1
|
Putman BJ, Stevens B, Fresco NA, Urquidi ER. Effects of Urbanization on Ventral Patch Size and Phenotypic Correlates of Patch Expression in Male Western Fence Lizards ( Sceloporus occidentalis). Ecol Evol 2025; 15:e70915. [PMID: 39896771 PMCID: PMC11774875 DOI: 10.1002/ece3.70915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/02/2024] [Accepted: 01/16/2025] [Indexed: 02/04/2025] Open
Abstract
In some animals, males use colorful ornaments or badges to visually communicate with conspecifics. These traits can be condition-dependent, suggesting that environmental changes could impact the intensity of male sexual signals. Drastic habitat changes caused by urbanization can act as physiological stressors, potentially affecting male signaling traits through changes to condition or immune function. Here, we quantified the effects of urbanization on ventral patch size and correlates of patch expression, namely body size, body condition, corticosterone concentrations, and ectoparasites in male Western Fence Lizards (Sceloporus occidentalis). We compared three aspects of male ventral color patches between urban and natural populations: area of the throat patch, total area of the paired belly patches, and total area of the black borders of the belly patches. All three area measurements across both habitat types were positively related to body size, and total belly patch area was positively related to body condition, indicating that these traits may signal male competitive ability and/or quality. Males from urban populations had larger throat patches than those from natural populations after controlling for body size. This difference in patch size was associated with a difference in probability of ectoparasite infection, but not with differences in corticosterone concentrations or body condition between urban and natural populations. Our results may indicate an effect of urbanization on immune function affecting male patch expression, although this idea remains untested. Overall, we show that urbanization can impact male sexual traits, which may have repercussions for visual communication in urban environments.
Collapse
Affiliation(s)
- Breanna J. Putman
- Department of BiologyCalifornia State University, San BernardinoCalifornia
- Department of Biological SciencesCalifornia State UniversityLong BeachCalifornia
| | - Bayley Stevens
- Department of BiologyCalifornia State University, San BernardinoCalifornia
| | - Nina A. Fresco
- Department of BiologyCalifornia State University, San BernardinoCalifornia
| | - Emily R. Urquidi
- Department of BiologyCalifornia State University, San BernardinoCalifornia
| |
Collapse
|
2
|
Pham K, Lazenby M, Yamada K, Lattin CR, Wada H. Zebra finches (Taeniopygia castanotis) display varying degrees of stress resilience in response to constant light. Gen Comp Endocrinol 2025; 361:114644. [PMID: 39592083 PMCID: PMC11811949 DOI: 10.1016/j.ygcen.2024.114644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
The ability for traits to recover after exposure to stress varies depending on the magnitude, duration, or type of stressor. One such stressor is circadian rhythm disruption stemming from exposure to light at night. Circadian rhythm disruption may lead to long-term physiological consequences; however, the capacity in which individuals recover and display stress resilience is not known. Here, we exposed zebra finches (Taeniopygia castanotis) to constant light (24L:0D) or a regular light/dark cycle (14L:10D) for 23 days, followed by a recovery period for 12 days. We measured body mass, corticosterone, and glucose levels at multiple timepoints, and relative protein expression of glucocorticoid receptors at euthanasia. Body mass significantly increased over time in light-exposed birds compared to controls, but a 12-day recovery period reversed this increase. Baseline levels of circulating glucose decreased in light-exposed birds compared to controls, but returned to pretreatment levels after the 12-day recovery period. In contrast, the glucose stress response did not show a similar recovery trend, suggesting longer recovery is needed or that this is a persistent effect in light-exposed birds. Surprisingly, we did not detect any differences in baseline corticosterone or reactivity of the hypothalamic-pituitiary-adrenal (HPA) axis between groups throughout the experiment. Moreover, we did not detect differences between relative protein expression of glucocorticoid receptors or a relationship with HPA axis reactivity. Yet, we found a positive relationship between glucocorticoid receptors and the glucose stress response, but only in the light group. Our results indicate that physiological and morphological traits differ in their ability to recover in response to constant light and warrants further investigation on the mechanisms driving stress resilience under a disrupted circadian rhythm.
Collapse
Affiliation(s)
- Kevin Pham
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA.
| | - Madeline Lazenby
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - KayLene Yamada
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Christine R Lattin
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Haruka Wada
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
3
|
Mathiaparanam KJ, Mulder RA, Hale R. Anthropogenic double jeopardy: Urban noise and artificial light at night interact synergistically to influence abundance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125078. [PMID: 39369865 DOI: 10.1016/j.envpol.2024.125078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Artificial light at night (ALAN) and urban noise are increasing globally and can have a range of impacts on wildlife. While ALAN and noise often co-occur and can affect wildlife in similar ways, their impacts have generally been studied in isolation. Information about possible interactive impacts, which can be more serious, is critical to guide conservation. We studied how noise and ALAN impact a common urban waterbird (Eurasian coot Fulica atra) around the city of Melbourne in south-eastern Australia. We aimed to examine: (1) the individual and (2) interactive impacts of noise and ALAN on abundance, and (3) the relative influence of these stressors and other environmental predictors. To do so, we used data from a large-scale (1,463 surveys across an area of 9,250 km2 with significant heterogeneity in noise and ALAN conditions), long-term (2008-2018) monitoring program, overlaid with georeferenced noise and light data. We used generalized linear mixed effects models and boosted regression trees to model individual and interactive effects of ALAN and noise on abundance. Abundance was negatively correlated with noise and ALAN individually. Furthermore, the two stressors had a negative synergistic effect, ultimately resulting in the absence of coots at the highest observed ALAN and noise levels. We also estimate that the combined influence of the two stressors on abundance was larger than that of other examined environmental factors. Our findings that noise and ALAN have detrimental interactive impacts is worrying for two reasons. First, Eurasian coots are thought to be tolerant to urbanisation, so impacts may be more severe for less tolerant species. Second, noise and ALAN commonly co-occur around cities, so similar impacts are likely elsewhere. By adopting more biologically and ecologically realistic analytical frameworks, future studies can better estimate the cumulative impacts of multiple stressors to facilitate improved conservation and management.
