1
|
Zhao W, Zhao M, Zheng S, Zhang G. Single-cell protein production from photosynthetic bacteria wastewater treatment. Biotechnol Lett 2025; 47:37. [PMID: 40159530 DOI: 10.1007/s10529-025-03582-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
The production of single-cell protein (SCP) from microorganisms holds significant importance due to its potential as an alternative protein source. Photosynthetic bacteria (PSB) wastewater treatment and resource recovery method stands out as an effective means to produce SCP, protein content is usually in the 40-60% range, thereby making it a highly valuable byproduct. This comprehensive review not only summarizes the current methods for the production and utilization of SCP but also traces the historical evolution of protein production from PSB wastewater treatment. It delves into the various factors that influence the yield of SCP, meticulously analyzing aspects such as the specific PSB strain employed, the type of wastewater processed, and the light-oxygen conditions under which the process occurs.While this technology has garnered increasing attention in recent years owing to its dual benefits of wastewater treatment and SCP production, the number of studies conducted in this field remains relatively scarce. Furthermore, the majority of these studies have primarily focused on the utilization of the Rhodopseudomonas genus for treating food wastewater treatment under light-anaerobic conditions. Despite these advancements, challenges to economic viability and limitations to industrial-scale production remain. At the conclusion of this review, we discuss the existing problems within the technology, such as the need for optimized conditions for different PSB strains and wastewater types, as well as the potential future prospects for its widespread adoption and commercialization.
Collapse
Affiliation(s)
- Wei Zhao
- School of Heilongjiang River and Lake Management, Heilongjiang University, 36 Xuefu 3Rd Street, Harbin, 150080, China
| | - Mingyue Zhao
- School of Heilongjiang River and Lake Management, Heilongjiang University, 36 Xuefu 3Rd Street, Harbin, 150080, China
| | - Sijia Zheng
- Chongqing Dazu District Development and Reform Commission, 16 Honghu West Road, Yubei District, Chongqing, 401121, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Xiping Road No. 5340, Beichen District, Tianjin, 300130, China.
| |
Collapse
|
2
|
Gong G, Hong Y, Wang X, De Mandal S, Zafar J, Huang L, Jin F, Xu X. Nicotine perturbs the microbiota of brown planthopper (Nilaparvata lugens stål Hemiptera: Delphinidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115383. [PMID: 37634480 DOI: 10.1016/j.ecoenv.2023.115383] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
Bacterial symbionts exhibiting co-evolutionary patterns with insect hosts play a vital role in the nutrient synthesis, metabolism, development, reproduction, and immunity of insects. The brown planthopper (BPH) has a strong ability to adapt to various environmental stresses and can develop resistance to broad-spectrum insecticides. We aimed to investigate whether gut symbionts of BPH play a major role in the detoxification of insecticides and host fitness in unfavorable environments. Nicotine-treated rice plants were exposed to BPH (early stage) and the gut microbiome of the emerging female adults were analyzed using high throughput sequencing (HTS). Nicotine administration altered the diversity and community structure of BPH symbionts with significant increases in bacterial members such as Microbacteriaceae, Comamondaceae, Enterobacteriaceae, and these changes may be associated with host survival strategies in adverse environments. Furthermore, the in-vitro study showed that four intestinal bacterial strains of BPH (Enterobacter NLB1, Bacillus cereus NL1, Ralstonia NLG26, and Delftia NLG11) could degrade nicotine when grown in a nicotine-containing medium, with the highest degradation (71%) observed in Delftia NLG11. RT-qPCR and ELISA analysis revealed an increased expression level of CYP6AY1 and P450 enzyme activities in Delftia NLG11, respectively. CYP6AY1 increased by 20% under the action of Delftia and nicotine, while P450 enzyme activity increased by 18.1%. After CYP6AY1 interference, nicotine tolerance decreased, and the mortality rate reached 76.65% on the first day and 100% on the third day. Moreover, Delftia NLG11 helped axenic BPHs to increase their survival rate when fed nicotine in the liquid-diet sac (LDS) feeding system. Compared with axenic BPHs, the survival rate improved by 25.11% on day 2% and 6.67% on day 3. These results revealed an altered gut microbiota and a cooperative relationship between Delftia NLG11 and CYP6AY1 in nicotine-treated BPH, suggesting that insects can adapt to a hostile environment by interacting with their symbionts and providing a new idea for integrated pest management strategies.
