in an adjustable, electrically heated combustor. The light absorptions of water and methanol extracts of aerosols, and smoke particles showed strong spectral dependence on the burning emissions of all biomass materials. However, the burning aerosols of wood chips showed stronger absorption than those of the other biomass burning (BB) emissions. For the burning aerosols of wood chips and palm trees, organic carbon/elemental carbon (OC/EC) decreased as the combustion temperature increased from 200 to 300 °C. Absorption Ångström exponent (AAE) values tended to decrease when combustion temperature increased for smoke aerosols and methanol extracts in smoke samples. The mass absorption efficiency at 365 nm (MAE365, m2 g-1∙C-1) of water- and methanol-extractable OC fractions was highest in wood chip burning smoke samples. MAE365 values of methanol extracts for rice straw, pine needles, wood chips, and palm trees burning emission samples were 1.35, 0.92, 2.36-3.37, and 0.86-1.42, respectively. For wood chip and palm tree burning emissions, AAE320-430nm values of methanol extracts were strongly correlated with OC/EC (i.e., combustion temperature) with slopes of 0.11 (p < 0.001) and 0.02 (p < 0.001), and R2 values of 0.87 and 0.74, respectively. Moreover, a linear regression between MAE365 of methanol extractable OC and OC/EC showed slopes of -0.05 (p < 0.001) and -0.004 (p < 0.001) and R2 of 0.72 and 0.74, respectively. The results of this study clearly demonstrate that burning condition and biomass type influence the light absorption properties of organic aerosols from BB emissions.
Collapse
Affiliation(s)
- Seungshik Park
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, Republic of Korea.
| | - Geun-Hye Yu
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, Republic of Korea
| | - Min-Suk Bae
- Department of Environmental Engineering, Mokpo National University, 1666 Yeongsan-ro, Cheonggye-myeon, Muan-gun, Jeollanamdo, 58554, Republic of Korea
| |
Collapse
|