Collapse
Affiliation(s)
| | - Raoul A Mulder
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Robin Hale
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
4
|
Galosi L, Todini L, Menchetti L, Carbajal A, Palme R, Ruggiero N, Falconi R, Roncarati A. Effect of a Broiler-Specific Light Spectrum on Growth Performance and Adrenocortical Activity in Chickens: A Pilot Study on a Commercial Farm. Vet Sci 2024; 11:618. [PMID: 39728958 DOI: 10.3390/vetsci11120618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
This study evaluated the effect of a broiler-specific light spectrum on productive performance corticosterone (fCC) and androgen dehydroepiandrosterone (fDHEA) concentrations in feathers, and glucocorticoid (GCMs) and androgen (AMs) metabolites in droppings of broilers. Two groups of female Ross 308 broilers were reared under white LED (WL, n = 9000) and broiler-specific LED (BSL, n = 9000) lights. The body weight (BW) of 150 randomly selected animals/groups was measured weekly. Droppings and feathers were collected at the end of the cycle (29 days) from 20 animals/group. The BSL group showed higher final BW than WL (1407 ± 11 vs. 1341 ± 15 g, respectively; p < 0.001) and higher indices of uniformity (76.8% vs. 61.2% animals in the 10% around the mean, respectively; p < 0.001). No difference between groups was found in fCC and fDHEA concentrations or in the fCC-fDHEA, indicating similar long-term HPA axis activity during the cycle. A higher concentration of GCMs was found in the BSL group, indicating higher glucocorticoid secretion before sampling, with neither a difference in AMs nor in GCMs-AMs. Finally, there was a positive correlation between fCC and fDHEA and between GCMs and AMs (p < 0.01). Our findings suggest that the use of broiler-specific light improved the productivity performances of chickens without long-term consequences on HPA activation. However, the results of this pilot study in a commercial farm setting must be interpreted with caution and need confirmation.
Collapse
Affiliation(s)
- Livio Galosi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93-95, 62024 Matelica, MC, Italy
| | - Luca Todini
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93-95, 62024 Matelica, MC, Italy
| | - Laura Menchetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93-95, 62024 Matelica, MC, Italy
| | - Annaïs Carbajal
- Department of Animal Health and Anatomy, Veterinary Faculty, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Rupert Palme
- Department of Biological Sciences and Pathobiology, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Nicola Ruggiero
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93-95, 62024 Matelica, MC, Italy
| | - Roberto Falconi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93-95, 62024 Matelica, MC, Italy
| | - Alessandra Roncarati
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93-95, 62024 Matelica, MC, Italy
| |
Collapse
|
5
|
Foppen K, Pinxten R, Meijdam M, Eens M. Artificial Light at Night Advances the Onset of Vocal Activity in Both Male and Female Great Tits During the Breeding Season, While Noise Pollution Has Less Impact and Only in Females. Animals (Basel) 2024; 14:3199. [PMID: 39595252 PMCID: PMC11590875 DOI: 10.3390/ani14223199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Artificial light at night (ALAN) and noise pollution are two important stressors associated with urbanisation that can have a profound impact on animal behaviour and physiology, potentially disrupting biological rhythms. Although the influence of ALAN and noise pollution on daily activity patterns of songbirds has been clearly demonstrated, studies often focus on males, and the few that examined females have not included the potential influence of males on female activity patterns. Using free-living pairs of great tits (Parus major) as a model, we examined for the first time the effects of ALAN and noise pollution and their interaction on the onset of (vocal) activity in both members of a pair. We focused on the egg-laying phase, when both sexes are most vocally active. The onset of male dawn song, female emergence time from the nest box and the onset of female calling in the nest box were measured and used as a proxy for the chronotype. The repeatabilities for all chronotype proxies were high, with higher repeatabilities for males. Consistent with previous studies, ALAN advanced the onset of male dawn song, while it did not elicit a strong response in female emergence time. Additionally, our results suggest an indirect effect of ALAN on the onset of female vocal activity via acoustic interaction with the male. Noise pollution advanced the emergence time in females, while an interaction between ALAN and noise pollution was found for the onset of female calling. In agreement with previous studies, several covariables were shown to have an influence on the activity onset. Taking several proxies for chronotype into account, this study has provided robust evidence of effects of ALAN on male and female cavity-nesting songbirds during the egg-laying period.
Collapse
Affiliation(s)
- Kim Foppen
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (R.P.); (M.M.)
| | | | | | - Marcel Eens
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (R.P.); (M.M.)
| |
Collapse
|
6
|
Beaugeard E, Brischoux F, Angelier F. Light pollution affects activity differentially across breeding stages in an urban exploiter: An experiment in the house sparrow (Passer domesticus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124055. [PMID: 38692388 DOI: 10.1016/j.envpol.2024.124055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/05/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Artificial Light At Night (ALAN) is a major urban perturbation, which can have detrimental effects on wildlife. Recent urban planning has led to an increased use of white light emission diodes (LEDs) in cities. However, little is known about the effects of this type of ALAN on wild vertebrates, especially during reproduction. We designed an experiment to test the impact of ALAN on the activity rhythms (daily time of first activity (TFA) and time of last activity (TLA)) of captive House sparrows (Passer domesticus) during several reproductive stages (from pre-breeding to post-breeding). We also tested the impact of ALAN on reproductive performance (laying date, clutch size, hatching and fledging success). Experimental birds were active earlier in the morning (earlier TFA) relative to controls although experimental and control birds did not differ in their TLA. The effect of ALAN on TFA was apparent during specific stages only (pre-breeding and chick-rearing stages), suggesting that sparrows actively adjust their activity in response to ALAN only during specific periods. This impact of ALAN on activity did not persist through the whole breeding season, suggesting that sparrows may habituate to ALAN. Alternatively, they may not be able to sustain a long-term increased activity in response to ALAN because of sleep deprivation and related physiological costs. Finally, we did not find any impact of ALAN on the reproductive performance of captive house sparrows held under optimal conditions. This suggests that ALAN may not be dramatically detrimental to the reproduction of this urban exploiter, at least when food availability is not constraining.