Collapse
Affiliation(s)
- Gu Gong
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, PR China
| | - Yingying Hong
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, PR China
| | - Xuemei Wang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, PR China
| | - Surajit De Mandal
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, PR China
| | - Junaid Zafar
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, PR China
| | - Ling Huang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, PR China
| | - Fengliang Jin
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, PR China.
| | - Xiaoxia Xu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, PR China.
| |
Collapse
|
3
|
Hou C, Jiang X, Chen D, Zhang X, Liu X, Mu Y, Shen J. Ag-TiO 2/biofilm/nitrate interface enhanced visible light-assisted biodegradation of tetracycline: The key role of nitrate as the electron accepter. WATER RESEARCH 2022; 215:118212. [PMID: 35255424 DOI: 10.1016/j.watres.2022.118212] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/11/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Due to the pivotal role of Ag-TiO2/biofilm/nitrate interface, enhanced visible light-assisted biodegradation of tetracycline (TC) in anoxic system was realized through both batch experiment and long-term operation in this study. The results of the batch experiment elucidated that 50 mg L-1 TC could be completely removed within 10 h in Ag-TiO2/biofilm/nitrate system. The continuous flow experiment was operated for 75 d to evaluate the performance and stability of Ag-TiO2/biofilm/nitrate system. TC removal efficiency in Ag-TiO2/biofilm/nitrate system was as high as 92.4 ± 1.6% at influent TC concentration of 50 mg L-1 TC and hydraulic retention time (HRT) of 10 h, which would be attributed to the promoted separation of photoholes and photoelectrons at the presence of nitrate as electron acceptor. Facilitated electron transfer between semiconductor and biofilm was beneficial for enhancing TC biodegradation, thus lowering toxicity of intermediate products and promoting microbial activity. Moreover, the species related to TC biodegradation (Rhodopseudomonas, Phreatobacter and Stenotrophomonas), denitrification (Thauera) and electron transfer (Delftia) were enriched at Ag-TiO2/biofilm/nitrate interface. Besides, a possible mechanism involved in enhanced TC degradation and nitrogen removal at Ag-TiO2/biofilm/nitrate interface was proposed. This study provided a novel and promising strategy to enhance recalcitrant TC removal from industrial wastewater.
Collapse
Affiliation(s)
- Cheng Hou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinbai Jiang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Dan Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaoyu Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaodong Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yang Mu
- Department of Applied Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
4
|
Wu P, Zhang X, Niu T, Wang Y, Liu R, Zhang Y. The imidacloprid remediation, soil fertility enhancement and microbial community change in soil by Rhodopseudomonas capsulata using effluent as carbon source. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:114254. [PMID: 32911333 DOI: 10.1016/j.envpol.2020.114254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 02/09/2020] [Accepted: 02/21/2020] [Indexed: 05/20/2023]
Abstract
The effects of Rhodopseudomonas capsulata (R. capsulata) in the treated effluent of soybean processing wastewater (SPW) on the remediation of imidacloprid in soil, soil fertility, and the microbial community structure in soil were studied. Compared with the control group, with the addition of effluent containing R. capsulata, imidacloprid was effectively removed, soil fertility was enhanced, and the microbial community structure was improved. Molecular analysis indicated that imidacloprid could exert induction effects on expression of cpm gene and regulation effects on the synthesis of cytochrome P450 monooxygenases (P450) by activating HKs gene in two-component system (TCS). For R. capsulata, this induction process required 1 day. The synthesis of P450 occurred 1 day after inoculation, because R. capsulata are a type of archaea and imidacloprid is an environmental stress. Before expression of the cpm gene and synthesis of P450, R. capsulata need a period of time to adapt to external imidacloprid stimulation. However, the lack of organic matter in the soil cannot sustain R. capsulata growth for more than 1 day. In four groups with added effluent, the remaining organic matter in the effluent provided a sufficient carbon source and energy for R. capsulata. Five days later, the microbial community structure was improved by R. capsulata in the soil. The new technique could be used to remediate imidacloprid, enhance soil fertility, treat SPW and realize the recycling and reuse of wastewater and R. capsulata cells.
Collapse
Affiliation(s)
- Pan Wu
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xuewei Zhang
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Tong Niu
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Yanling Wang
- Department of Anesthesiology, The Third Affiliated Hospital of SunYat-Sen University, Guangzhou, 510630, China
| | - Rijia Liu
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China.
| | - Ying Zhang
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China.
| |
Collapse
|