Collapse
Affiliation(s)
- Erika Beaugeard
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-LRU, 79360, Villiers en Bois, France
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-LRU, 79360, Villiers en Bois, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-LRU, 79360, Villiers en Bois, France.
| |
Collapse
|
7
|
Adams CA, Clair CCS, Knight EC, Bayne EM. Behaviour and landscape contexts determine the effects of artificial light on two crepuscular bird species. LANDSCAPE ECOLOGY 2024; 39:83. [PMID: 38550967 PMCID: PMC10965584 DOI: 10.1007/s10980-024-01875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/13/2024] [Indexed: 04/29/2024]
Abstract
Context Artificial light at night (ALAN) is increasing worldwide, with many ecological effects. Aerial insectivores may benefit from foraging on insects congregating at light sources. However, ALAN could negatively impact them by increasing nest visibility and predation risk, especially for ground-nesting species like nightjars (Caprimulgidae). Objectives We tested predictions based on these two alternative hypotheses, potential foraging benefits vs potential predation costs of ALAN, for two nightjar species in British Columbia: Common Nighthawks (Chordeiles minor) and Common Poorwills (Phalaenoptilus nuttallii). Methods We modeled the relationship between ALAN and relative abundance using count data from the Canadian Nightjar Survey. We distinguished territorial from extra-territorial Common Nighthawks based on their wingboom behaviour. Results We found limited support for the foraging benefit hypothesis: there was an increase in relative abundance of extra-territorial Common Nighthawks in areas with higher ALAN but only in areas with little to no urban land cover. Common Nighthawks' association with ALAN became negative in areas with 18% or more urban land cover. We found support for the nest predation hypothesis: the were strong negative associations with ALAN for both Common Poorwills and territorial Common Nighthawks. Conclusions The positive effects of ALAN on foraging nightjars may be limited to species that can forage outside their nesting territory and to non-urban areas, while the negative effects of ALAN on nesting nightjars may persist across species and landscape contexts. Reducing light pollution in breeding habitat may be important for nightjars and other bird species that nest on the ground. Supplementary Information The online version contains supplementary material available at 10.1007/s10980-024-01875-3.
Collapse
Affiliation(s)
- Carrie Ann Adams
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, AB Canada
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, 1474 Campus Delivery, Fort Collins, CO USA
| | - Colleen Cassady St. Clair
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, AB Canada
| | - Elly C. Knight
- Alberta Biodiversity Monitoring Institute, 1-107 Centennial Centre for Interdisciplinary Studies (CCIS), University of Alberta, Edmonton, AB Canada
| | - Erin M. Bayne
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, AB Canada
| |
Collapse
|
8
|
Smit JAH, Vooijs R, Lindenburg P, Baugh AT, Halfwerk W. Noise and light pollution elicit endocrine responses in urban but not forest frogs. Horm Behav 2024; 157:105453. [PMID: 37979210 DOI: 10.1016/j.yhbeh.2023.105453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/25/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023]
Abstract
Urban areas are characterised by the presence of sensory pollutants, such as anthropogenic noise and artificial light at night (ALAN). Animals can quickly adapt to novel environmental conditions by adjusting their behaviour, which is proximately regulated by endocrine systems. While endocrine responses to sensory pollution have been widely reported, this has not often been linked to changes in behaviour, hampering the understanding of adaptiveness of endocrine responses. Our aim was, therefore, to investigate the effects of urbanisation, specifically urban noise and light pollution, on hormone levels in male urban and forest túngara frogs (Engystomops pustulosus), a species with reported population divergence in behaviour in response to urbanisation. We quantified testosterone and corticosterone release rates in the field and in the lab before and after exposure to urban noise and/or light. We show that urban and forest frogs differ in their endocrine phenotypes under field as well as lab conditions. Moreover, in urban frogs exposure to urban noise and light led, respectively, to an increase in testosterone and decrease in corticosterone, whereas in forest frogs sensory pollutants did not elicit any endocrine response. Our results show that urbanisation, specifically noise and light pollution, can modulate hormone levels in urban and forest populations differentially. The observed endocrine responses are consistent with the observed behavioural changes in urban frogs, providing a proximate explanation for the presumably adaptive behavioural changes in response to urbanisation.
Collapse
Affiliation(s)
- Judith A H Smit
- Amsterdam Institute for Life and Environment, Ecology and Evolution, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands; Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panamá.
| | - Riet Vooijs
- Amsterdam Institute for Life and Environment, Ecology and Evolution, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Peter Lindenburg
- Research Group Metabolomics, Leiden Centre for Applied Bioscience, University of Applied Sciences Leiden, the Netherlands
| | - Alexander T Baugh
- Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA
| | - Wouter Halfwerk
- Amsterdam Institute for Life and Environment, Ecology and Evolution, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Grunst ML, Grunst AS. Endocrine effects of exposure to artificial light at night: A review and synthesis of knowledge gaps. Mol Cell Endocrinol 2023; 568-569:111927. [PMID: 37019171 DOI: 10.1016/j.mce.2023.111927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023]
Abstract
Animals have evolved with natural patterns of light and darkness, such that light serves as an important zeitgeber, allowing adaptive synchronization of behavior and physiology to external conditions. Exposure to artificial light at night (ALAN) interferes with this process, resulting in dysregulation of endocrine systems. In this review, we evaluate the endocrine effects of ALAN exposure in birds and reptiles, identify major knowledge gaps, and highlight areas for future research. There is strong evidence for ecologically relevant levels of ALAN acting as an environmental endocrine disruptor. However, most studies focus on the pineal hormone melatonin, corticosterone release via the hypothalamus-pituitary-adrenal axis, or regulation of reproductive hormones via the hypothalamus-pituitary-gonadal axis, leaving effects on other endocrine systems largely unknown. We call for more research spanning a diversity of hormonal systems and levels of endocrine regulation (e.g. circulating hormone levels, receptor numbers, strength of negative feedback), and investigating involvement of molecular mechanisms, such as clock genes, in hormonal responses. In addition, longer-term studies are needed to elucidate potentially distinct effects arising from chronic exposure. Other important areas for future research effort include investigating intraspecific and interspecific variability in sensitivity to light exposure, further distinguishing between distinct effects of different types of light sources, and assessing impacts of ALAN exposure early in life, when endocrine systems remain sensitive to developmental programming. The effects of ALAN on endocrine systems are likely to have a plethora of downstream effects, with implications for individual fitness, population persistence, and community dynamics, especially within urban and suburban environments.
Collapse
Affiliation(s)
- Melissa L Grunst
- Littoral, Environnement et Sociétés (LIENS), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000, La Rochelle, France.
| | - Andrea S Grunst
- Littoral, Environnement et Sociétés (LIENS), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000, La Rochelle, France
| |
Collapse
|
10
|
Bonfoey AM, Chen J, Stahlschmidt ZR. Stress tolerance is influenced by artificial light at night during development and life-history strategy. J Exp Biol 2023; 226:286276. [PMID: 36606751 DOI: 10.1242/jeb.245195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023]
Abstract
Artificial light at night (ALAN) is increasingly prevalent worldwide, but life-history strategy may mitigate the costs of ALAN for animals. Yet, interactions among ALAN, life-history strategy and tolerance to climate-related stressors are unknown. We determined if developmental ALAN exposure (1) affects development, (2) affects adult phenotype, including heat and desiccation tolerance, and (3) affects and/or interacts with life-history strategy. We used the variable field cricket (Gryllus lineaticeps) because its geographic range is increasingly exposed to ALAN, heat, and drought conditions, and it exhibits different life-history strategies (flight-capability versus flight-incapability). ALAN affected adult phenotype, with positive effects on body mass (and size) and female reproductive investment, and a negative effect on heat tolerance. Life-history strategy also affected stress tolerance; flight-incapable females had greater heat tolerance and their desiccation tolerance was improved by ALAN exposure. Key features of environmental change (i.e. exposure to ALAN, heat and drought) may favor some life-history strategies over others.
Collapse
Affiliation(s)
- Alyssa M Bonfoey
- Department of Biological Sciences, University of the Pacific, 3601 Pacific Avenue, Stockton, CA, 95211, USA
| | - Jessica Chen
- Department of Biological Sciences, University of the Pacific, 3601 Pacific Avenue, Stockton, CA, 95211, USA
| | - Zachary R Stahlschmidt
- Department of Biological Sciences, University of the Pacific, 3601 Pacific Avenue, Stockton, CA, 95211, USA
| |
Collapse
|
11
|
Wang FF, Wang MH, Zhang MK, Qin P, Cuthbertson AGS, Lei CL, Qiu BL, Yu L, Sang W. Blue light stimulates light stress and phototactic behavior when received in the brain of Diaphorina citri. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114519. [PMID: 36634478 DOI: 10.1016/j.ecoenv.2023.114519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Blue light with a wavelength of 400-470 nm is the composition of the visible light. However, in recent years, blue light contributed the most significance to light pollution due to the artificial light at night. Previously, we have demonstrated that the Asian citrus psyllid (ACP), Diaphorina citri, an important pest in citrus production, has significant positive phototaxis with a light-emitting diode light of 400 nm. In this study, ACP with positive phototactic behavior to 400 nm light (PH) and non-phototactic behavior to 400 nm light (NP) were collected, individually. Transcriptome dynamics of head tissues of PH and NP groups were captured by using RNA-sequencing technology, respectively. Forty-three to 46 million clean reads with high-quality values were obtained, and 1773 differential expressed genes (DEGs) were detected. Compared with the NP group, there were 841 up-regulated DEGs and 932 down-regulated DEGs in the PH group. Eight pathways were significantly enriched in the PH group in the KEGG database, while 43 up-regulated pathways and 25 down-regulated pathways were significantly enriched in the PH group in the GO database. The DGE approach was reliable validated by real time quantitative PCR. Results indicated that the blue light acted as an abiotic stress causing physiological and biochemical responses such as oxidative stress, protein denaturation, inflammation and tumor development in ACPs. Additionally, the light was absorbed by photoreceptors of ACPs, and converted into electrical signal to regulate neuromodulation. This study provides basic information for understanding the molecular mechanisms of ACP in response to blue light and provides a reference for further studies to elucidate phototactic behavior.
Collapse
Affiliation(s)
- Fei-Feng Wang
- South China Agricultural University, Guangzhou 510640, China
| | - Ming-Hui Wang
- South China Agricultural University, Guangzhou 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Meng-Ke Zhang
- South China Agricultural University, Guangzhou 510640, China
| | - Peng Qin
- South China Agricultural University, Guangzhou 510640, China
| | | | - Chao-Liang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Bao-Li Qiu
- South China Agricultural University, Guangzhou 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Lin Yu
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China.
| | - Wen Sang
- South China Agricultural University, Guangzhou 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China.
| |
Collapse
|
12
|
Deviche P, Sweazea K, Angelier F. Past and future: Urbanization and the avian endocrine system. Gen Comp Endocrinol 2023; 332:114159. [PMID: 36368439 DOI: 10.1016/j.ygcen.2022.114159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022]
Abstract
Urban environments are evolutionarily novel and differ from natural environments in many respects including food and/or water availability, predation, noise, light, air quality, pathogens, biodiversity, and temperature. The success of organisms in urban environments requires physiological plasticity and adjustments that have been described extensively, including in birds residing in geographically and climatically diverse regions. These studies have revealed a few relatively consistent differences between urban and non-urban conspecifics. For example, seasonally breeding urban birds often develop their reproductive system earlier than non-urban birds, perhaps in response to more abundant trophic resources. In most instances, however, analyses of existing data indicate no general pattern distinguishing urban and non-urban birds. It is, for instance, often hypothesized that urban environments are stressful, yet the activity of the hypothalamus-pituitary-adrenal axis does not differ consistently between urban and non-urban birds. A similar conclusion is reached by comparing blood indices of metabolism. The origin of these disparities remains poorly understood, partly because many studies are correlative rather than aiming at establishing causality, which effectively limits our ability to formulate specific hypotheses regarding the impacts of urbanization on wildlife. We suggest that future research will benefit from prioritizing mechanistic approaches to identify environmental factors that shape the phenotypic responses of organisms to urbanization and the neuroendocrine and metabolic bases of these responses. Further, it will be critical to elucidate whether factors affect these responses (a) cumulatively or synergistically; and (b) differentially as a function of age, sex, reproductive status, season, and mobility within the urban environment. Research to date has used various taxa that differ greatly not only phylogenetically, but also with regard to ecological requirements, social systems, propensity to consume anthropogenic food, and behavioral responses to human presence. Researchers may instead benefit from standardizing approaches to examine a small number of representative models with wide geographic distribution and that occupy diverse urban ecosystems.
Collapse
Affiliation(s)
- Pierre Deviche
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Karen Sweazea
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Frederic Angelier
- Centre d'Etudes Biologiques de Chizé, UMR7372, CNRS - La Rochelle Universite, Villiers en Bois, France
| |
Collapse
|
13
|
Grunst AS, Grunst ML, Raap T, Pinxten R, Eens M. Anthropogenic noise and light pollution additively affect sleep behaviour in free-living birds in sex- and season-dependent fashions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120426. [PMID: 36273698 DOI: 10.1016/j.envpol.2022.120426] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Rapid anthropogenic transformation of environments exposes organisms to diverse disturbance factors, including anthropogenic noise pollution and artificial light at night (ALAN). These sensory pollutants interfere with acquisition of, and response to, environmental cues and can be perceived as stressors. Noise pollution and ALAN are often experienced simultaneously, and are thus likely to jointly affect organisms, either additively or interactively. Yet, combined effects of noise pollution and ALAN remain poorly elucidated. We studied combined effects of noise pollution and ALAN on the sleep behaviour of a free-living songbird, the great tit (Parus major). Sleep is widely conserved across animal taxa and fulfils essential functions, and research has demonstrated independent effects of both noise and ALAN on sleep. We measured noise and light levels at nest boxes and used infrared video-recording to assess sleep behaviour. Results did not support interactive effects of noise and ALAN. However, noise pollution and ALAN were both independently related to variation in sleep behaviour, in sex- and season-dependent fashions. Males, but not females, woke up and left the nest box ∼20 min later in the noisiest as compared to quietest environments (range: 44.2-79.4 dB), perhaps because males are more sensitive to acoustical cues that are masked by noise. Furthermore, as the season progressed from November to early March, birds woke up and left the nest box ∼35 min earlier relative to sunrise on territories with the lowest, but not the highest, light levels (range: 0.01-8.5 lux). Thus, the seasonal difference in sleep duration was dampened on light polluted territories. These effects could arise if ALAN interferes with birds' ability to sense and respond to increasing daylength, and could have fitness ramifications. Our study suggests that noise pollution and ALAN exert additive effects on sleep behaviour, and that these effects can be sex- and season-dependent.
Collapse
Affiliation(s)
- Andrea S Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium; Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000 La Rochelle, France.
| | - Melissa L Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium; Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000 La Rochelle, France
| | - Thomas Raap
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium
| | - Rianne Pinxten
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium; Faculty of Social Sciences, Antwerp School of Education, University of Antwerp, Antwerp, Belgium
| | - Marcel Eens
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
14
|
Lynn SE, Kern MD, Serrurier B, Sirman A, Heidinger BJ. Chill out: Environmentally relevant cooling challenge does not increase telomere loss during early life. Gen Comp Endocrinol 2022; 329:114108. [PMID: 35988638 DOI: 10.1016/j.ygcen.2022.114108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/04/2022]
Abstract
In vertebrates, exposure to diverse stressors during early life activates a stress response that can initiate compensatory mechanisms or promote cellular damage with long-term fitness consequences. A growing number of studies associate exposure to stressors during early life with increased damage to telomeres (i.e., promoting the shortening of these highly conserved, repeating sequences of non-coding DNA at chromosome ends). However, some studies show no such relationship, suggesting that the nature, timing, and context of these challenges may determine the degree to which physiological mediators of the stress response act in a damage-mitigating or damage promoting way in relation to telomere dynamics. In free-living eastern bluebirds (Sialia sialis), we have previously demonstrated that bouts of offspring cooling that occur when brooding females leave the nest increase at least one such physiological mediator of the stress response (circulating glucocorticoids), suggesting that variation in patterns of maternal brooding may result in different impacts on telomere dynamics at a young age. Here we experimentally tested whether repeated bouts of ecologically relevant offspring cooling affected telomere dynamics during post-natal development. Rates of telomere shortening during the nestling stage were not affected by experimental cooling, but they were affected by brood size and the rate of growth during the nestling stage. Our data suggest that the effects of developmental stress exposure on offspring telomeres are often context-dependent and that not all challenges that increase physiological mediators of stress result in damage to telomeres. Under some conditions, physiological mediators of stress may instead act as protective regulators, allowing for optimization of fitness outcomes in the face of environmental challenges.
Collapse
Affiliation(s)
- Sharon E Lynn
- The College of Wooster, Department of Biology, 931 College Mall, Wooster OH 44691, United States.
| | - Michael D Kern
- The College of Wooster, Department of Biology, 931 College Mall, Wooster OH 44691, United States
| | - Bridget Serrurier
- The College of Wooster, Department of Biology, 931 College Mall, Wooster OH 44691, United States
| | - Aubrey Sirman
- North Dakota State University, Department of Biological Sciences, Fargo ND 58108, United States
| | - Britt J Heidinger
- North Dakota State University, Department of Biological Sciences, Fargo ND 58108, United States
| |
Collapse
|
15
|
Guan Q, Wang Z, Cao J, Dong Y, Chen Y. The role of light pollution in mammalian metabolic homeostasis and its potential interventions: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120045. [PMID: 36030956 DOI: 10.1016/j.envpol.2022.120045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Irregular or unnatural artificial light causes severe environmental stress on the survival and health of organisms, which is rapidly becoming a widespread new type of environmental pollution. A series of disruptive behaviors to body homeostasis brought about by light pollution, including metabolic abnormalities, are likely to be the result of circadian rhythm disturbances. Recently, the proposed role of light pollution in metabolic dysregulation has accelerated it into an emerging field. Hence, the regulatory role of light pollution in mammalian metabolic homeostasis is reviewed in this contribution. Light at night is the most widely affected type of light pollution, which disrupts metabolic homeostasis largely due to its disruption of daily food intake patterns, alterations of hormone levels such as melatonin and glucocorticoids, and changes in the rhythm of inflammatory factor production. Besides, light pollution impairs mammalian metabolic processes in an intensity-, photoperiod-, and wavelength-dependent manner, and is also affected by species, gender, and diets. Nevertheless, metabolic disorders triggered by light pollution are not irreversible to some extent. Potential interventions such as melatonin supplementation, recovery to the LD cycle, time-restricted feeding, voluntary exercise, wearing blue light-shied goggles, and bright morning light therapy open a bright avenue to prevent light pollution. This work will help strengthen the relationship between light information and metabolic homeostasis and provide new insights for the better prevention of metabolic disorders and light pollution.
Collapse
Affiliation(s)
- Qingyun Guan
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Jing Cao
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China; Department of Nutrition and Health, China Agricultural University, Haidian, Beijing 100193, China.
| |
Collapse
|
16
|
Fitness consequences of chronic exposure to different light pollution wavelengths in nocturnal and diurnal rodents. Sci Rep 2022; 12:16486. [PMID: 36182961 PMCID: PMC9526750 DOI: 10.1038/s41598-022-19805-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/05/2022] [Indexed: 12/05/2022] Open
Abstract
Use of artificial at night (ALAN) exposes the world to continuously increasing levels and distribution of light pollution. Our understanding of the adverse effects of ALAN is based mostly on observational or laboratory studies, and its effects are probably underestimated. Demonstration of direct experimental fitness consequences of ALAN on mammals is missing. We studied the effects of chronic light pollution at different wavelengths on fitness and glucocorticoid hormone levels under semi-natural conditions in two closely related species: the nocturnal common spiny mouse (Acomys cahirinus) and the diurnal golden spiny mouse (Acomys russatus). Our results clearly demonstrate the adverse effects of ALAN exposure on the fitness of both nocturnal and diurnal species, manifested by changes in cortisol levels and reproductive timing, reduced reproductive output and reduced survival, which differed between species and wavelengths. In A. russatus exposure to blue ALAN had the strongest effect on fitness, followed by white and yellow ALAN exposure. In A. cahirinus the results are more complex and suggest it suffered from the combined effects of ALAN and competition. Our research shows that light pollution presents a real threat to both nocturnal and diurnal species, affecting the species fitness directly and through interspecific interactions. Worryingly, these effects are probably not limited to spiny mice. The clear adverse effects we documented, as well as the differences between wave lengths, contribute to our ability to present science-based recommendations to decision makers regarding the use of artificial light at night. Such information and guidelines are highly important nowadays when lighting systems are being replaced to promote energy efficiency.
Collapse
|
17
|
Rabdeau J, Desbonnes M, Bretagnolle V, Moreau J, Monceau K. Does anthropization affect physiology, behaviour and life‐history traits of Montagu's harrier chicks? Anim Conserv 2022. [DOI: 10.1111/acv.12810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J. Rabdeau
- UMR 7372, Centre d'Études Biologiques de Chizé La Rochelle Université & CNRS Villiers en Bois France
| | - M. Desbonnes
- UMR 7372, Centre d'Études Biologiques de Chizé La Rochelle Université & CNRS Villiers en Bois France
| | - V. Bretagnolle
- UMR 7372, Centre d'Études Biologiques de Chizé La Rochelle Université & CNRS Villiers en Bois France
- LTSER “Zone Atelier Plaine & Val de Sèvre”, CNRS Villiers‐en Bois France
| | - J. Moreau
- UMR 7372, Centre d'Études Biologiques de Chizé La Rochelle Université & CNRS Villiers en Bois France
- UMR CNRS 6282 Biogéosciences, Équipe Écologie Évolutive Université de Bourgogne‐Franche‐Comté Dijon France
| | - K. Monceau
- UMR 7372, Centre d'Études Biologiques de Chizé La Rochelle Université & CNRS Villiers en Bois France
| |
Collapse
|
18
|
Lynn SE, Kern MD, Fitzgerald K, Will A, Kitaysky A. Cooling increases corticosterone deposition in feathers of eastern bluebird chicks. Gen Comp Endocrinol 2022; 320:114001. [PMID: 35183499 DOI: 10.1016/j.ygcen.2022.114001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 01/29/2023]
Abstract
Exposure to noxious stimuli early in life can both activate and shape the development of the hypothalamic-pituitary-adrenal (HPA) axis in birds and other vertebrates, with the potential for lifelong consequences. Studies assessing early HPA axis activation often rely on collection of blood samples to evaluate circulating glucocorticoid levels. However, blood sampling in small altricial young is invasive, limited by animal size, and not sufficient to provide detailed information about hormone exposure over protracted periods of time. We tested the use of feather corticosterone as an alternative method to assess HPA axis activity early in life in free-living, altricial chicks, for whom timing of growth of first feathers coincides with a period of rapid growth, development of the HPA axis, and reliance on parental care. We investigated (1) whether ecologically relevant bouts of experimental cooling prior to the onset of homeothermy-conditions known to elevate circulating corticosterone-are reflected in changes of feather corticosterone deposition in Eastern bluebird (Sialia sialis) chicks, and (2) whether such changes occurred in a sex-dependent manner. We found that cooling during the first week of life resulted in elevated feather corticosterone in first-grown feathers of experimentally cooled chicks relative to controls. The timing of deposition of corticosterone in feathers in response to temperature treatments was delayed in females compared to males. Results indicate that the hormone deposition in feather tissues of altricial nestlings reflects exposure to environmental stimuli, and can thus provide a minimally invasive tool for assessing HPA activity in early life. The development of the HPA axis, or its activation in response to environmental stimuli early in life, may also occur in a sex-dependent manner in altricial birds.
Collapse
Affiliation(s)
- Sharon E Lynn
- The College of Wooster, Department of Biology, 931 College Mall, Wooster, OH 44691, USA.
| | - Michael D Kern
- The College of Wooster, Department of Biology, 931 College Mall, Wooster, OH 44691, USA
| | - Kimberly Fitzgerald
- University of Alaska Fairbanks, Institute of Arctic Biology, Department of Biology & Wildlife, Fairbanks, AK 99708, USA
| | - Alexis Will
- University of Alaska Fairbanks, Institute of Arctic Biology, Department of Biology & Wildlife, Fairbanks, AK 99708, USA
| | - Alexander Kitaysky
- University of Alaska Fairbanks, Institute of Arctic Biology, Department of Biology & Wildlife, Fairbanks, AK 99708, USA
| |
Collapse
|
19
|
A Systematic Review for Establishing Relevant Environmental Parameters for Urban Lighting: Translating Research into Practice. SUSTAINABILITY 2022. [DOI: 10.3390/su14031107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The application of lighting technologies developed in the 20th century has increased the brightness and changed the spectral composition of nocturnal night-time habitats and night skies across urban, peri-urban, rural, and pristine landscapes, and subsequently, researchers have observed the disturbance of biological rhythms of flora and fauna. To reduce these impacts, it is essential to translate relevant knowledge about the potential adverse effects of artificial light at night (ALAN) from research into applicable urban lighting practice. Therefore, the aim of this paper is to identify and report, via a systematic review, the effects of exposure to different physical properties of artificial light sources on various organism groups, including plants, arthropods, insects, spiders, fish, amphibians, reptiles, birds, and non-human mammals (including bats, rodents, and primates). PRISMA 2020 guidelines were used to identify a total of 1417 studies from Web of Science and PubMed. In 216 studies, diverse behavioral and physiological responses were observed across taxa when organisms were exposed to ALAN. The studies showed that the responses were dependent on high illuminance levels, duration of light exposure, and unnatural color spectra at night and also highlighted where research gaps remain in the domains of ALAN research and urban lighting practice. To avoid misinterpretation, and to define a common language, key terminologies and definitions connected to natural and artificial light have been provided. Furthermore, the adverse impacts of ALAN urgently need to be better researched, understood, and managed for the development of future lighting guidelines and standards to optimize sustainable design applications that preserve night-time environment(s) and their inhabiting flora and fauna.
Collapse
|
20
|
Richard FJ, Southern I, Gigauri M, Bellini G, Rojas O, Runde A. Warning on nine pollutants and their effects on avian communities. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
21
|
Zane L, Ensminger DC, Vázquez-Medina JP. Short-term elevations in glucocorticoids do not alter telomere lengths: A systematic review and meta-analysis of non-primate vertebrate studies. PLoS One 2021; 16:e0257370. [PMID: 34597314 PMCID: PMC8486123 DOI: 10.1371/journal.pone.0257370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/29/2021] [Indexed: 12/11/2022] Open
Abstract
Background The neuroendocrine stress response allows vertebrates to cope with stressors via the activation of the Hypothalamic-Pituitary-Adrenal (HPA) axis, which ultimately results in the secretion of glucocorticoids (GCs). Glucocorticoids have pleiotropic effects on behavior and physiology, and might influence telomere length dynamics. During a stress event, GCs mobilize energy towards survival mechanisms rather than to telomere maintenance. Additionally, reactive oxygen species produced in response to increased GC levels can damage telomeres, also leading to telomere shortening. In our systematic review and meta-analysis, we tested whether GC levels impact telomere length and if this relationship differs among time frame, life history stage, or stressor type. We hypothesized that elevated GC levels are linked to a decrease in telomere length. Methods We conducted a literature search for studies investigating the relationship between telomere length and GCs in non-human vertebrates using four search engines: Web of Science, Google Scholar, Pubmed and Scopus, last searched on September 27th, 2020. This review identified 31 studies examining the relationship between GCs and telomere length. We pooled the data using Fisher’s Z for 15 of these studies. All quantitative studies underwent a risk of bias assessment. This systematic review study was registered in the Open Science Framework Registry (https://osf.io/rqve6). Results The pooled effect size from fifteen studies and 1066 study organisms shows no relationship between GCs and telomere length (Fisher’s Z = 0.1042, 95% CI = 0.0235; 0.1836). Our meta-analysis synthesizes results from 15 different taxa from the mammalian, avian, amphibian groups. While these results support some previous findings, other studies have found a direct relationship between GCs and telomere dynamics, suggesting underlying mechanisms or concepts that were not taken into account in our analysis. The risk of bias assessment revealed an overall low risk of bias with occasional instances of bias from missing outcome data or bias in the reported result. Conclusion We highlight the need for more targeted experiments to understand how conditions, such as experimental timeframes, stressor(s), and stressor magnitudes can drive a relationship between the neuroendocrine stress response and telomere length.
Collapse
Affiliation(s)
- Lauren Zane
- Department of Integrative Biology, University of California, Berkeley, CA, United States of America
- * E-mail:
| | - David C. Ensminger
- Department of Integrative Biology, University of California, Berkeley, CA, United States of America
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | | |
Collapse
|
22
|
Ren Z, Chen Y, Liu F, Ma X, Ma J, Liu G. Effects of artificial light with different wavelengths and irradiances on the sleep behaviors of Chestnut buntings (Emberiza rutila). BIOL RHYTHM RES 2021. [DOI: 10.1080/09291016.2021.1958542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Zhuofei Ren
- School of Architecture, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Architectural Physical Environment and Ecological Technologies, Tianjin, China
| | - Yuqi Chen
- School of Architecture, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Architectural Physical Environment and Ecological Technologies, Tianjin, China
| | - Fangbo Liu
- School of Architecture, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Architectural Physical Environment and Ecological Technologies, Tianjin, China
| | - Xinlong Ma
- Biomechanics Laboratory of Orthopaedics Institute, Tianjin Hospital, Tianjin, China
| | - Jianxiong Ma
- Biomechanics Laboratory of Orthopaedics Institute, Tianjin Hospital, Tianjin, China
| | - Gang Liu
- School of Architecture, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Architectural Physical Environment and Ecological Technologies, Tianjin, China
| |
Collapse
|
23
|
Dominoni DM, Teo D, Branston CJ, Jakhar A, Albalawi BFA, Evans NP. Feather, But Not Plasma, Glucocorticoid Response to Artificial Light at Night Differs between Urban and Forest Blue Tit Nestlings. Integr Comp Biol 2021; 61:1111-1121. [PMID: 34272860 PMCID: PMC8490687 DOI: 10.1093/icb/icab067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Urbanization drives phenotypic variation in many animal species. This includes behavioral and physiological traits such as activity patterns, aggression, and hormone levels. A current challenge of urban evolutionary ecology is to understand the environmental drivers of phenotypic variation in cities. Moreover, do individuals develop tolerance to urban environmental factors, which underlie adaptative responses and contribute to the evolution of urban populations? Most available evidence comes from correlative studies and rare experiments where a single urban-related environmental factor has been manipulated in the field. Here we present the results of an experiment in which we tested for differences in the glucocorticoid (CORT) response of urban and rural blue tits nestlings (Cyanistes caeruleus) to artificial light at night (ALAN). ALAN has been suggested to alter CORT response in several animal species, but to date no study has investigated whether this effect of ALAN differs between urban and rural populations. Immediately after hatching, urban and forest broods were either exposed to 2 lux of ALAN (using an LED source mounted inside the nestbox) or received no treatment (dark control). The experiment lasted until the chicks fledged. When the chicks were 13 days old plasma samples were collected to measure baseline CORT concentrations, and feather samples to provide an integrative measure of CORT during growth. Forest birds had higher plasma CORT (pCORT) concentrations than their urban counterparts, irrespective of whether they were exposed to ALAN or not. Conversely, we found population-specific responses of feather CORT to ALAN. Specifically, urban birds that received ALAN had increased feather CORT compared with the urban dark controls, while the opposite was true for the forest birds. pCORT concentrations were negatively associated to fledging success, irrespective of population and treatment, while feather CORT was positively associated to fledging success in broods exposed to ALAN, but negatively in the dark control ones. Our results demonstrate that ALAN can play a role in determination of the glucocorticoid phenotype of wild animals, and may thus contribute to phenotypic differences between urban and rural animals.
Collapse
Affiliation(s)
- Davide M Dominoni
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Dylon Teo
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Claire J Branston
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Aryan Jakhar
- Indian Institute of Science Education and Research, Thiruvananthapuram, India
| | | | - Neil P Evans
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
24
|
Injaian AS, Uehling JJ, Taff CC, Vitousek MN. Effects of artificial light at night on avian provisioning, corticosterone, and reproductive success. Integr Comp Biol 2021; 61:1147-1159. [PMID: 34021748 DOI: 10.1093/icb/icab055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Artificial light at night (hereafter 'ALAN') affects 88% of the land area in Europe and almost half of the land area in the US, with even rural areas exposed to lights from agricultural and industrial buildings. To date, there have been few studies that assess the impacts of ALAN on both wildlife behavior and physiology. However, ALAN may alter energy expenditure and/or stress physiology during the breeding period, potentially reducing reproductive success and resulting in conservation implications. Here, we experimentally exposed adult female and nestling tree swallows (Tachycineta bicolor) to ALAN. We then measured the effects of ALAN compared to control conditions on parental behavior (provisioning rate), nestling physiology (corticosterone levels), and reproductive success (likelihood of all eggs hatching and all nestlings fledging per nest). Our results showed that ALAN-exposed females provisioned their nestlings at lower rates than control females. Although relatively weak, our results also suggested that ALAN-exposed nestlings had reduced baseline and increased stress-induced corticosterone compared to control nestlings. ALAN-exposed nestlings also showed greater negative feedback of circulating corticosterone. We found no support for our prediction that ALAN would reduce nestling body condition. Finally, we found some support for a negative effect of ALAN on the likelihood that all eggs hatched in a given nest, but not the likelihood that all nestlings fledged. Therefore, while it is possible that the behavioral and physiological changes found here result in long-term consequences, our results also suggest that direct ALAN exposure alone may not have substantially large or negative effects on tree swallows. Exposure regimes for free-living birds, such as exposure to a combination of anthropogenic disturbances (i.e. ALAN and noise pollution) or direct and indirect effects of ALAN (i.e. effects on physiology due to direct light exposure and alterations in food availability), may produce different results than those found here.
Collapse
Affiliation(s)
- Allison S Injaian
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Ithaca, NY, USA
| | - Jennifer J Uehling
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Cornell Lab of Ornithology, Ithaca, NY, USA
| | - Conor C Taff
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Cornell Lab of Ornithology, Ithaca, NY, USA
| | - Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Cornell Lab of Ornithology, Ithaca, NY, USA
| |
Collapse
|
25
|
Bumgarner JR, Nelson RJ. Light at Night and Disrupted Circadian Rhythms Alter Physiology and Behavior. Integr Comp Biol 2021; 61:1160-1169. [PMID: 33787878 DOI: 10.1093/icb/icab017] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Life on earth has evolved during the past several billion years under relatively bright days and dark nights. Virtually, all organisms on the planet display an internal representation of the solar days in the form of circadian rhythms driven by biological clocks. Nearly every aspect of physiology and behavior is mediated by these internal clocks. The widespread adoption of electric lights during the past century has exposed animals, including humans, to significant light at night for the first time in our evolutionary history. Importantly, endogenous circadian clocks depend on light for synchronization with the external daily environment. Thus, light at night can derange temporal adaptations. Indeed, disruption of natural light-dark cycles results in several physiological and behavioral changes. In this review, we highlight recent evidence demonstrating how light at night exposure can have serious implications for adaptive physiology and behavior, including immune, endocrine, and metabolic function, as well as reproductive, foraging, and migratory behavior. Lastly, strategies to mitigate the consequences of light at night on behavior and physiology will be considered.
Collapse
Affiliation(s)
- Jacob R Bumgarner
- Department of Neuroscience Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505 USA
| | - Randy J Nelson
- Department of Neuroscience Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505 USA
| |
Collapse
|
26
|
Smith RA, Gagné M, Fraser KC. Pre-migration artificial light at night advances the spring migration timing of a trans-hemispheric migratory songbird. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116136. [PMID: 33280918 DOI: 10.1016/j.envpol.2020.116136] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Artificial light at night (ALAN) is increasing at a high rate across the globe and can cause shifts in animal phenology due to the alteration of perceived photoperiod. Birds in particular may be highly impacted due to their use of extra-retinal photoreceptors, as well as the use of photoperiodic cues to time life events such as reproduction, moult, and migration. For the first time, we used light-logging geolocators to determine the amount of ALAN experienced by long-distance migratory songbirds (purple martin; Progne subis) while at their overwintering sites in South America to measure its potential relationship with spring migration timing. Almost a third of birds (48/155; 31%) were subjected to at least one night with ALAN over 30 days prior to spring migration. Birds that experienced the highest number of nights (10+) with artificial light departed for spring migration on average 8 days earlier and arrived 8 days earlier at their breeding sites compared to those that experienced no artificial light. Early spring migration timing due to pre-migration ALAN experienced at overwintering sites could lead to mistiming with environmental conditions and insect abundance on the migratory route and at breeding sites, potentially impacting survival and/or reproductive success. Such effects would be particularly detrimental to species already exhibiting steep population declines such as purple martins and other migratory aerial insectivores.
Collapse
Affiliation(s)
- Reyd A Smith
- Dept. Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada; Current Address: Dept. of Integrative Biology, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada.
| | - Maryse Gagné
- Dept. Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada.
| | - Kevin C Fraser
- Dept. Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada.
| |
Collapse
|
27
|
Khan ZA, Yumnamcha T, Mondal G, Devi SD, Rajiv C, Labala RK, Sanjita Devi H, Chattoraj A. Artificial Light at Night (ALAN): A Potential Anthropogenic Component for the COVID-19 and HCoVs Outbreak. Front Endocrinol (Lausanne) 2020; 11:622. [PMID: 33013700 PMCID: PMC7511708 DOI: 10.3389/fendo.2020.00622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/30/2020] [Indexed: 12/18/2022] Open
Abstract
The origin of the coronavirus disease 2019 (COVID-19) pandemic is zoonotic. The circadian day-night is the rhythmic clue to organisms for their synchronized body functions. The "development for mankind" escalated the use of artificial light at night (ALAN). In this article, we tried to focus on the possible influence of this anthropogenic factor in human coronavirus (HCoV) outbreak. The relationship between the occurrences of coronavirus and the ascending curve of the night-light has also been delivered. The ALAN influences the physiology and behavior of bat, a known nocturnal natural reservoir of many Coronaviridae. The "threatened" and "endangered" status of the majority of bat species is mainly because of the destruction of their proper habit and habitat predominantly through artificial illumination. The stress exerted by ALAN leads to the impaired body functions, especially endocrine, immune, genomic integration, and overall rhythm features of different physiological variables and behaviors in nocturnal animals. Night-light disturbs "virus-host" synchronization and may lead to mutation in the genomic part of the virus and excessive virus shedding. We also proposed some future strategies to mitigate the repercussions of ALAN and for the protection of the living system in the earth as well.
Collapse
Affiliation(s)
- Zeeshan Ahmad Khan
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, India
| | - Thangal Yumnamcha
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, India
| | - Gopinath Mondal
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, India
| | - Sijagurumayum Dharmajyoti Devi
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, India
| | - Chongtham Rajiv
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, India
| | - Rajendra Kumar Labala
- Distributed Information Sub-centre, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, India
- Biological Rhythm Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, India
| | - Haobijam Sanjita Devi
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, India
| | - Asamanja Chattoraj
- Biological Rhythm Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, India
- *Correspondence: Asamanja Chattoraj ;
| |
Collapse
|